Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationTue, 13 Dec 2016 12:55:13 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/13/t1481630146nczx2fn6yr25759.htm/, Retrieved Fri, 01 Nov 2024 03:41:14 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299078, Retrieved Fri, 01 Nov 2024 03:41:14 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact141
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Multiple Regression] [Meervoudige regre...] [2016-12-07 12:17:25] [5ad8e5538a25411d3c3b0ec85050bd51]
- R  D  [Multiple Regression] [Multiple regressi...] [2016-12-12 22:15:47] [5ad8e5538a25411d3c3b0ec85050bd51]
-   PD      [Multiple Regression] [Multiple regressi...] [2016-12-13 11:55:13] [c0b73e623858a81821526bb2f691ccd9] [Current]
Feedback Forum

Post a new message
Dataseries X:
3	4	3	15
5	5	5	13
5	4	4	14
5	4	4	13
4	4	3	12
5	5	5	17
5	4	3	12
5	5	5	13
5	5	4	13
5	4	3	16
5	5	5	12
NA	4	5	12
5	5	5	13
5	5	4	16
4	4	3	15
3	4	4	12
5	5	5	NA
NA	NA	NA	NA
5	4	3	15
5	3	3	12
4	4	4	15
2	5	1	11
5	5	4	13
5	5	4	13
5	5	4	14
4	4	4	14
4	5	5	14
4	5	4	15
5	5	4	16
5	5	4	16
4	NA	4	16
5	5	4	13
5	5	5	13
1	1	1	14
5	5	4	13
4	5	4	14
4	4	4	12
4	4	4	17
5	5	4	14
4	4	5	15
4	4	4	13
5	4	4	14
3	3	4	15
5	5	5	19
5	5	5	14
2	2	1	13
3	3	3	12
4	4	3	NA
4	5	3	14
NA	NA	NA	15
5	5	4	15
5	5	5	12
4	4	4	14
5	5	3	11
5	5	5	12
4	4	4	10
5	5	4	NA
4	5	3	14
4	4	4	14
3	4	3	15
4	4	3	15
4	5	4	13
5	4	4	15
4	5	4	16
4	5	4	12
4	4	4	17
4	3	3	15
4	4	4	NA
2	4	4	12
4	5	4	16
4	4	3	15
5	5	5	15
3	3	3	12
3	4	3	13
5	4	5	10
4	3	3	14
5	5	5	11
4	5	4	12
4	3	3	14
5	5	3	12
5	5	5	14
5	4	3	12
4	4	3	13
5	4	4	13
5	5	5	14
2	5	4	12
5	4	5	15
5	5	4	13
5	5	5	13
5	4	4	11
4	4	4	12
4	4	4	16
5	5	5	11
4	4	4	13
5	5	5	12
5	5	4	17
5	4	5	14
4	4	4	15
5	5	5	8
5	5	5	13
3	4	2	13
5	4	5	15
5	5	5	14
5	5	5	13
4	3	NA	14
4	4	5	12
4	4	4	19
4	4	4	15
5	5	5	14
5	5	4	14
4	4	2	15
3	4	4	13
3	4	3	15
4	4	5	14
4	4	3	11
5	5	4	17
5	4	4	13
4	4	5	9
5	5	5	12
5	4	4	13
4	4	3	17
4	4	3	14
5	5	4	13
5	5	5	16
5	5	3	14
5	5	3	14
4	5	4	14
5	4	4	10
3	4	4	12
5	5	4	13
5	4	5	14
4	5	4	18
5	5	5	14
4	4	4	14
4	4	4	13
4	4	4	13
4	4	5	16
2	3	2	NA
4	4	4	13
5	4	5	14
5	5	5	8
5	5	5	13
4	4	4	13
4	5	4	16
5	4	4	14
5	4	4	13
5	4	5	14
5	5	5	12
5	3	5	16
5	4	5	18
4	4	4	16
5	4	4	15
3	3	3	18
3	4	4	15
4	5	4	14
4	5	4	14
3	5	3	15
3	4	3	9
5	5	5	17
5	5	4	11
5	4	4	15
5	4	4	NA
5	5	5	15
5	4	5	13
5	5	5	NA
5	4	5	15
4	4	4	15
4	4	5	14
2	4	5	13




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R ServerBig Analytics Cloud Computing Center
R Framework error message
The field 'Names of X columns' contains a hard return which cannot be interpreted.
Please, resubmit your request without hard returns in the 'Names of X columns'.

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time8 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
R Framework error message & 
The field 'Names of X columns' contains a hard return which cannot be interpreted.
Please, resubmit your request without hard returns in the 'Names of X columns'.
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=299078&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]8 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [ROW]R Framework error message[/C][C]
The field 'Names of X columns' contains a hard return which cannot be interpreted.
Please, resubmit your request without hard returns in the 'Names of X columns'.
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299078&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299078&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R ServerBig Analytics Cloud Computing Center
R Framework error message
The field 'Names of X columns' contains a hard return which cannot be interpreted.
Please, resubmit your request without hard returns in the 'Names of X columns'.







Multiple Linear Regression - Estimated Regression Equation
EPSUM [t] = + 14.1403 + 0.117311ITH1[t] -0.202028ITH2[t] -0.00589097ITH3[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
EPSUM
[t] =  +  14.1403 +  0.117311ITH1[t] -0.202028ITH2[t] -0.00589097ITH3[t]  + e[t] \tabularnewline
 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299078&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]EPSUM
[t] =  +  14.1403 +  0.117311ITH1[t] -0.202028ITH2[t] -0.00589097ITH3[t]  + e[t][/C][/ROW]
[ROW][C][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299078&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299078&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
EPSUM [t] = + 14.1403 + 0.117311ITH1[t] -0.202028ITH2[t] -0.00589097ITH3[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+14.14 1.093+1.2930e+01 2.563e-26 1.281e-26
ITH1+0.1173 0.2376+4.9380e-01 0.6222 0.3111
ITH2-0.202 0.2711-7.4530e-01 0.4572 0.2286
ITH3-0.005891 0.2229-2.6430e-02 0.9789 0.4895

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & +14.14 &  1.093 & +1.2930e+01 &  2.563e-26 &  1.281e-26 \tabularnewline
ITH1 & +0.1173 &  0.2376 & +4.9380e-01 &  0.6222 &  0.3111 \tabularnewline
ITH2 & -0.202 &  0.2711 & -7.4530e-01 &  0.4572 &  0.2286 \tabularnewline
ITH3 & -0.005891 &  0.2229 & -2.6430e-02 &  0.9789 &  0.4895 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299078&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]+14.14[/C][C] 1.093[/C][C]+1.2930e+01[/C][C] 2.563e-26[/C][C] 1.281e-26[/C][/ROW]
[ROW][C]ITH1[/C][C]+0.1173[/C][C] 0.2376[/C][C]+4.9380e-01[/C][C] 0.6222[/C][C] 0.3111[/C][/ROW]
[ROW][C]ITH2[/C][C]-0.202[/C][C] 0.2711[/C][C]-7.4530e-01[/C][C] 0.4572[/C][C] 0.2286[/C][/ROW]
[ROW][C]ITH3[/C][C]-0.005891[/C][C] 0.2229[/C][C]-2.6430e-02[/C][C] 0.9789[/C][C] 0.4895[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299078&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299078&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+14.14 1.093+1.2930e+01 2.563e-26 1.281e-26
ITH1+0.1173 0.2376+4.9380e-01 0.6222 0.3111
ITH2-0.202 0.2711-7.4530e-01 0.4572 0.2286
ITH3-0.005891 0.2229-2.6430e-02 0.9789 0.4895







Multiple Linear Regression - Regression Statistics
Multiple R 0.06406
R-squared 0.004103
Adjusted R-squared-0.01542
F-TEST (value) 0.2101
F-TEST (DF numerator)3
F-TEST (DF denominator)153
p-value 0.8893
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 1.946
Sum Squared Residuals 579.4

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R &  0.06406 \tabularnewline
R-squared &  0.004103 \tabularnewline
Adjusted R-squared & -0.01542 \tabularnewline
F-TEST (value) &  0.2101 \tabularnewline
F-TEST (DF numerator) & 3 \tabularnewline
F-TEST (DF denominator) & 153 \tabularnewline
p-value &  0.8893 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation &  1.946 \tabularnewline
Sum Squared Residuals &  579.4 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299078&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C] 0.06406[/C][/ROW]
[ROW][C]R-squared[/C][C] 0.004103[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]-0.01542[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C] 0.2101[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]3[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]153[/C][/ROW]
[ROW][C]p-value[/C][C] 0.8893[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C] 1.946[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C] 579.4[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299078&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299078&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R 0.06406
R-squared 0.004103
Adjusted R-squared-0.01542
F-TEST (value) 0.2101
F-TEST (DF numerator)3
F-TEST (DF denominator)153
p-value 0.8893
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 1.946
Sum Squared Residuals 579.4







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 15 13.67 1.334
2 13 13.69-0.6873
3 14 13.9 0.1048
4 13 13.9-0.8952
5 12 13.78-1.784
6 17 13.69 3.313
7 12 13.9-1.901
8 13 13.69-0.6873
9 13 13.69-0.6932
10 16 13.9 2.099
11 12 13.69-1.687
12 13 13.69-0.6873
13 16 13.69 2.307
14 15 13.78 1.216
15 12 13.66-1.661
16 15 13.9 1.099
17 12 14.1-2.103
18 15 13.78 1.222
19 11 13.36-2.359
20 13 13.69-0.6932
21 13 13.69-0.6932
22 14 13.69 0.3068
23 14 13.78 0.2221
24 14 13.57 0.43
25 15 13.58 1.424
26 16 13.69 2.307
27 16 13.69 2.307
28 13 13.69-0.6932
29 13 13.69-0.6873
30 14 14.05-0.04969
31 13 13.69-0.6932
32 14 13.58 0.4242
33 12 13.78-1.778
34 17 13.78 3.222
35 14 13.69 0.3068
36 15 13.77 1.228
37 13 13.78-0.7779
38 14 13.9 0.1048
39 15 13.86 1.137
40 19 13.69 5.313
41 14 13.69 0.3127
42 13 13.96-0.965
43 12 13.87-1.868
44 14 13.58 0.4183
45 15 13.69 1.307
46 12 13.69-1.687
47 14 13.78 0.2221
48 11 13.7-2.699
49 12 13.69-1.687
50 10 13.78-3.778
51 14 13.58 0.4183
52 14 13.78 0.2221
53 15 13.67 1.334
54 15 13.78 1.216
55 13 13.58-0.5758
56 15 13.9 1.105
57 16 13.58 2.424
58 12 13.58-1.576
59 17 13.78 3.222
60 15 13.99 1.014
61 12 13.54-1.543
62 16 13.58 2.424
63 15 13.78 1.216
64 15 13.69 1.313
65 12 13.87-1.868
66 13 13.67-0.6664
67 10 13.89-3.889
68 14 13.99 0.01421
69 11 13.69-2.687
70 12 13.58-1.576
71 14 13.99 0.01421
72 12 13.7-1.699
73 14 13.69 0.3127
74 12 13.9-1.901
75 13 13.78-0.7838
76 13 13.9-0.8952
77 14 13.69 0.3127
78 12 13.34-1.341
79 15 13.89 1.111
80 13 13.69-0.6932
81 13 13.69-0.6873
82 11 13.9-2.895
83 12 13.78-1.778
84 16 13.78 2.222
85 11 13.69-2.687
86 13 13.78-0.7779
87 12 13.69-1.687
88 17 13.69 3.307
89 14 13.89 0.1107
90 15 13.78 1.222
91 8 13.69-5.687
92 13 13.69-0.6873
93 13 13.67-0.6723
94 15 13.89 1.111
95 14 13.69 0.3127
96 13 13.69-0.6873
97 12 13.77-1.772
98 19 13.78 5.222
99 15 13.78 1.222
100 14 13.69 0.3127
101 14 13.69 0.3068
102 15 13.79 1.21
103 13 13.66-0.6606
104 15 13.67 1.334
105 14 13.77 0.228
106 11 13.78-2.784
107 17 13.69 3.307
108 13 13.9-0.8952
109 9 13.77-4.772
110 12 13.69-1.687
111 13 13.9-0.8952
112 17 13.78 3.216
113 14 13.78 0.2162
114 13 13.69-0.6932
115 16 13.69 2.313
116 14 13.7 0.301
117 14 13.7 0.301
118 14 13.58 0.4242
119 10 13.9-3.895
120 12 13.66-1.661
121 13 13.69-0.6932
122 14 13.89 0.1107
123 18 13.58 4.424
124 14 13.69 0.3127
125 14 13.78 0.2221
126 13 13.78-0.7779
127 13 13.78-0.7779
128 16 13.77 2.228
129 13 13.78-0.7779
130 14 13.89 0.1107
131 8 13.69-5.687
132 13 13.69-0.6873
133 13 13.78-0.7779
134 16 13.58 2.424
135 14 13.9 0.1048
136 13 13.9-0.8952
137 14 13.89 0.1107
138 12 13.69-1.687
139 16 14.09 1.909
140 18 13.89 4.111
141 16 13.78 2.222
142 15 13.9 1.105
143 18 13.87 4.132
144 15 13.66 1.339
145 14 13.58 0.4242
146 14 13.58 0.4242
147 15 13.46 1.536
148 9 13.67-4.666
149 17 13.69 3.313
150 11 13.69-2.693
151 15 13.9 1.105
152 15 13.69 1.313
153 13 13.89-0.8893
154 15 13.89 1.111
155 15 13.78 1.222
156 14 13.77 0.228
157 13 13.54-0.5374

