Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationWed, 07 Dec 2016 13:17:25 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/07/t1481113372x8dwd2r5bx0ijhp.htm/, Retrieved Fri, 01 Nov 2024 03:36:04 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=298038, Retrieved Fri, 01 Nov 2024 03:36:04 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact148
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [Meervoudige regre...] [2016-12-07 12:17:25] [c0b73e623858a81821526bb2f691ccd9] [Current]
- RMPD    [Notched Boxplots] [Boxplots EP1-4 IT...] [2016-12-07 13:33:55] [5ad8e5538a25411d3c3b0ec85050bd51]
- R  D    [Multiple Regression] [Multiple regressi...] [2016-12-12 22:15:47] [5ad8e5538a25411d3c3b0ec85050bd51]
-   PD      [Multiple Regression] [Multiple regressi...] [2016-12-13 11:55:13] [5ad8e5538a25411d3c3b0ec85050bd51]
Feedback Forum

Post a new message
Dataseries X:
3	4	3	4	14
5	5	5	4	19
5	4	4	4	17
5	4	4	4	17
4	4	3	4	15
5	5	5	5	20
5	4	3	3	15
5	5	5	4	19
5	5	4	1	15
5	4	3	3	15
5	5	5	4	19
NA	4	5	3	12
5	5	5	5	20
5	5	4	4	18
4	4	3	4	15
3	4	4	3	14
5	5	5	5	NA
NA	NA	NA	NA	NA
5	4	3	4	16
5	3	3	5	16
4	4	4	4	16
2	5	1	2	10
5	5	4	5	19
5	5	4	5	19
5	5	4	2	16
4	4	4	3	15
4	5	5	4	18
4	5	4	4	17
5	5	4	5	19
5	5	4	3	17
4	NA	4	2	10
5	5	4	5	19
5	5	5	5	20
1	1	1	2	5
5	5	4	5	19
4	5	4	3	16
4	4	4	3	15
4	4	4	4	16
5	5	4	4	18
4	4	5	3	16
4	4	4	3	15
5	4	4	4	17
3	3	4	NA	10
5	5	5	5	20
5	5	5	4	19
2	2	1	2	7
3	3	3	4	13
4	4	3	5	NA
4	5	3	4	16
NA	NA	NA	4	4
5	5	4	4	18
5	5	5	3	18
4	4	4	4	16
5	5	3	4	17
5	5	5	4	19
4	4	4	4	16
5	5	4	5	NA
4	5	3	1	13
4	4	4	4	16
3	4	3	3	13
4	4	3	1	12
4	5	4	4	17
5	4	4	4	17
4	5	4	4	17
4	5	4	3	16
4	4	4	4	16
4	3	3	4	14
4	4	4	4	NA
2	4	4	3	13
4	5	4	3	16
4	4	3	3	14
5	5	5	5	20
3	3	3	3	12
3	4	3	3	13
5	4	5	4	18
4	3	3	4	14
5	5	5	4	19
4	5	4	5	18
4	3	3	4	14
5	5	3	5	18
5	5	5	4	19
5	4	3	3	15
4	4	3	3	14
5	4	4	4	17
5	5	5	4	19
2	5	4	2	13
5	4	5	5	19
5	5	4	4	18
5	5	5	5	20
5	4	4	2	15
4	4	4	3	15
4	4	4	3	15
5	5	5	5	20
4	4	4	3	15
5	5	5	4	19
5	5	4	4	18
5	4	5	4	18
4	4	4	3	15
5	5	5	5	20
5	5	5	2	17
3	4	2	3	12
5	4	5	4	18
5	5	5	4	19
5	5	5	5	20
4	3	NA	3	10
4	4	5	4	17
4	4	4	3	15
4	4	4	4	16
5	5	5	3	18
5	5	4	4	18
4	4	2	4	14
3	4	4	4	15
3	4	3	2	12
4	4	5	4	17
4	4	3	3	14
5	5	4	4	18
5	4	4	4	17
4	4	5	4	17
5	5	5	5	20
5	4	4	3	16
4	4	3	3	14
4	4	3	4	15
5	5	4	4	18
5	5	5	5	20
5	5	3	4	17
5	5	3	4	17
4	5	4	4	17
5	4	4	4	17
3	4	4	4	15
5	5	4	3	17
5	4	5	4	18
4	5	4	4	17
5	5	5	5	20
4	4	4	3	15
4	4	4	4	16
4	4	4	3	15
4	4	5	5	18
2	3	2	4	NA
4	4	4	3	15
5	4	5	4	18
5	5	5	5	20
5	5	5	4	19
4	4	4	2	14
4	5	4	3	16
5	4	4	2	15
5	4	4	4	17
5	4	5	4	18
5	5	5	5	20
5	3	5	4	17
5	4	5	4	18
4	4	4	3	15
5	4	4	3	16
3	3	3	2	11
3	4	4	4	15
4	5	4	5	18
4	5	4	4	17
3	5	3	5	16
3	4	3	2	12
5	5	5	4	19
5	5	4	4	18
5	4	4	2	15
5	4	4	4	NA
5	5	5	4	19
5	4	5	4	18
5	5	5	4	NA
5	4	5	2	16
4	4	4	4	16
4	4	5	3	16
2	4	5	3	14