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 &  15 &  13.67 &  1.334 \tabularnewline
2 &  13 &  13.69 & -0.6873 \tabularnewline
3 &  14 &  13.9 &  0.1048 \tabularnewline
4 &  13 &  13.9 & -0.8952 \tabularnewline
5 &  12 &  13.78 & -1.784 \tabularnewline
6 &  17 &  13.69 &  3.313 \tabularnewline
7 &  12 &  13.9 & -1.901 \tabularnewline
8 &  13 &  13.69 & -0.6873 \tabularnewline
9 &  13 &  13.69 & -0.6932 \tabularnewline
10 &  16 &  13.9 &  2.099 \tabularnewline
11 &  12 &  13.69 & -1.687 \tabularnewline
12 &  13 &  13.69 & -0.6873 \tabularnewline
13 &  16 &  13.69 &  2.307 \tabularnewline
14 &  15 &  13.78 &  1.216 \tabularnewline
15 &  12 &  13.66 & -1.661 \tabularnewline
16 &  15 &  13.9 &  1.099 \tabularnewline
17 &  12 &  14.1 & -2.103 \tabularnewline
18 &  15 &  13.78 &  1.222 \tabularnewline
19 &  11 &  13.36 & -2.359 \tabularnewline
20 &  13 &  13.69 & -0.6932 \tabularnewline
21 &  13 &  13.69 & -0.6932 \tabularnewline
22 &  14 &  13.69 &  0.3068 \tabularnewline
23 &  14 &  13.78 &  0.2221 \tabularnewline
24 &  14 &  13.57 &  0.43 \tabularnewline
25 &  15 &  13.58 &  1.424 \tabularnewline
26 &  16 &  13.69 &  2.307 \tabularnewline
27 &  16 &  13.69 &  2.307 \tabularnewline
28 &  13 &  13.69 & -0.6932 \tabularnewline
29 &  13 &  13.69 & -0.6873 \tabularnewline
30 &  14 &  14.05 & -0.04969 \tabularnewline
31 &  13 &  13.69 & -0.6932 \tabularnewline
32 &  14 &  13.58 &  0.4242 \tabularnewline
33 &  12 &  13.78 & -1.778 \tabularnewline
34 &  17 &  13.78 &  3.222 \tabularnewline
35 &  14 &  13.69 &  0.3068 \tabularnewline
36 &  15 &  13.77 &  1.228 \tabularnewline
37 &  13 &  13.78 & -0.7779 \tabularnewline
38 &  14 &  13.9 &  0.1048 \tabularnewline
39 &  15 &  13.86 &  1.137 \tabularnewline
40 &  19 &  13.69 &  5.313 \tabularnewline
41 &  14 &  13.69 &  0.3127 \tabularnewline
42 &  13 &  13.96 & -0.965 \tabularnewline
43 &  12 &  13.87 & -1.868 \tabularnewline
44 &  14 &  13.58 &  0.4183 \tabularnewline
45 &  15 &  13.69 &  1.307 \tabularnewline
46 &  12 &  13.69 & -1.687 \tabularnewline
47 &  14 &  13.78 &  0.2221 \tabularnewline
48 &  11 &  13.7 & -2.699 \tabularnewline
49 &  12 &  13.69 & -1.687 \tabularnewline
50 &  10 &  13.78 & -3.778 \tabularnewline
51 &  14 &  13.58 &  0.4183 \tabularnewline
52 &  14 &  13.78 &  0.2221 \tabularnewline
53 &  15 &  13.67 &  1.334 \tabularnewline
54 &  15 &  13.78 &  1.216 \tabularnewline
55 &  13 &  13.58 & -0.5758 \tabularnewline
56 &  15 &  13.9 &  1.105 \tabularnewline
57 &  16 &  13.58 &  2.424 \tabularnewline
58 &  12 &  13.58 & -1.576 \tabularnewline
59 &  17 &  13.78 &  3.222 \tabularnewline
60 &  15 &  13.99 &  1.014 \tabularnewline
61 &  12 &  13.54 & -1.543 \tabularnewline
62 &  16 &  13.58 &  2.424 \tabularnewline
63 &  15 &  13.78 &  1.216 \tabularnewline
64 &  15 &  13.69 &  1.313 \tabularnewline
65 &  12 &  13.87 & -1.868 \tabularnewline
66 &  13 &  13.67 & -0.6664 \tabularnewline
67 &  10 &  13.89 & -3.889 \tabularnewline
68 &  14 &  13.99 &  0.01421 \tabularnewline
69 &  11 &  13.69 & -2.687 \tabularnewline
70 &  12 &  13.58 & -1.576 \tabularnewline
71 &  14 &  13.99 &  0.01421 \tabularnewline
72 &  12 &  13.7 & -1.699 \tabularnewline
73 &  14 &  13.69 &  0.3127 \tabularnewline
74 &  12 &  13.9 & -1.901 \tabularnewline
75 &  13 &  13.78 & -0.7838 \tabularnewline
76 &  13 &  13.9 & -0.8952 \tabularnewline
77 &  14 &  13.69 &  0.3127 \tabularnewline
78 &  12 &  13.34 & -1.341 \tabularnewline
79 &  15 &  13.89 &  1.111 \tabularnewline
80 &  13 &  13.69 & -0.6932 \tabularnewline
81 &  13 &  13.69 & -0.6873 \tabularnewline
82 &  11 &  13.9 & -2.895 \tabularnewline
83 &  12 &  13.78 & -1.778 \tabularnewline
84 &  16 &  13.78 &  2.222 \tabularnewline
85 &  11 &  13.69 & -2.687 \tabularnewline
86 &  13 &  13.78 & -0.7779 \tabularnewline
87 &  12 &  13.69 & -1.687 \tabularnewline
88 &  17 &  13.69 &  3.307 \tabularnewline
89 &  14 &  13.89 &  0.1107 \tabularnewline
90 &  15 &  13.78 &  1.222 \tabularnewline
91 &  8 &  13.69 & -5.687 \tabularnewline
92 &  13 &  13.69 & -0.6873 \tabularnewline
93 &  13 &  13.67 & -0.6723 \tabularnewline
94 &  15 &  13.89 &  1.111 \tabularnewline
95 &  14 &  13.69 &  0.3127 \tabularnewline
96 &  13 &  13.69 & -0.6873 \tabularnewline
97 &  12 &  13.77 & -1.772 \tabularnewline
98 &  19 &  13.78 &  5.222 \tabularnewline
99 &  15 &  13.78 &  1.222 \tabularnewline
100 &  14 &  13.69 &  0.3127 \tabularnewline
101 &  14 &  13.69 &  0.3068 \tabularnewline
102 &  15 &  13.79 &  1.21 \tabularnewline
103 &  13 &  13.66 & -0.6606 \tabularnewline
104 &  15 &  13.67 &  1.334 \tabularnewline
105 &  14 &  13.77 &  0.228 \tabularnewline
106 &  11 &  13.78 & -2.784 \tabularnewline
107 &  17 &  13.69 &  3.307 \tabularnewline
108 &  13 &  13.9 & -0.8952 \tabularnewline
109 &  9 &  13.77 & -4.772 \tabularnewline
110 &  12 &  13.69 & -1.687 \tabularnewline
111 &  13 &  13.9 & -0.8952 \tabularnewline
112 &  17 &  13.78 &  3.216 \tabularnewline
113 &  14 &  13.78 &  0.2162 \tabularnewline
114 &  13 &  13.69 & -0.6932 \tabularnewline
115 &  16 &  13.69 &  2.313 \tabularnewline
116 &  14 &  13.7 &  0.301 \tabularnewline
117 &  14 &  13.7 &  0.301 \tabularnewline
118 &  14 &  13.58 &  0.4242 \tabularnewline
119 &  10 &  13.9 & -3.895 \tabularnewline
120 &  12 &  13.66 & -1.661 \tabularnewline
121 &  13 &  13.69 & -0.6932 \tabularnewline
122 &  14 &  13.89 &  0.1107 \tabularnewline
123 &  18 &  13.58 &  4.424 \tabularnewline
124 &  14 &  13.69 &  0.3127 \tabularnewline
125 &  14 &  13.78 &  0.2221 \tabularnewline
126 &  13 &  13.78 & -0.7779 \tabularnewline
127 &  13 &  13.78 & -0.7779 \tabularnewline
128 &  16 &  13.77 &  2.228 \tabularnewline
129 &  13 &  13.78 & -0.7779 \tabularnewline
130 &  14 &  13.89 &  0.1107 \tabularnewline
131 &  8 &  13.69 & -5.687 \tabularnewline
132 &  13 &  13.69 & -0.6873 \tabularnewline
133 &  13 &  13.78 & -0.7779 \tabularnewline
134 &  16 &  13.58 &  2.424 \tabularnewline
135 &  14 &  13.9 &  0.1048 \tabularnewline
136 &  13 &  13.9 & -0.8952 \tabularnewline
137 &  14 &  13.89 &  0.1107 \tabularnewline
138 &  12 &  13.69 & -1.687 \tabularnewline
139 &  16 &  14.09 &  1.909 \tabularnewline
140 &  18 &  13.89 &  4.111 \tabularnewline
141 &  16 &  13.78 &  2.222 \tabularnewline
142 &  15 &  13.9 &  1.105 \tabularnewline
143 &  18 &  13.87 &  4.132 \tabularnewline
144 &  15 &  13.66 &  1.339 \tabularnewline
145 &  14 &  13.58 &  0.4242 \tabularnewline
146 &  14 &  13.58 &  0.4242 \tabularnewline
147 &  15 &  13.46 &  1.536 \tabularnewline
148 &  9 &  13.67 & -4.666 \tabularnewline
149 &  17 &  13.69 &  3.313 \tabularnewline
150 &  11 &  13.69 & -2.693 \tabularnewline
151 &  15 &  13.9 &  1.105 \tabularnewline
152 &  15 &  13.69 &  1.313 \tabularnewline
153 &  13 &  13.89 & -0.8893 \tabularnewline
154 &  15 &  13.89 &  1.111 \tabularnewline
155 &  15 &  13.78 &  1.222 \tabularnewline
156 &  14 &  13.77 &  0.228 \tabularnewline
157 &  13 &  13.54 & -0.5374 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299078&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C] 15[/C][C] 13.67[/C][C] 1.334[/C][/ROW]
[ROW][C]2[/C][C] 13[/C][C] 13.69[/C][C]-0.6873[/C][/ROW]
[ROW][C]3[/C][C] 14[/C][C] 13.9[/C][C] 0.1048[/C][/ROW]
[ROW][C]4[/C][C] 13[/C][C] 13.9[/C][C]-0.8952[/C][/ROW]
[ROW][C]5[/C][C] 12[/C][C] 13.78[/C][C]-1.784[/C][/ROW]
[ROW][C]6[/C][C] 17[/C][C] 13.69[/C][C] 3.313[/C][/ROW]
[ROW][C]7[/C][C] 12[/C][C] 13.9[/C][C]-1.901[/C][/ROW]
[ROW][C]8[/C][C] 13[/C][C] 13.69[/C][C]-0.6873[/C][/ROW]
[ROW][C]9[/C][C] 13[/C][C] 13.69[/C][C]-0.6932[/C][/ROW]
[ROW][C]10[/C][C] 16[/C][C] 13.9[/C][C] 2.099[/C][/ROW]
[ROW][C]11[/C][C] 12[/C][C] 13.69[/C][C]-1.687[/C][/ROW]
[ROW][C]12[/C][C] 13[/C][C] 13.69[/C][C]-0.6873[/C][/ROW]
[ROW][C]13[/C][C] 16[/C][C] 13.69[/C][C] 2.307[/C][/ROW]
[ROW][C]14[/C][C] 15[/C][C] 13.78[/C][C] 1.216[/C][/ROW]
[ROW][C]15[/C][C] 12[/C][C] 13.66[/C][C]-1.661[/C][/ROW]
[ROW][C]16[/C][C] 15[/C][C] 13.9[/C][C] 1.099[/C][/ROW]
[ROW][C]17[/C][C] 12[/C][C] 14.1[/C][C]-2.103[/C][/ROW]
[ROW][C]18[/C][C] 15[/C][C] 13.78[/C][C] 1.222[/C][/ROW]
[ROW][C]19[/C][C] 11[/C][C] 13.36[/C][C]-2.359[/C][/ROW]
[ROW][C]20[/C][C] 13[/C][C] 13.69[/C][C]-0.6932[/C][/ROW]
[ROW][C]21[/C][C] 13[/C][C] 13.69[/C][C]-0.6932[/C][/ROW]
[ROW][C]22[/C][C] 14[/C][C] 13.69[/C][C] 0.3068[/C][/ROW]
[ROW][C]23[/C][C] 14[/C][C] 13.78[/C][C] 0.2221[/C][/ROW]
[ROW][C]24[/C][C] 14[/C][C] 13.57[/C][C] 0.43[/C][/ROW]
[ROW][C]25[/C][C] 15[/C][C] 13.58[/C][C] 1.424[/C][/ROW]
[ROW][C]26[/C][C] 16[/C][C] 13.69[/C][C] 2.307[/C][/ROW]
[ROW][C]27[/C][C] 16[/C][C] 13.69[/C][C] 2.307[/C][/ROW]
[ROW][C]28[/C][C] 13[/C][C] 13.69[/C][C]-0.6932[/C][/ROW]
[ROW][C]29[/C][C] 13[/C][C] 13.69[/C][C]-0.6873[/C][/ROW]
[ROW][C]30[/C][C] 14[/C][C] 14.05[/C][C]-0.04969[/C][/ROW]
[ROW][C]31[/C][C] 13[/C][C] 13.69[/C][C]-0.6932[/C][/ROW]
[ROW][C]32[/C][C] 14[/C][C] 13.58[/C][C] 0.4242[/C][/ROW]
[ROW][C]33[/C][C] 12[/C][C] 13.78[/C][C]-1.778[/C][/ROW]
[ROW][C]34[/C][C] 17[/C][C] 13.78[/C][C] 3.222[/C][/ROW]
[ROW][C]35[/C][C] 14[/C][C] 13.69[/C][C] 0.3068[/C][/ROW]
[ROW][C]36[/C][C] 15[/C][C] 13.77[/C][C] 1.228[/C][/ROW]
[ROW][C]37[/C][C] 13[/C][C] 13.78[/C][C]-0.7779[/C][/ROW]
[ROW][C]38[/C][C] 14[/C][C] 13.9[/C][C] 0.1048[/C][/ROW]
[ROW][C]39[/C][C] 15[/C][C] 13.86[/C][C] 1.137[/C][/ROW]
[ROW][C]40[/C][C] 19[/C][C] 13.69[/C][C] 5.313[/C][/ROW]
[ROW][C]41[/C][C] 14[/C][C] 13.69[/C][C] 0.3127[/C][/ROW]
[ROW][C]42[/C][C] 13[/C][C] 13.96[/C][C]-0.965[/C][/ROW]
[ROW][C]43[/C][C] 12[/C][C] 13.87[/C][C]-1.868[/C][/ROW]
[ROW][C]44[/C][C] 14[/C][C] 13.58[/C][C] 0.4183[/C][/ROW]
[ROW][C]45[/C][C] 15[/C][C] 13.69[/C][C] 1.307[/C][/ROW]
[ROW][C]46[/C][C] 12[/C][C] 13.69[/C][C]-1.687[/C][/ROW]
[ROW][C]47[/C][C] 14[/C][C] 13.78[/C][C] 0.2221[/C][/ROW]
[ROW][C]48[/C][C] 11[/C][C] 13.7[/C][C]-2.699[/C][/ROW]
[ROW][C]49[/C][C] 12[/C][C] 13.69[/C][C]-1.687[/C][/ROW]
[ROW][C]50[/C][C] 10[/C][C] 13.78[/C][C]-3.778[/C][/ROW]
[ROW][C]51[/C][C] 14[/C][C] 13.58[/C][C] 0.4183[/C][/ROW]
[ROW][C]52[/C][C] 14[/C][C] 13.78[/C][C] 0.2221[/C][/ROW]
[ROW][C]53[/C][C] 15[/C][C] 13.67[/C][C] 1.334[/C][/ROW]
[ROW][C]54[/C][C] 15[/C][C] 13.78[/C][C] 1.216[/C][/ROW]
[ROW][C]55[/C][C] 13[/C][C] 13.58[/C][C]-0.5758[/C][/ROW]
[ROW][C]56[/C][C] 15[/C][C] 13.9[/C][C] 1.105[/C][/ROW]
[ROW][C]57[/C][C] 16[/C][C] 13.58[/C][C] 2.424[/C][/ROW]
[ROW][C]58[/C][C] 12[/C][C] 13.58[/C][C]-1.576[/C][/ROW]
[ROW][C]59[/C][C] 17[/C][C] 13.78[/C][C] 3.222[/C][/ROW]
[ROW][C]60[/C][C] 15[/C][C] 13.99[/C][C] 1.014[/C][/ROW]
[ROW][C]61[/C][C] 12[/C][C] 13.54[/C][C]-1.543[/C][/ROW]
[ROW][C]62[/C][C] 16[/C][C] 13.58[/C][C] 2.424[/C][/ROW]
[ROW][C]63[/C][C] 15[/C][C] 13.78[/C][C] 1.216[/C][/ROW]
[ROW][C]64[/C][C] 15[/C][C] 13.69[/C][C] 1.313[/C][/ROW]
[ROW][C]65[/C][C] 12[/C][C] 13.87[/C][C]-1.868[/C][/ROW]
[ROW][C]66[/C][C] 13[/C][C] 13.67[/C][C]-0.6664[/C][/ROW]
[ROW][C]67[/C][C] 10[/C][C] 13.89[/C][C]-3.889[/C][/ROW]
[ROW][C]68[/C][C] 14[/C][C] 13.99[/C][C] 0.01421[/C][/ROW]
[ROW][C]69[/C][C] 11[/C][C] 13.69[/C][C]-2.687[/C][/ROW]
[ROW][C]70[/C][C] 12[/C][C] 13.58[/C][C]-1.576[/C][/ROW]
[ROW][C]71[/C][C] 14[/C][C] 13.99[/C][C] 0.01421[/C][/ROW]
[ROW][C]72[/C][C] 12[/C][C] 13.7[/C][C]-1.699[/C][/ROW]
[ROW][C]73[/C][C] 14[/C][C] 13.69[/C][C] 0.3127[/C][/ROW]
[ROW][C]74[/C][C] 12[/C][C] 13.9[/C][C]-1.901[/C][/ROW]
[ROW][C]75[/C][C] 13[/C][C] 13.78[/C][C]-0.7838[/C][/ROW]
[ROW][C]76[/C][C] 13[/C][C] 13.9[/C][C]-0.8952[/C][/ROW]
[ROW][C]77[/C][C] 14[/C][C] 13.69[/C][C] 0.3127[/C][/ROW]
[ROW][C]78[/C][C] 12[/C][C] 13.34[/C][C]-1.341[/C][/ROW]
[ROW][C]79[/C][C] 15[/C][C] 13.89[/C][C] 1.111[/C][/ROW]
[ROW][C]80[/C][C] 13[/C][C] 13.69[/C][C]-0.6932[/C][/ROW]
[ROW][C]81[/C][C] 13[/C][C] 13.69[/C][C]-0.6873[/C][/ROW]
[ROW][C]82[/C][C] 11[/C][C] 13.9[/C][C]-2.895[/C][/ROW]
[ROW][C]83[/C][C] 12[/C][C] 13.78[/C][C]-1.778[/C][/ROW]
[ROW][C]84[/C][C] 16[/C][C] 13.78[/C][C] 2.222[/C][/ROW]
[ROW][C]85[/C][C] 11[/C][C] 13.69[/C][C]-2.687[/C][/ROW]
[ROW][C]86[/C][C] 13[/C][C] 13.78[/C][C]-0.7779[/C][/ROW]
[ROW][C]87[/C][C] 12[/C][C] 13.69[/C][C]-1.687[/C][/ROW]
[ROW][C]88[/C][C] 17[/C][C] 13.69[/C][C] 3.307[/C][/ROW]
[ROW][C]89[/C][C] 14[/C][C] 13.89[/C][C] 0.1107[/C][/ROW]
[ROW][C]90[/C][C] 15[/C][C] 13.78[/C][C] 1.222[/C][/ROW]
[ROW][C]91[/C][C] 8[/C][C] 13.69[/C][C]-5.687[/C][/ROW]
[ROW][C]92[/C][C] 13[/C][C] 13.69[/C][C]-0.6873[/C][/ROW]
[ROW][C]93[/C][C] 13[/C][C] 13.67[/C][C]-0.6723[/C][/ROW]
[ROW][C]94[/C][C] 15[/C][C] 13.89[/C][C] 1.111[/C][/ROW]
[ROW][C]95[/C][C] 14[/C][C] 13.69[/C][C] 0.3127[/C][/ROW]
[ROW][C]96[/C][C] 13[/C][C] 13.69[/C][C]-0.6873[/C][/ROW]
[ROW][C]97[/C][C] 12[/C][C] 13.77[/C][C]-1.772[/C][/ROW]
[ROW][C]98[/C][C] 19[/C][C] 13.78[/C][C] 5.222[/C][/ROW]
[ROW][C]99[/C][C] 15[/C][C] 13.78[/C][C] 1.222[/C][/ROW]
[ROW][C]100[/C][C] 14[/C][C] 13.69[/C][C] 0.3127[/C][/ROW]
[ROW][C]101[/C][C] 14[/C][C] 13.69[/C][C] 0.3068[/C][/ROW]
[ROW][C]102[/C][C] 15[/C][C] 13.79[/C][C] 1.21[/C][/ROW]
[ROW][C]103[/C][C] 13[/C][C] 13.66[/C][C]-0.6606[/C][/ROW]
[ROW][C]104[/C][C] 15[/C][C] 13.67[/C][C] 1.334[/C][/ROW]
[ROW][C]105[/C][C] 14[/C][C] 13.77[/C][C] 0.228[/C][/ROW]
[ROW][C]106[/C][C] 11[/C][C] 13.78[/C][C]-2.784[/C][/ROW]
[ROW][C]107[/C][C] 17[/C][C] 13.69[/C][C] 3.307[/C][/ROW]
[ROW][C]108[/C][C] 13[/C][C] 13.9[/C][C]-0.8952[/C][/ROW]
[ROW][C]109[/C][C] 9[/C][C] 13.77[/C][C]-4.772[/C][/ROW]
[ROW][C]110[/C][C] 12[/C][C] 13.69[/C][C]-1.687[/C][/ROW]
[ROW][C]111[/C][C] 13[/C][C] 13.9[/C][C]-0.8952[/C][/ROW]
[ROW][C]112[/C][C] 17[/C][C] 13.78[/C][C] 3.216[/C][/ROW]
[ROW][C]113[/C][C] 14[/C][C] 13.78[/C][C] 0.2162[/C][/ROW]
[ROW][C]114[/C][C] 13[/C][C] 13.69[/C][C]-0.6932[/C][/ROW]
[ROW][C]115[/C][C] 16[/C][C] 13.69[/C][C] 2.313[/C][/ROW]
[ROW][C]116[/C][C] 14[/C][C] 13.7[/C][C] 0.301[/C][/ROW]
[ROW][C]117[/C][C] 14[/C][C] 13.7[/C][C] 0.301[/C][/ROW]
[ROW][C]118[/C][C] 14[/C][C] 13.58[/C][C] 0.4242[/C][/ROW]
[ROW][C]119[/C][C] 10[/C][C] 13.9[/C][C]-3.895[/C][/ROW]
[ROW][C]120[/C][C] 12[/C][C] 13.66[/C][C]-1.661[/C][/ROW]
[ROW][C]121[/C][C] 13[/C][C] 13.69[/C][C]-0.6932[/C][/ROW]
[ROW][C]122[/C][C] 14[/C][C] 13.89[/C][C] 0.1107[/C][/ROW]
[ROW][C]123[/C][C] 18[/C][C] 13.58[/C][C] 4.424[/C][/ROW]
[ROW][C]124[/C][C] 14[/C][C] 13.69[/C][C] 0.3127[/C][/ROW]
[ROW][C]125[/C][C] 14[/C][C] 13.78[/C][C] 0.2221[/C][/ROW]
[ROW][C]126[/C][C] 13[/C][C] 13.78[/C][C]-0.7779[/C][/ROW]
[ROW][C]127[/C][C] 13[/C][C] 13.78[/C][C]-0.7779[/C][/ROW]
[ROW][C]128[/C][C] 16[/C][C] 13.77[/C][C] 2.228[/C][/ROW]
[ROW][C]129[/C][C] 13[/C][C] 13.78[/C][C]-0.7779[/C][/ROW]
[ROW][C]130[/C][C] 14[/C][C] 13.89[/C][C] 0.1107[/C][/ROW]
[ROW][C]131[/C][C] 8[/C][C] 13.69[/C][C]-5.687[/C][/ROW]
[ROW][C]132[/C][C] 13[/C][C] 13.69[/C][C]-0.6873[/C][/ROW]
[ROW][C]133[/C][C] 13[/C][C] 13.78[/C][C]-0.7779[/C][/ROW]
[ROW][C]134[/C][C] 16[/C][C] 13.58[/C][C] 2.424[/C][/ROW]
[ROW][C]135[/C][C] 14[/C][C] 13.9[/C][C] 0.1048[/C][/ROW]
[ROW][C]136[/C][C] 13[/C][C] 13.9[/C][C]-0.8952[/C][/ROW]
[ROW][C]137[/C][C] 14[/C][C] 13.89[/C][C] 0.1107[/C][/ROW]
[ROW][C]138[/C][C] 12[/C][C] 13.69[/C][C]-1.687[/C][/ROW]
[ROW][C]139[/C][C] 16[/C][C] 14.09[/C][C] 1.909[/C][/ROW]
[ROW][C]140[/C][C] 18[/C][C] 13.89[/C][C] 4.111[/C][/ROW]
[ROW][C]141[/C][C] 16[/C][C] 13.78[/C][C] 2.222[/C][/ROW]
[ROW][C]142[/C][C] 15[/C][C] 13.9[/C][C] 1.105[/C][/ROW]
[ROW][C]143[/C][C] 18[/C][C] 13.87[/C][C] 4.132[/C][/ROW]
[ROW][C]144[/C][C] 15[/C][C] 13.66[/C][C] 1.339[/C][/ROW]
[ROW][C]145[/C][C] 14[/C][C] 13.58[/C][C] 0.4242[/C][/ROW]
[ROW][C]146[/C][C] 14[/C][C] 13.58[/C][C] 0.4242[/C][/ROW]
[ROW][C]147[/C][C] 15[/C][C] 13.46[/C][C] 1.536[/C][/ROW]
[ROW][C]148[/C][C] 9[/C][C] 13.67[/C][C]-4.666[/C][/ROW]
[ROW][C]149[/C][C] 17[/C][C] 13.69[/C][C] 3.313[/C][/ROW]
[ROW][C]150[/C][C] 11[/C][C] 13.69[/C][C]-2.693[/C][/ROW]
[ROW][C]151[/C][C] 15[/C][C] 13.9[/C][C] 1.105[/C][/ROW]
[ROW][C]152[/C][C] 15[/C][C] 13.69[/C][C] 1.313[/C][/ROW]
[ROW][C]153[/C][C] 13[/C][C] 13.89[/C][C]-0.8893[/C][/ROW]
[ROW][C]154[/C][C] 15[/C][C] 13.89[/C][C] 1.111[/C][/ROW]
[ROW][C]155[/C][C] 15[/C][C] 13.78[/C][C] 1.222[/C][/ROW]
[ROW][C]156[/C][C] 14[/C][C] 13.77[/C][C] 0.228[/C][/ROW]
[ROW][C]157[/C][C] 13[/C][C] 13.54[/C][C]-0.5374[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299078&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299078&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 15 13.67 1.334
2 13 13.69-0.6873
3 14 13.9 0.1048
4 13 13.9-0.8952
5 12 13.78-1.784
6 17 13.69 3.313
7 12 13.9-1.901
8 13 13.69-0.6873
9 13 13.69-0.6932
10 16 13.9 2.099
11 12 13.69-1.687
12 13 13.69-0.6873
13 16 13.69 2.307
14 15 13.78 1.216
15 12 13.66-1.661
16 15 13.9 1.099
17 12 14.1-2.103
18 15 13.78 1.222
19 11 13.36-2.359
20 13 13.69-0.6932
21 13 13.69-0.6932
22 14 13.69 0.3068
23 14 13.78 0.2221
24 14 13.57 0.43
25 15 13.58 1.424
26 16 13.69 2.307
27 16 13.69 2.307
28 13 13.69-0.6932
29 13 13.69-0.6873
30 14 14.05-0.04969
31 13 13.69-0.6932
32 14 13.58 0.4242
33 12 13.78-1.778
34 17 13.78 3.222
35 14 13.69 0.3068
36 15 13.77 1.228
37 13 13.78-0.7779
38 14 13.9 0.1048
39 15 13.86 1.137
40 19 13.69 5.313
41 14 13.69 0.3127
42 13 13.96-0.965
43 12 13.87-1.868
44 14 13.58 0.4183
45 15 13.69 1.307
46 12 13.69-1.687
47 14 13.78 0.2221
48 11 13.7-2.699
49 12 13.69-1.687
50 10 13.78-3.778
51 14 13.58 0.4183
52 14 13.78 0.2221
53 15 13.67 1.334
54 15 13.78 1.216
55 13 13.58-0.5758
56 15 13.9 1.105
57 16 13.58 2.424
58 12 13.58-1.576
59 17 13.78 3.222
60 15 13.99 1.014
61 12 13.54-1.543
62 16 13.58 2.424
63 15 13.78 1.216
64 15 13.69 1.313
65 12 13.87-1.868
66 13 13.67-0.6664
67 10 13.89-3.889
68 14 13.99 0.01421
69 11 13.69-2.687
70 12 13.58-1.576
71 14 13.99 0.01421
72 12 13.7-1.699
73 14 13.69 0.3127
74 12 13.9-1.901
75 13 13.78-0.7838
76 13 13.9-0.8952
77 14 13.69 0.3127
78 12 13.34-1.341
79 15 13.89 1.111
80 13 13.69-0.6932
81 13 13.69-0.6873
82 11 13.9-2.895
83 12 13.78-1.778
84 16 13.78 2.222
85 11 13.69-2.687
86 13 13.78-0.7779
87 12 13.69-1.687
88 17 13.69 3.307
89 14 13.89 0.1107
90 15 13.78 1.222
91 8 13.69-5.687
92 13 13.69-0.6873
93 13 13.67-0.6723
94 15 13.89 1.111
95 14 13.69 0.3127
96 13 13.69-0.6873
97 12 13.77-1.772
98 19 13.78 5.222
99 15 13.78 1.222
100 14 13.69 0.3127
101 14 13.69 0.3068
102 15 13.79 1.21
103 13 13.66-0.6606
104 15 13.67 1.334
105 14 13.77 0.228
106 11 13.78-2.784
107 17 13.69 3.307
108 13 13.9-0.8952
109 9 13.77-4.772
110 12 13.69-1.687
111 13 13.9-0.8952
112 17 13.78 3.216
113 14 13.78 0.2162
114 13 13.69-0.6932
115 16 13.69 2.313
116 14 13.7 0.301
117 14 13.7 0.301
118 14 13.58 0.4242
119 10 13.9-3.895
120 12 13.66-1.661
121 13 13.69-0.6932
122 14 13.89 0.1107
123 18 13.58 4.424
124 14 13.69 0.3127
125 14 13.78 0.2221
126 13 13.78-0.7779
127 13 13.78-0.7779
128 16 13.77 2.228
129 13 13.78-0.7779
130 14 13.89 0.1107
131 8 13.69-5.687
132 13 13.69-0.6873
133 13 13.78-0.7779
134 16 13.58 2.424
135 14 13.9 0.1048
136 13 13.9-0.8952
137 14 13.89 0.1107
138 12 13.69-1.687
139 16 14.09 1.909
140 18 13.89 4.111
141 16 13.78 2.222
142 15 13.9 1.105
143 18 13.87 4.132
144 15 13.66 1.339
145 14 13.58 0.4242
146 14 13.58 0.4242
147 15 13.46 1.536
148 9 13.67-4.666
149 17 13.69 3.313
150 11 13.69-2.693
151 15 13.9 1.105
152 15 13.69 1.313
153 13 13.89-0.8893
154 15 13.89 1.111
155 15 13.78 1.222
156 14 13.77 0.228
157 13 13.54-0.5374