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R ServerBig Analytics Cloud Computing Center
R Framework error message
The field 'Names of X columns' contains a hard return which cannot be interpreted.
Please, resubmit your request without hard returns in the 'Names of X columns'.

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time8 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
R Framework error message & 
The field 'Names of X columns' contains a hard return which cannot be interpreted.
Please, resubmit your request without hard returns in the 'Names of X columns'.
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=298038&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]8 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [ROW]R Framework error message[/C][C]
The field 'Names of X columns' contains a hard return which cannot be interpreted.
Please, resubmit your request without hard returns in the 'Names of X columns'.
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298038&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298038&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R ServerBig Analytics Cloud Computing Center
R Framework error message
The field 'Names of X columns' contains a hard return which cannot be interpreted.
Please, resubmit your request without hard returns in the 'Names of X columns'.







Multiple Linear Regression - Estimated Regression Equation
EPSUM [t] = + 1.08089e-14 + 1ITH1[t] + 1ITH2[t] + 1ITH3[t] + 1ITH4[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
EPSUM
[t] =  +  1.08089e-14 +  1ITH1[t] +  1ITH2[t] +  1ITH3[t] +  1ITH4[t]  + e[t] \tabularnewline
 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298038&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]EPSUM
[t] =  +  1.08089e-14 +  1ITH1[t] +  1ITH2[t] +  1ITH3[t] +  1ITH4[t]  + e[t][/C][/ROW]
[ROW][C][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298038&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298038&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
EPSUM [t] = + 1.08089e-14 + 1ITH1[t] + 1ITH2[t] + 1ITH3[t] + 1ITH4[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+1.081e-14 2.139e-15+5.0530e+00 1.242e-06 6.21e-07
ITH1+1 4.641e-16+2.1550e+15 0 0
ITH2+1 5.245e-16+1.9070e+15 0 0
ITH3+1 4.349e-16+2.2990e+15 0 0
ITH4+1 3.635e-16+2.7510e+15 0 0

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & +1.081e-14 &  2.139e-15 & +5.0530e+00 &  1.242e-06 &  6.21e-07 \tabularnewline
ITH1 & +1 &  4.641e-16 & +2.1550e+15 &  0 &  0 \tabularnewline
ITH2 & +1 &  5.245e-16 & +1.9070e+15 &  0 &  0 \tabularnewline
ITH3 & +1 &  4.349e-16 & +2.2990e+15 &  0 &  0 \tabularnewline
ITH4 & +1 &  3.635e-16 & +2.7510e+15 &  0 &  0 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298038&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]+1.081e-14[/C][C] 2.139e-15[/C][C]+5.0530e+00[/C][C] 1.242e-06[/C][C] 6.21e-07[/C][/ROW]
[ROW][C]ITH1[/C][C]+1[/C][C] 4.641e-16[/C][C]+2.1550e+15[/C][C] 0[/C][C] 0[/C][/ROW]
[ROW][C]ITH2[/C][C]+1[/C][C] 5.245e-16[/C][C]+1.9070e+15[/C][C] 0[/C][C] 0[/C][/ROW]
[ROW][C]ITH3[/C][C]+1[/C][C] 4.349e-16[/C][C]+2.2990e+15[/C][C] 0[/C][C] 0[/C][/ROW]
[ROW][C]ITH4[/C][C]+1[/C][C] 3.635e-16[/C][C]+2.7510e+15[/C][C] 0[/C][C] 0[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298038&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298038&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+1.081e-14 2.139e-15+5.0530e+00 1.242e-06 6.21e-07
ITH1+1 4.641e-16+2.1550e+15 0 0
ITH2+1 5.245e-16+1.9070e+15 0 0
ITH3+1 4.349e-16+2.2990e+15 0 0
ITH4+1 3.635e-16+2.7510e+15 0 0