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
7 0.5429 0.9143 0.4572
8 0.4878 0.9755 0.5122
9 0.3482 0.6965 0.6518
10 0.609 0.782 0.391
11 0.5907 0.8185 0.4093
12 0.4912 0.9824 0.5088
13 0.5141 0.9718 0.4859
14 0.4405 0.8811 0.5595
15 0.3848 0.7696 0.6152
16 0.3151 0.6302 0.6849
17 0.2544 0.5089 0.7456
18 0.261 0.5221 0.739
19 0.3521 0.7043 0.6479
20 0.2935 0.5869 0.7065
21 0.2387 0.4774 0.7613
22 0.1852 0.3703 0.8148
23 0.1418 0.2836 0.8582
24 0.1061 0.2123 0.8939
25 0.09648 0.193 0.9035
26 0.1091 0.2182 0.8909
27 0.1151 0.2302 0.8849
28 0.09503 0.1901 0.905
29 0.07842 0.1568 0.9216
30 0.06534 0.1307 0.9347
31 0.05039 0.1008 0.9496
32 0.03641 0.07281 0.9636
33 0.03626 0.07252 0.9637
34 0.07153 0.1431 0.9285
35 0.05319 0.1064 0.9468
36 0.04186 0.08373 0.9581
37 0.03296 0.06592 0.967
38 0.02347 0.04694 0.9765
39 0.01804 0.03608 0.982
40 0.1125 0.2251 0.8875
41 0.08916 0.1783 0.9108
42 0.07141 0.1428 0.9286
43 0.0721 0.1442 0.9279
44 0.0565 0.113 0.9435
45 0.04761 0.09521 0.9524
46 0.05339 0.1068 0.9466
47 0.04036 0.08073 0.9596
48 0.05135 0.1027 0.9487
49 0.0551 0.1102 0.9449
50 0.1209 0.2418 0.8791
51 0.09926 0.1985 0.9007
52 0.07884 0.1577 0.9212
53 0.07104 0.1421 0.929
54 0.06288 0.1258 0.9371
55 0.05048 0.101 0.9495
56 0.04213 0.08426 0.9579
57 0.04832 0.09665 0.9517
58 0.04602 0.09204 0.954
59 0.06968 0.1394 0.9303
60 0.05863 0.1173 0.9414
61 0.05553 0.1111 0.9445
62 0.06367 0.1273 0.9363
63 0.05525 0.1105 0.9448
64 0.0472 0.0944 0.9528
65 0.04783 0.09565 0.9522
66 0.03832 0.07663 0.9617
67 0.08967 0.1793 0.9103
68 0.07263 0.1453 0.9274
69 0.0917 0.1834 0.9083
70 0.08568 0.1714 0.9143
71 0.06921 0.1384 0.9308
72 0.06573 0.1315 0.9343
73 0.0525 0.105 0.9475
74 0.0528 0.1056 0.9472
75 0.04363 0.08726 0.9564
76 0.03611 0.07223 0.9639
77 0.02815 0.0563 0.9718
78 0.02437 0.04875 0.9756
79 0.02002 0.04005 0.98
80 0.01555 0.03111 0.9844
81 0.01202 0.02405 0.988
82 0.01806 0.03612 0.9819
83 0.01766 0.03531 0.9823
84 0.01894 0.03789 0.9811
85 0.02384 0.04767 0.9762
86 0.01905 0.0381 0.981
87 0.01738 0.03475 0.9826
88 0.02941 0.05883 0.9706
89 0.02243 0.04486 0.9776
90 0.01871 0.03742 0.9813
91 0.1048 0.2096 0.8952
92 0.08685 0.1737 0.9132
93 0.07407 0.1481 0.9259
94 0.06358 0.1272 0.9364
95 0.05062 0.1012 0.9494
96 0.04041 0.08081 0.9596
97 0.03829 0.07659 0.9617
98 0.1356 0.2711 0.8644
99 0.1188 0.2377 0.8812
100 0.0973 0.1946 0.9027
101 0.07854 0.1571 0.9215
102 0.06623 0.1325 0.9338
103 0.05404 0.1081 0.946
104 0.0459 0.09179 0.9541
105 0.03544 0.07088 0.9646
106 0.04832 0.09664 0.9517
107 0.07236 0.1447 0.9276
108 0.06045 0.1209 0.9396
109 0.1728 0.3455 0.8272
110 0.162 0.324 0.838
111 0.1406 0.2812 0.8594
112 0.1808 0.3615 0.8192
113 0.149 0.298 0.851
114 0.1238 0.2475 0.8762
115 0.1316 0.2632 0.8684
116 0.1073 0.2147 0.8927
117 0.08729 0.1746 0.9127
118 0.06906 0.1381 0.9309
119 0.1375 0.2749 0.8625
120 0.1391 0.2781 0.8609
121 0.113 0.226 0.887
122 0.0896 0.1792 0.9104
123 0.2214 0.4428 0.7786
124 0.1844 0.3688 0.8156
125 0.1491 0.2983 0.8509
126 0.1277 0.2554 0.8723
127 0.1091 0.2183 0.8909
128 0.1033 0.2066 0.8967
129 0.0873 0.1746 0.9127
130 0.0665 0.133 0.9335
131 0.3203 0.6406 0.6797
132 0.2773 0.5546 0.7227
133 0.2488 0.4976 0.7512
134 0.2731 0.5463 0.7269
135 0.224 0.4481 0.776
136 0.2103 0.4206 0.7897
137 0.1756 0.3512 0.8244
138 0.1804 0.3607 0.8196
139 0.1452 0.2904 0.8548
140 0.192 0.3841 0.808
141 0.1694 0.3388 0.8306
142 0.1235 0.247 0.8765
143 0.4021 0.8043 0.5979
144 0.4072 0.8145 0.5928
145 0.3128 0.6255 0.6872
146 0.2259 0.4517 0.7741
147 0.4027 0.8055 0.5973
148 0.3857 0.7713 0.6143
149 0.5701 0.8599 0.4299
150 0.9088 0.1823 0.09116

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
7 &  0.5429 &  0.9143 &  0.4572 \tabularnewline
8 &  0.4878 &  0.9755 &  0.5122 \tabularnewline
9 &  0.3482 &  0.6965 &  0.6518 \tabularnewline
10 &  0.609 &  0.782 &  0.391 \tabularnewline
11 &  0.5907 &  0.8185 &  0.4093 \tabularnewline
12 &  0.4912 &  0.9824 &  0.5088 \tabularnewline
13 &  0.5141 &  0.9718 &  0.4859 \tabularnewline
14 &  0.4405 &  0.8811 &  0.5595 \tabularnewline
15 &  0.3848 &  0.7696 &  0.6152 \tabularnewline
16 &  0.3151 &  0.6302 &  0.6849 \tabularnewline
17 &  0.2544 &  0.5089 &  0.7456 \tabularnewline
18 &  0.261 &  0.5221 &  0.739 \tabularnewline
19 &  0.3521 &  0.7043 &  0.6479 \tabularnewline
20 &  0.2935 &  0.5869 &  0.7065 \tabularnewline
21 &  0.2387 &  0.4774 &  0.7613 \tabularnewline
22 &  0.1852 &  0.3703 &  0.8148 \tabularnewline
23 &  0.1418 &  0.2836 &  0.8582 \tabularnewline
24 &  0.1061 &  0.2123 &  0.8939 \tabularnewline
25 &  0.09648 &  0.193 &  0.9035 \tabularnewline
26 &  0.1091 &  0.2182 &  0.8909 \tabularnewline
27 &  0.1151 &  0.2302 &  0.8849 \tabularnewline
28 &  0.09503 &  0.1901 &  0.905 \tabularnewline
29 &  0.07842 &  0.1568 &  0.9216 \tabularnewline
30 &  0.06534 &  0.1307 &  0.9347 \tabularnewline
31 &  0.05039 &  0.1008 &  0.9496 \tabularnewline
32 &  0.03641 &  0.07281 &  0.9636 \tabularnewline
33 &  0.03626 &  0.07252 &  0.9637 \tabularnewline
34 &  0.07153 &  0.1431 &  0.9285 \tabularnewline
35 &  0.05319 &  0.1064 &  0.9468 \tabularnewline
36 &  0.04186 &  0.08373 &  0.9581 \tabularnewline
37 &  0.03296 &  0.06592 &  0.967 \tabularnewline
38 &  0.02347 &  0.04694 &  0.9765 \tabularnewline
39 &  0.01804 &  0.03608 &  0.982 \tabularnewline
40 &  0.1125 &  0.2251 &  0.8875 \tabularnewline
41 &  0.08916 &  0.1783 &  0.9108 \tabularnewline
42 &  0.07141 &  0.1428 &  0.9286 \tabularnewline
43 &  0.0721 &  0.1442 &  0.9279 \tabularnewline
44 &  0.0565 &  0.113 &  0.9435 \tabularnewline
45 &  0.04761 &  0.09521 &  0.9524 \tabularnewline
46 &  0.05339 &  0.1068 &  0.9466 \tabularnewline
47 &  0.04036 &  0.08073 &  0.9596 \tabularnewline
48 &  0.05135 &  0.1027 &  0.9487 \tabularnewline
49 &  0.0551 &  0.1102 &  0.9449 \tabularnewline
50 &  0.1209 &  0.2418 &  0.8791 \tabularnewline
51 &  0.09926 &  0.1985 &  0.9007 \tabularnewline
52 &  0.07884 &  0.1577 &  0.9212 \tabularnewline
53 &  0.07104 &  0.1421 &  0.929 \tabularnewline
54 &  0.06288 &  0.1258 &  0.9371 \tabularnewline
55 &  0.05048 &  0.101 &  0.9495 \tabularnewline
56 &  0.04213 &  0.08426 &  0.9579 \tabularnewline
57 &  0.04832 &  0.09665 &  0.9517 \tabularnewline
58 &  0.04602 &  0.09204 &  0.954 \tabularnewline
59 &  0.06968 &  0.1394 &  0.9303 \tabularnewline
60 &  0.05863 &  0.1173 &  0.9414 \tabularnewline
61 &  0.05553 &  0.1111 &  0.9445 \tabularnewline
62 &  0.06367 &  0.1273 &  0.9363 \tabularnewline
63 &  0.05525 &  0.1105 &  0.9448 \tabularnewline
64 &  0.0472 &  0.0944 &  0.9528 \tabularnewline
65 &  0.04783 &  0.09565 &  0.9522 \tabularnewline
66 &  0.03832 &  0.07663 &  0.9617 \tabularnewline
67 &  0.08967 &  0.1793 &  0.9103 \tabularnewline
68 &  0.07263 &  0.1453 &  0.9274 \tabularnewline
69 &  0.0917 &  0.1834 &  0.9083 \tabularnewline
70 &  0.08568 &  0.1714 &  0.9143 \tabularnewline
71 &  0.06921 &  0.1384 &  0.9308 \tabularnewline
72 &  0.06573 &  0.1315 &  0.9343 \tabularnewline
73 &  0.0525 &  0.105 &  0.9475 \tabularnewline
74 &  0.0528 &  0.1056 &  0.9472 \tabularnewline
75 &  0.04363 &  0.08726 &  0.9564 \tabularnewline
76 &  0.03611 &  0.07223 &  0.9639 \tabularnewline
77 &  0.02815 &  0.0563 &  0.9718 \tabularnewline
78 &  0.02437 &  0.04875 &  0.9756 \tabularnewline
79 &  0.02002 &  0.04005 &  0.98 \tabularnewline
80 &  0.01555 &  0.03111 &  0.9844 \tabularnewline
81 &  0.01202 &  0.02405 &  0.988 \tabularnewline
82 &  0.01806 &  0.03612 &  0.9819 \tabularnewline
83 &  0.01766 &  0.03531 &  0.9823 \tabularnewline
84 &  0.01894 &  0.03789 &  0.9811 \tabularnewline
85 &  0.02384 &  0.04767 &  0.9762 \tabularnewline
86 &  0.01905 &  0.0381 &  0.981 \tabularnewline
87 &  0.01738 &  0.03475 &  0.9826 \tabularnewline
88 &  0.02941 &  0.05883 &  0.9706 \tabularnewline
89 &  0.02243 &  0.04486 &  0.9776 \tabularnewline
90 &  0.01871 &  0.03742 &  0.9813 \tabularnewline
91 &  0.1048 &  0.2096 &  0.8952 \tabularnewline
92 &  0.08685 &  0.1737 &  0.9132 \tabularnewline
93 &  0.07407 &  0.1481 &  0.9259 \tabularnewline
94 &  0.06358 &  0.1272 &  0.9364 \tabularnewline
95 &  0.05062 &  0.1012 &  0.9494 \tabularnewline
96 &  0.04041 &  0.08081 &  0.9596 \tabularnewline
97 &  0.03829 &  0.07659 &  0.9617 \tabularnewline
98 &  0.1356 &  0.2711 &  0.8644 \tabularnewline
99 &  0.1188 &  0.2377 &  0.8812 \tabularnewline
100 &  0.0973 &  0.1946 &  0.9027 \tabularnewline
101 &  0.07854 &  0.1571 &  0.9215 \tabularnewline
102 &  0.06623 &  0.1325 &  0.9338 \tabularnewline
103 &  0.05404 &  0.1081 &  0.946 \tabularnewline
104 &  0.0459 &  0.09179 &  0.9541 \tabularnewline
105 &  0.03544 &  0.07088 &  0.9646 \tabularnewline
106 &  0.04832 &  0.09664 &  0.9517 \tabularnewline
107 &  0.07236 &  0.1447 &  0.9276 \tabularnewline
108 &  0.06045 &  0.1209 &  0.9396 \tabularnewline
109 &  0.1728 &  0.3455 &  0.8272 \tabularnewline
110 &  0.162 &  0.324 &  0.838 \tabularnewline
111 &  0.1406 &  0.2812 &  0.8594 \tabularnewline
112 &  0.1808 &  0.3615 &  0.8192 \tabularnewline
113 &  0.149 &  0.298 &  0.851 \tabularnewline
114 &  0.1238 &  0.2475 &  0.8762 \tabularnewline
115 &  0.1316 &  0.2632 &  0.8684 \tabularnewline
116 &  0.1073 &  0.2147 &  0.8927 \tabularnewline
117 &  0.08729 &  0.1746 &  0.9127 \tabularnewline
118 &  0.06906 &  0.1381 &  0.9309 \tabularnewline
119 &  0.1375 &  0.2749 &  0.8625 \tabularnewline
120 &  0.1391 &  0.2781 &  0.8609 \tabularnewline
121 &  0.113 &  0.226 &  0.887 \tabularnewline
122 &  0.0896 &  0.1792 &  0.9104 \tabularnewline
123 &  0.2214 &  0.4428 &  0.7786 \tabularnewline
124 &  0.1844 &  0.3688 &  0.8156 \tabularnewline
125 &  0.1491 &  0.2983 &  0.8509 \tabularnewline
126 &  0.1277 &  0.2554 &  0.8723 \tabularnewline
127 &  0.1091 &  0.2183 &  0.8909 \tabularnewline
128 &  0.1033 &  0.2066 &  0.8967 \tabularnewline
129 &  0.0873 &  0.1746 &  0.9127 \tabularnewline
130 &  0.0665 &  0.133 &  0.9335 \tabularnewline
131 &  0.3203 &  0.6406 &  0.6797 \tabularnewline
132 &  0.2773 &  0.5546 &  0.7227 \tabularnewline
133 &  0.2488 &  0.4976 &  0.7512 \tabularnewline
134 &  0.2731 &  0.5463 &  0.7269 \tabularnewline
135 &  0.224 &  0.4481 &  0.776 \tabularnewline
136 &  0.2103 &  0.4206 &  0.7897 \tabularnewline
137 &  0.1756 &  0.3512 &  0.8244 \tabularnewline
138 &  0.1804 &  0.3607 &  0.8196 \tabularnewline
139 &  0.1452 &  0.2904 &  0.8548 \tabularnewline
140 &  0.192 &  0.3841 &  0.808 \tabularnewline