Multiple Linear Regression - Regression Statistics
Multiple R 1
R-squared 1
Adjusted R-squared 1
F-TEST (value) 1.74e+31
F-TEST (DF numerator)4
F-TEST (DF denominator)151
p-value 0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 3.707e-15
Sum Squared Residuals 2.075e-27

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R &  1 \tabularnewline
R-squared &  1 \tabularnewline
Adjusted R-squared &  1 \tabularnewline
F-TEST (value) &  1.74e+31 \tabularnewline
F-TEST (DF numerator) & 4 \tabularnewline
F-TEST (DF denominator) & 151 \tabularnewline
p-value &  0 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation &  3.707e-15 \tabularnewline
Sum Squared Residuals &  2.075e-27 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298038&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C] 1[/C][/ROW]
[ROW][C]R-squared[/C][C] 1[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C] 1[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C] 1.74e+31[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]4[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]151[/C][/ROW]
[ROW][C]p-value[/C][C] 0[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C] 3.707e-15[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C] 2.075e-27[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298038&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298038&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R 1
R-squared 1
Adjusted R-squared 1
F-TEST (value) 1.74e+31
F-TEST (DF numerator)4
F-TEST (DF denominator)151
p-value 0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 3.707e-15
Sum Squared Residuals 2.075e-27







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 14 14 4.126e-14
2 19 19-1.277e-15
3 17 17 1.332e-14
4 17 17 5.439e-15
5 15 15 8.538e-15
6 20 20-3.076e-16
7 15 15-4.158e-16
8 19 19 1.521e-16
9 15 15 1.496e-15
10 15 15-4.158e-16
11 19 19 1.521e-16
12 20 20-3.076e-16
13 18 18-3.239e-16
14 15 15-1.333e-15
15 14 14-9.078e-16
16 16 16-7.922e-16
17 16 16-8.496e-16
18 16 16-7.432e-16
19 10 10-1.718e-15
20 19 19-7.866e-16
21 19 19-7.866e-16
22 16 16 1.064e-15
23 15 15-3.113e-16
24 18 18-3.503e-17
25 17 17-6.459e-16
26 19 19-7.866e-16
27 17 17-3.38e-17
28 19 19-7.866e-16
29 20 20-3.076e-16
30 5 5-2.537e-15
31 19 19-7.866e-16
32 16 16-1.862e-16
33 15 15-3.113e-16
34 16 16-7.432e-16
35 18 18-3.239e-16
36 16 16 5.667e-17
37 15 15-3.113e-16
38 17 17-5.353e-16
39 20 20-3.076e-16
40 19 19 1.521e-16
41 7 7-1.927e-15
42 13 13-1.833e-15
43 16 16-1.208e-15
44 18 18-3.239e-16
45 18 18 5.562e-16
46 16 16-7.432e-16
47 17 17-6.671e-16
48 19 19 1.521e-16
49 16 16-7.432e-16
50 13 13 7.537e-16
51 16 16-7.432e-16
52 13 13-1.331e-15
53 12 12 7.396e-16
54 17 17-6.459e-16
55 17 17-5.353e-16
56 17 17-6.459e-16
57 16 16-1.862e-16
58 16 16-7.432e-16
59 14 14-1.236e-15
60 13 13-8.798e-16
61 16 16-1.862e-16
62 14 14-7.348e-16
63 20 20-3.076e-16
64 12 12-1.371e-15
65 13 13-1.331e-15
66 18 18-1.118e-16
67 14 14-1.236e-15
68 19 19 1.521e-16
69 18 18-8.279e-16
70 14 14-1.236e-15
71 18 18-1.266e-15
72 19 19 1.521e-16
73 15 15-4.158e-16
74 14 14-7.348e-16
75 17 17-5.353e-16
76 19 19 1.521e-16
77 13 13-5.917e-17
78 19 19-6.547e-16
79 18 18-3.239e-16
80 20 20-3.076e-16
81 15 15 6.061e-16
82 15 15-3.113e-16
83 15 15-3.113e-16
84 20 20-3.076e-16
85 15 15-3.113e-16
86 19 19 1.521e-16
87 18 18-3.239e-16
88 18 18-1.118e-16
89 15 15-3.113e-16
90 20 20-3.076e-16
91 17 17 1.21e-15
92 12 12-1.97e-15
93 18 18-1.118e-16
94 19 19 1.521e-16
95 20 20-3.076e-16
96 17 17-3.752e-16
97 15 15-3.113e-16
98 16 16-7.432e-16
99 18 18 5.562e-16
100 18 18-3.239e-16
101 14 14-2.034e-15
102 15 15-1.34e-15
103 12 12-1.177e-15
104 17 17-3.752e-16
105 14 14-7.348e-16
106 18 18-3.239e-16
107 17 17-5.353e-16
108 17 17-3.752e-16
109 20 20-3.076e-16
110 16 16-4.786e-17
111 14 14-7.348e-16
112 15 15-1.333e-15
113 18 18-3.239e-16
114 20 20-3.076e-16
115 17 17-6.671e-16
116 17 17-6.671e-16
117 17 17-6.459e-16
118 17 17-5.353e-16
119 15 15-1.34e-15
120 17 17-3.38e-17
121 18 18-1.118e-16
122 17 17-6.459e-16
123 20 20-3.076e-16
124 15 15-3.113e-16
125 16 16-7.432e-16
126 15 15-3.113e-16
127 18 18-4.74e-16
128 15 15-3.113e-16
129 18 18-1.118e-16
130 20 20-3.076e-16
131 19 19 1.521e-16
132 14 14 9.56e-18
133 16 16-1.862e-16
134 15 15 6.061e-16
135 17 17-5.353e-16
136 18 18-1.118e-16
137 20 20-3.076e-16
138 17 17 3.599e-16
139 18 18-1.118e-16
140 15 15-3.113e-16
141 16 16-4.786e-17
142 11 11-9.69e-16
143 15 15-1.34e-15
144 18 18-8.279e-16
145 17 17-6.459e-16
146 16 16-2.237e-15
147 12 12-1.177e-15
148 19 19 1.521e-16
149 18 18-3.239e-16
150 15 15 6.061e-16
151 19 19 1.521e-16
152 18 18-1.118e-16
153 16 16 1.196e-15
154 16 16-7.432e-16
155 16 16 5.667e-17
156 14 14-4.147e-16