141 &  0.1694 &  0.3388 &  0.8306 \tabularnewline
142 &  0.1235 &  0.247 &  0.8765 \tabularnewline
143 &  0.4021 &  0.8043 &  0.5979 \tabularnewline
144 &  0.4072 &  0.8145 &  0.5928 \tabularnewline
145 &  0.3128 &  0.6255 &  0.6872 \tabularnewline
146 &  0.2259 &  0.4517 &  0.7741 \tabularnewline
147 &  0.4027 &  0.8055 &  0.5973 \tabularnewline
148 &  0.3857 &  0.7713 &  0.6143 \tabularnewline
149 &  0.5701 &  0.8599 &  0.4299 \tabularnewline
150 &  0.9088 &  0.1823 &  0.09116 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299078&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]7[/C][C] 0.5429[/C][C] 0.9143[/C][C] 0.4572[/C][/ROW]
[ROW][C]8[/C][C] 0.4878[/C][C] 0.9755[/C][C] 0.5122[/C][/ROW]
[ROW][C]9[/C][C] 0.3482[/C][C] 0.6965[/C][C] 0.6518[/C][/ROW]
[ROW][C]10[/C][C] 0.609[/C][C] 0.782[/C][C] 0.391[/C][/ROW]
[ROW][C]11[/C][C] 0.5907[/C][C] 0.8185[/C][C] 0.4093[/C][/ROW]
[ROW][C]12[/C][C] 0.4912[/C][C] 0.9824[/C][C] 0.5088[/C][/ROW]
[ROW][C]13[/C][C] 0.5141[/C][C] 0.9718[/C][C] 0.4859[/C][/ROW]
[ROW][C]14[/C][C] 0.4405[/C][C] 0.8811[/C][C] 0.5595[/C][/ROW]
[ROW][C]15[/C][C] 0.3848[/C][C] 0.7696[/C][C] 0.6152[/C][/ROW]
[ROW][C]16[/C][C] 0.3151[/C][C] 0.6302[/C][C] 0.6849[/C][/ROW]
[ROW][C]17[/C][C] 0.2544[/C][C] 0.5089[/C][C] 0.7456[/C][/ROW]
[ROW][C]18[/C][C] 0.261[/C][C] 0.5221[/C][C] 0.739[/C][/ROW]
[ROW][C]19[/C][C] 0.3521[/C][C] 0.7043[/C][C] 0.6479[/C][/ROW]
[ROW][C]20[/C][C] 0.2935[/C][C] 0.5869[/C][C] 0.7065[/C][/ROW]
[ROW][C]21[/C][C] 0.2387[/C][C] 0.4774[/C][C] 0.7613[/C][/ROW]
[ROW][C]22[/C][C] 0.1852[/C][C] 0.3703[/C][C] 0.8148[/C][/ROW]
[ROW][C]23[/C][C] 0.1418[/C][C] 0.2836[/C][C] 0.8582[/C][/ROW]
[ROW][C]24[/C][C] 0.1061[/C][C] 0.2123[/C][C] 0.8939[/C][/ROW]
[ROW][C]25[/C][C] 0.09648[/C][C] 0.193[/C][C] 0.9035[/C][/ROW]
[ROW][C]26[/C][C] 0.1091[/C][C] 0.2182[/C][C] 0.8909[/C][/ROW]
[ROW][C]27[/C][C] 0.1151[/C][C] 0.2302[/C][C] 0.8849[/C][/ROW]
[ROW][C]28[/C][C] 0.09503[/C][C] 0.1901[/C][C] 0.905[/C][/ROW]
[ROW][C]29[/C][C] 0.07842[/C][C] 0.1568[/C][C] 0.9216[/C][/ROW]
[ROW][C]30[/C][C] 0.06534[/C][C] 0.1307[/C][C] 0.9347[/C][/ROW]
[ROW][C]31[/C][C] 0.05039[/C][C] 0.1008[/C][C] 0.9496[/C][/ROW]
[ROW][C]32[/C][C] 0.03641[/C][C] 0.07281[/C][C] 0.9636[/C][/ROW]
[ROW][C]33[/C][C] 0.03626[/C][C] 0.07252[/C][C] 0.9637[/C][/ROW]
[ROW][C]34[/C][C] 0.07153[/C][C] 0.1431[/C][C] 0.9285[/C][/ROW]
[ROW][C]35[/C][C] 0.05319[/C][C] 0.1064[/C][C] 0.9468[/C][/ROW]
[ROW][C]36[/C][C] 0.04186[/C][C] 0.08373[/C][C] 0.9581[/C][/ROW]
[ROW][C]37[/C][C] 0.03296[/C][C] 0.06592[/C][C] 0.967[/C][/ROW]
[ROW][C]38[/C][C] 0.02347[/C][C] 0.04694[/C][C] 0.9765[/C][/ROW]
[ROW][C]39[/C][C] 0.01804[/C][C] 0.03608[/C][C] 0.982[/C][/ROW]
[ROW][C]40[/C][C] 0.1125[/C][C] 0.2251[/C][C] 0.8875[/C][/ROW]
[ROW][C]41[/C][C] 0.08916[/C][C] 0.1783[/C][C] 0.9108[/C][/ROW]
[ROW][C]42[/C][C] 0.07141[/C][C] 0.1428[/C][C] 0.9286[/C][/ROW]
[ROW][C]43[/C][C] 0.0721[/C][C] 0.1442[/C][C] 0.9279[/C][/ROW]
[ROW][C]44[/C][C] 0.0565[/C][C] 0.113[/C][C] 0.9435[/C][/ROW]
[ROW][C]45[/C][C] 0.04761[/C][C] 0.09521[/C][C] 0.9524[/C][/ROW]
[ROW][C]46[/C][C] 0.05339[/C][C] 0.1068[/C][C] 0.9466[/C][/ROW]
[ROW][C]47[/C][C] 0.04036[/C][C] 0.08073[/C][C] 0.9596[/C][/ROW]
[ROW][C]48[/C][C] 0.05135[/C][C] 0.1027[/C][C] 0.9487[/C][/ROW]
[ROW][C]49[/C][C] 0.0551[/C][C] 0.1102[/C][C] 0.9449[/C][/ROW]
[ROW][C]50[/C][C] 0.1209[/C][C] 0.2418[/C][C] 0.8791[/C][/ROW]
[ROW][C]51[/C][C] 0.09926[/C][C] 0.1985[/C][C] 0.9007[/C][/ROW]
[ROW][C]52[/C][C] 0.07884[/C][C] 0.1577[/C][C] 0.9212[/C][/ROW]
[ROW][C]53[/C][C] 0.07104[/C][C] 0.1421[/C][C] 0.929[/C][/ROW]
[ROW][C]54[/C][C] 0.06288[/C][C] 0.1258[/C][C] 0.9371[/C][/ROW]
[ROW][C]55[/C][C] 0.05048[/C][C] 0.101[/C][C] 0.9495[/C][/ROW]
[ROW][C]56[/C][C] 0.04213[/C][C] 0.08426[/C][C] 0.9579[/C][/ROW]
[ROW][C]57[/C][C] 0.04832[/C][C] 0.09665[/C][C] 0.9517[/C][/ROW]
[ROW][C]58[/C][C] 0.04602[/C][C] 0.09204[/C][C] 0.954[/C][/ROW]
[ROW][C]59[/C][C] 0.06968[/C][C] 0.1394[/C][C] 0.9303[/C][/ROW]
[ROW][C]60[/C][C] 0.05863[/C][C] 0.1173[/C][C] 0.9414[/C][/ROW]
[ROW][C]61[/C][C] 0.05553[/C][C] 0.1111[/C][C] 0.9445[/C][/ROW]
[ROW][C]62[/C][C] 0.06367[/C][C] 0.1273[/C][C] 0.9363[/C][/ROW]
[ROW][C]63[/C][C] 0.05525[/C][C] 0.1105[/C][C] 0.9448[/C][/ROW]
[ROW][C]64[/C][C] 0.0472[/C][C] 0.0944[/C][C] 0.9528[/C][/ROW]
[ROW][C]65[/C][C] 0.04783[/C][C] 0.09565[/C][C] 0.9522[/C][/ROW]
[ROW][C]66[/C][C] 0.03832[/C][C] 0.07663[/C][C] 0.9617[/C][/ROW]
[ROW][C]67[/C][C] 0.08967[/C][C] 0.1793[/C][C] 0.9103[/C][/ROW]
[ROW][C]68[/C][C] 0.07263[/C][C] 0.1453[/C][C] 0.9274[/C][/ROW]
[ROW][C]69[/C][C] 0.0917[/C][C] 0.1834[/C][C] 0.9083[/C][/ROW]
[ROW][C]70[/C][C] 0.08568[/C][C] 0.1714[/C][C] 0.9143[/C][/ROW]
[ROW][C]71[/C][C] 0.06921[/C][C] 0.1384[/C][C] 0.9308[/C][/ROW]
[ROW][C]72[/C][C] 0.06573[/C][C] 0.1315[/C][C] 0.9343[/C][/ROW]
[ROW][C]73[/C][C] 0.0525[/C][C] 0.105[/C][C] 0.9475[/C][/ROW]
[ROW][C]74[/C][C] 0.0528[/C][C] 0.1056[/C][C] 0.9472[/C][/ROW]
[ROW][C]75[/C][C] 0.04363[/C][C] 0.08726[/C][C] 0.9564[/C][/ROW]
[ROW][C]76[/C][C] 0.03611[/C][C] 0.07223[/C][C] 0.9639[/C][/ROW]
[ROW][C]77[/C][C] 0.02815[/C][C] 0.0563[/C][C] 0.9718[/C][/ROW]
[ROW][C]78[/C][C] 0.02437[/C][C] 0.04875[/C][C] 0.9756[/C][/ROW]
[ROW][C]79[/C][C] 0.02002[/C][C] 0.04005[/C][C] 0.98[/C][/ROW]
[ROW][C]80[/C][C] 0.01555[/C][C] 0.03111[/C][C] 0.9844[/C][/ROW]
[ROW][C]81[/C][C] 0.01202[/C][C] 0.02405[/C][C] 0.988[/C][/ROW]
[ROW][C]82[/C][C] 0.01806[/C][C] 0.03612[/C][C] 0.9819[/C][/ROW]
[ROW][C]83[/C][C] 0.01766[/C][C] 0.03531[/C][C] 0.9823[/C][/ROW]
[ROW][C]84[/C][C] 0.01894[/C][C] 0.03789[/C][C] 0.9811[/C][/ROW]
[ROW][C]85[/C][C] 0.02384[/C][C] 0.04767[/C][C] 0.9762[/C][/ROW]
[ROW][C]86[/C][C] 0.01905[/C][C] 0.0381[/C][C] 0.981[/C][/ROW]
[ROW][C]87[/C][C] 0.01738[/C][C] 0.03475[/C][C] 0.9826[/C][/ROW]
[ROW][C]88[/C][C] 0.02941[/C][C] 0.05883[/C][C] 0.9706[/C][/ROW]
[ROW][C]89[/C][C] 0.02243[/C][C] 0.04486[/C][C] 0.9776[/C][/ROW]
[ROW][C]90[/C][C] 0.01871[/C][C] 0.03742[/C][C] 0.9813[/C][/ROW]
[ROW][C]91[/C][C] 0.1048[/C][C] 0.2096[/C][C] 0.8952[/C][/ROW]
[ROW][C]92[/C][C] 0.08685[/C][C] 0.1737[/C][C] 0.9132[/C][/ROW]
[ROW][C]93[/C][C] 0.07407[/C][C] 0.1481[/C][C] 0.9259[/C][/ROW]
[ROW][C]94[/C][C] 0.06358[/C][C] 0.1272[/C][C] 0.9364[/C][/ROW]
[ROW][C]95[/C][C] 0.05062[/C][C] 0.1012[/C][C] 0.9494[/C][/ROW]
[ROW][C]96[/C][C] 0.04041[/C][C] 0.08081[/C][C] 0.9596[/C][/ROW]
[ROW][C]97[/C][C] 0.03829[/C][C] 0.07659[/C][C] 0.9617[/C][/ROW]
[ROW][C]98[/C][C] 0.1356[/C][C] 0.2711[/C][C] 0.8644[/C][/ROW]
[ROW][C]99[/C][C] 0.1188[/C][C] 0.2377[/C][C] 0.8812[/C][/ROW]
[ROW][C]100[/C][C] 0.0973[/C][C] 0.1946[/C][C] 0.9027[/C][/ROW]
[ROW][C]101[/C][C] 0.07854[/C][C] 0.1571[/C][C] 0.9215[/C][/ROW]
[ROW][C]102[/C][C] 0.06623[/C][C] 0.1325[/C][C] 0.9338[/C][/ROW]
[ROW][C]103[/C][C] 0.05404[/C][C] 0.1081[/C][C] 0.946[/C][/ROW]
[ROW][C]104[/C][C] 0.0459[/C][C] 0.09179[/C][C] 0.9541[/C][/ROW]
[ROW][C]105[/C][C] 0.03544[/C][C] 0.07088[/C][C] 0.9646[/C][/ROW]
[ROW][C]106[/C][C] 0.04832[/C][C] 0.09664[/C][C] 0.9517[/C][/ROW]
[ROW][C]107[/C][C] 0.07236[/C][C] 0.1447[/C][C] 0.9276[/C][/ROW]
[ROW][C]108[/C][C] 0.06045[/C][C] 0.1209[/C][C] 0.9396[/C][/ROW]
[ROW][C]109[/C][C] 0.1728[/C][C] 0.3455[/C][C] 0.8272[/C][/ROW]
[ROW][C]110[/C][C] 0.162[/C][C] 0.324[/C][C] 0.838[/C][/ROW]
[ROW][C]111[/C][C] 0.1406[/C][C] 0.2812[/C][C] 0.8594[/C][/ROW]
[ROW][C]112[/C][C] 0.1808[/C][C] 0.3615[/C][C] 0.8192[/C][/ROW]
[ROW][C]113[/C][C] 0.149[/C][C] 0.298[/C][C] 0.851[/C][/ROW]
[ROW][C]114[/C][C] 0.1238[/C][C] 0.2475[/C][C] 0.8762[/C][/ROW]
[ROW][C]115[/C][C] 0.1316[/C][C] 0.2632[/C][C] 0.8684[/C][/ROW]
[ROW][C]116[/C][C] 0.1073[/C][C] 0.2147[/C][C] 0.8927[/C][/ROW]
[ROW][C]117[/C][C] 0.08729[/C][C] 0.1746[/C][C] 0.9127[/C][/ROW]
[ROW][C]118[/C][C] 0.06906[/C][C] 0.1381[/C][C] 0.9309[/C][/ROW]
[ROW][C]119[/C][C] 0.1375[/C][C] 0.2749[/C][C] 0.8625[/C][/ROW]
[ROW][C]120[/C][C] 0.1391[/C][C] 0.2781[/C][C] 0.8609[/C][/ROW]
[ROW][C]121[/C][C] 0.113[/C][C] 0.226[/C][C] 0.887[/C][/ROW]
[ROW][C]122[/C][C] 0.0896[/C][C] 0.1792[/C][C] 0.9104[/C][/ROW]
[ROW][C]123[/C][C] 0.2214[/C][C] 0.4428[/C][C] 0.7786[/C][/ROW]
[ROW][C]124[/C][C] 0.1844[/C][C] 0.3688[/C][C] 0.8156[/C][/ROW]
[ROW][C]125[/C][C] 0.1491[/C][C] 0.2983[/C][C] 0.8509[/C][/ROW]
[ROW][C]126[/C][C] 0.1277[/C][C] 0.2554[/C][C] 0.8723[/C][/ROW]
[ROW][C]127[/C][C] 0.1091[/C][C] 0.2183[/C][C] 0.8909[/C][/ROW]
[ROW][C]128[/C][C] 0.1033[/C][C] 0.2066[/C][C] 0.8967[/C][/ROW]
[ROW][C]129[/C][C] 0.0873[/C][C] 0.1746[/C][C] 0.9127[/C][/ROW]
[ROW][C]130[/C][C] 0.0665[/C][C] 0.133[/C][C] 0.9335[/C][/ROW]
[ROW][C]131[/C][C] 0.3203[/C][C] 0.6406[/C][C] 0.6797[/C][/ROW]
[ROW][C]132[/C][C] 0.2773[/C][C] 0.5546[/C][C] 0.7227[/C][/ROW]
[ROW][C]133[/C][C] 0.2488[/C][C] 0.4976[/C][C] 0.7512[/C][/ROW]
[ROW][C]134[/C][C] 0.2731[/C][C] 0.5463[/C][C] 0.7269[/C][/ROW]
[ROW][C]135[/C][C] 0.224[/C][C] 0.4481[/C][C] 0.776[/C][/ROW]
[ROW][C]136[/C][C] 0.2103[/C][C] 0.4206[/C][C] 0.7897[/C][/ROW]
[ROW][C]137[/C][C] 0.1756[/C][C] 0.3512[/C][C] 0.8244[/C][/ROW]
[ROW][C]138[/C][C] 0.1804[/C][C] 0.3607[/C][C] 0.8196[/C][/ROW]
[ROW][C]139[/C][C] 0.1452[/C][C] 0.2904[/C][C] 0.8548[/C][/ROW]
[ROW][C]140[/C][C] 0.192[/C][C] 0.3841[/C][C] 0.808[/C][/ROW]
[ROW][C]141[/C][C] 0.1694[/C][C] 0.3388[/C][C] 0.8306[/C][/ROW]
[ROW][C]142[/C][C] 0.1235[/C][C] 0.247[/C][C] 0.8765[/C][/ROW]
[ROW][C]143[/C][C] 0.4021[/C][C] 0.8043[/C][C] 0.5979[/C][/ROW]
[ROW][C]144[/C][C] 0.4072[/C][C] 0.8145[/C][C] 0.5928[/C][/ROW]
[ROW][C]145[/C][C] 0.3128[/C][C] 0.6255[/C][C] 0.6872[/C][/ROW]
[ROW][C]146[/C][C] 0.2259[/C][C] 0.4517[/C][C] 0.7741[/C][/ROW]
[ROW][C]147[/C][C] 0.4027[/C][C] 0.8055[/C][C] 0.5973[/C][/ROW]
[ROW][C]148[/C][C] 0.3857[/C][C] 0.7713[/C][C] 0.6143[/C][/ROW]
[ROW][C]149[/C][C] 0.5701[/C][C] 0.8599[/C][C] 0.4299[/C][/ROW]
[ROW][C]150[/C][C] 0.9088[/C][C] 0.1823[/C][C] 0.09116[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299078&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299078&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
7 0.5429 0.9143 0.4572
8 0.4878 0.9755 0.5122
9 0.3482 0.6965 0.6518
10 0.609 0.782 0.391
11 0.5907 0.8185 0.4093
12 0.4912 0.9824 0.5088
13 0.5141 0.9718 0.4859
14 0.4405 0.8811 0.5595
15 0.3848 0.7696 0.6152
16 0.3151 0.6302 0.6849
17 0.2544 0.5089 0.7456
18 0.261 0.5221 0.739
19 0.3521 0.7043 0.6479
20 0.2935 0.5869 0.7065
21 0.2387 0.4774 0.7613
22 0.1852 0.3703 0.8148
23 0.1418 0.2836 0.8582
24 0.1061 0.2123 0.8939
25 0.09648 0.193 0.9035
26 0.1091 0.2182 0.8909
27 0.1151 0.2302 0.8849
28 0.09503 0.1901 0.905
29 0.07842 0.1568 0.9216
30 0.06534 0.1307 0.9347
31 0.05039 0.1008 0.9496
32 0.03641 0.07281 0.9636
33 0.03626 0.07252 0.9637
34 0.07153 0.1431 0.9285
35 0.05319 0.1064 0.9468
36 0.04186 0.08373 0.9581
37 0.03296 0.06592 0.967
38 0.02347 0.04694 0.9765
39 0.01804 0.03608 0.982
40 0.1125 0.2251 0.8875
41 0.08916 0.1783 0.9108
42 0.07141 0.1428 0.9286
43 0.0721 0.1442 0.9279
44 0.0565 0.113 0.9435
45 0.04761 0.09521 0.9524
46 0.05339 0.1068 0.9466
47 0.04036 0.08073 0.9596
48 0.05135 0.1027 0.9487
49 0.0551 0.1102 0.9449
50 0.1209 0.2418 0.8791
51 0.09926 0.1985 0.9007
52 0.07884 0.1577 0.9212
53 0.07104 0.1421 0.929
54 0.06288 0.1258 0.9371
55 0.05048 0.101 0.9495
56 0.04213 0.08426 0.9579
57 0.04832 0.09665 0.9517
58 0.04602 0.09204 0.954
59 0.06968 0.1394 0.9303
60 0.05863 0.1173 0.9414
61 0.05553 0.1111 0.9445
62 0.06367 0.1273 0.9363
63 0.05525 0.1105 0.9448
64 0.0472 0.0944 0.9528
65 0.04783 0.09565 0.9522
66 0.03832 0.07663 0.9617
67 0.08967 0.1793 0.9103
68 0.07263 0.1453 0.9274
69 0.0917 0.1834 0.9083
70 0.08568 0.1714 0.9143
71 0.06921 0.1384 0.9308
72 0.06573 0.1315 0.9343
73 0.0525 0.105 0.9475
74 0.0528 0.1056 0.9472
75 0.04363 0.08726 0.9564
76 0.03611 0.07223 0.9639
77 0.02815 0.0563 0.9718
78 0.02437 0.04875 0.9756
79 0.02002 0.04005 0.98
80 0.01555 0.03111 0.9844
81 0.01202 0.02405 0.988
82 0.01806 0.03612 0.9819
83 0.01766 0.03531 0.9823
84 0.01894 0.03789 0.9811
85 0.02384 0.04767 0.9762
86 0.01905 0.0381 0.981
87 0.01738 0.03475 0.9826
88 0.02941 0.05883 0.9706
89 0.02243 0.04486 0.9776
90 0.01871 0.03742 0.9813
91 0.1048 0.2096 0.8952
92 0.08685 0.1737 0.9132
93 0.07407 0.1481 0.9259
94 0.06358 0.1272 0.9364
95 0.05062 0.1012 0.9494
96 0.04041 0.08081 0.9596
97 0.03829 0.07659 0.9617
98 0.1356 0.2711 0.8644
99 0.1188 0.2377 0.8812
100 0.0973 0.1946 0.9027
101 0.07854 0.1571 0.9215
102 0.06623 0.1325 0.9338
103 0.05404 0.1081 0.946
104 0.0459 0.09179 0.9541
105 0.03544 0.07088 0.9646
106 0.04832 0.09664 0.9517
107 0.07236 0.1447 0.9276
108 0.06045 0.1209 0.9396
109 0.1728 0.3455 0.8272
110 0.162 0.324 0.838
111 0.1406 0.2812 0.8594
112 0.1808 0.3615 0.8192
113 0.149 0.298 0.851
114 0.1238 0.2475 0.8762
115 0.1316 0.2632 0.8684
116 0.1073 0.2147 0.8927
117 0.08729 0.1746 0.9127
118 0.06906 0.1381 0.9309
119 0.1375 0.2749 0.8625
120 0.1391 0.2781 0.8609
121 0.113 0.226 0.887
122 0.0896 0.1792 0.9104
123 0.2214 0.4428 0.7786
124 0.1844 0.3688 0.8156
125 0.1491 0.2983 0.8509
126 0.1277 0.2554 0.8723
127 0.1091 0.2183 0.8909
128 0.1033 0.2066 0.8967
129 0.0873 0.1746 0.9127
130 0.0665 0.133 0.9335
131 0.3203 0.6406 0.6797
132 0.2773 0.5546 0.7227
133 0.2488 0.4976 0.7512
134 0.2731 0.5463 0.7269
135 0.224 0.4481 0.776
136 0.2103 0.4206 0.7897
137 0.1756 0.3512 0.8244
138 0.1804 0.3607 0.8196
139 0.1452 0.2904 0.8548
140 0.192 0.3841 0.808
141 0.1694 0.3388 0.8306
142 0.1235 0.247 0.8765
143 0.4021 0.8043 0.5979
144 0.4072 0.8145 0.5928
145 0.3128 0.6255 0.6872
146 0.2259 0.4517 0.7741
147 0.4027 0.8055 0.5973
148 0.3857 0.7713 0.6143
149 0.5701 0.8599 0.4299
150 0.9088 0.1823 0.09116







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level0 0OK
5% type I error level140.0972222NOK
10% type I error level350.243056NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 0 &  0 & OK \tabularnewline
5% type I error level & 14 & 0.0972222 & NOK \tabularnewline
10% type I error level & 35 & 0.243056 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299078&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]0[/C][C] 0[/C][C]OK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]14[/C][C]0.0972222[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]35[/C][C]0.243056[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299078&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299078&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level0 0OK
5% type I error level140.0972222NOK
10% type I error level350.243056NOK







Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.44029, df1 = 2, df2 = 151, p-value = 0.6447
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.2583, df1 = 6, df2 = 147, p-value = 0.2803
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.4698, df1 = 2, df2 = 151, p-value = 0.2332

\begin{tabular}{lllllllll}
\hline
Ramsey RESET F-Test for powers (2 and 3) of fitted values \tabularnewline
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.44029, df1 = 2, df2 = 151, p-value = 0.6447
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of regressors \tabularnewline
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.2583, df1 = 6, df2 = 147, p-value = 0.2803
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of principal components \tabularnewline
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.4698, df1 = 2, df2 = 151, p-value = 0.2332
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=299078&T=7

[TABLE]
[ROW][C]Ramsey RESET F-Test for powers (2 and 3) of fitted values[/C][/ROW]
[ROW][C]
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.44029, df1 = 2, df2 = 151, p-value = 0.6447
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of regressors[/C][/ROW] [ROW][C]
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.2583, df1 = 6, df2 = 147, p-value = 0.2803
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of principal components[/C][/ROW] [ROW][C]
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.4698, df1 = 2, df2 = 151, p-value = 0.2332
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299078&T=7

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299078&T=7

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.44029, df1 = 2, df2 = 151, p-value = 0.6447
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.2583, df1 = 6, df2 = 147, p-value = 0.2803
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.4698, df1 = 2, df2 = 151, p-value = 0.2332







Variance Inflation Factors (Multicollinearity)
> vif
    ITH1     ITH2     ITH3 
1.596257 1.397456 1.506554 

\begin{tabular}{lllllllll}
\hline
Variance Inflation Factors (Multicollinearity) \tabularnewline
> vif
    ITH1     ITH2     ITH3 
1.596257 1.397456 1.506554 
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=299078&T=8

[TABLE]
[ROW][C]Variance Inflation Factors (Multicollinearity)[/C][/ROW]
[ROW][C]
> vif
    ITH1     ITH2     ITH3 
1.596257 1.397456 1.506554 
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299078&T=8

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299078&T=8

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variance Inflation Factors (Multicollinearity)
> vif
    ITH1     ITH2     ITH3 
1.596257 1.397456 1.506554 



Parameters (Session):
par1 = 4 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ;
Parameters (R input):
par1 = 4 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
library(car)
library(MASS)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
mywarning <- ''
par1 <- as.numeric(par1)
if(is.na(par1)) {
par1 <- 1
mywarning = 'Warning: you did not specify the column number of the endogenous series! The first column was selected by default.'
}
if (par4=='') par4 <- 0
par4 <- as.numeric(par4)
if (par5=='') par5 <- 0
par5 <- as.numeric(par5)
x <- na.omit(t(y))
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'Seasonal Differences (s=12)'){
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'First and Seasonal Differences (s=12)'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if(par4 > 0) {
x2 <- array(0, dim=c(n-par4,par4), dimnames=list(1:(n-par4), paste(colnames(x)[par1],'(t-',1:par4,')',sep='')))
for (i in 1:(n-par4)) {
for (j in 1:par4) {
x2[i,j] <- x[i+par4-j,par1]
}
}
x <- cbind(x[(par4+1):n,], x2)
n <- n - par4
}
if(par5 > 0) {
x2 <- array(0, dim=c(n-par5*12,par5), dimnames=list(1:(n-par5*12), paste(colnames(x)[par1],'(t-',1:par5,'s)',sep='')))
for (i in 1:(n-par5*12)) {
for (j in 1:par5) {
x2[i,j] <- x[i+par5*12-j*12,par1]
}
}
x <- cbind(x[(par5*12+1):n,], x2)
n <- n - par5*12
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
(k <- length(x[n,]))
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
print(x)
(k <- length(x[n,]))
head(x)
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
sresid <- studres(mylm)
hist(sresid, freq=FALSE, main='Distribution of Studentized Residuals')
xfit<-seq(min(sresid),max(sresid),length=40)
yfit<-dnorm(xfit)
lines(xfit, yfit)
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqPlot(mylm, main='QQ Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
print(z)
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, mywarning)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Multiple Linear Regression - Ordinary Least Squares', 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,formatC(signif(mysum$coefficients[i,1],5),format='g',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,2],5),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,3],4),format='e',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4],4),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4]/2,4),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a,formatC(signif(sqrt(mysum$r.squared),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$adj.r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a,formatC(signif(mysum$fstatistic[1],6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a,formatC(signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a,formatC(signif(mysum$sigma,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a,formatC(signif(sum(myerror*myerror),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
myr <- as.numeric(mysum$resid)
myr
if(n < 200) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,formatC(signif(x[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(x[i]-mysum$resid[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$resid[i],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,1],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,2],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,3],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,formatC(signif(numsignificant1/numgqtests,6),format='g',flag=' '))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
}
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of fitted values',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_fitted <- resettest(mylm,power=2:3,type='fitted')
a<-table.element(a,paste('
',RC.texteval('reset_test_fitted'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of regressors',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_regressors <- resettest(mylm,power=2:3,type='regressor')
a<-table.element(a,paste('
',RC.texteval('reset_test_regressors'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of principal components',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_principal_components <- resettest(mylm,power=2:3,type='princomp')
a<-table.element(a,paste('
',RC.texteval('reset_test_principal_components'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable8.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variance Inflation Factors (Multicollinearity)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
vif <- vif(mylm)
a<-table.element(a,paste('
',RC.texteval('vif'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable9.tab')