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 &  14 &  14 &  4.126e-14 \tabularnewline
2 &  19 &  19 & -1.277e-15 \tabularnewline
3 &  17 &  17 &  1.332e-14 \tabularnewline
4 &  17 &  17 &  5.439e-15 \tabularnewline
5 &  15 &  15 &  8.538e-15 \tabularnewline
6 &  20 &  20 & -3.076e-16 \tabularnewline
7 &  15 &  15 & -4.158e-16 \tabularnewline
8 &  19 &  19 &  1.521e-16 \tabularnewline
9 &  15 &  15 &  1.496e-15 \tabularnewline
10 &  15 &  15 & -4.158e-16 \tabularnewline
11 &  19 &  19 &  1.521e-16 \tabularnewline
12 &  20 &  20 & -3.076e-16 \tabularnewline
13 &  18 &  18 & -3.239e-16 \tabularnewline
14 &  15 &  15 & -1.333e-15 \tabularnewline
15 &  14 &  14 & -9.078e-16 \tabularnewline
16 &  16 &  16 & -7.922e-16 \tabularnewline
17 &  16 &  16 & -8.496e-16 \tabularnewline
18 &  16 &  16 & -7.432e-16 \tabularnewline
19 &  10 &  10 & -1.718e-15 \tabularnewline
20 &  19 &  19 & -7.866e-16 \tabularnewline
21 &  19 &  19 & -7.866e-16 \tabularnewline
22 &  16 &  16 &  1.064e-15 \tabularnewline
23 &  15 &  15 & -3.113e-16 \tabularnewline
24 &  18 &  18 & -3.503e-17 \tabularnewline
25 &  17 &  17 & -6.459e-16 \tabularnewline
26 &  19 &  19 & -7.866e-16 \tabularnewline
27 &  17 &  17 & -3.38e-17 \tabularnewline
28 &  19 &  19 & -7.866e-16 \tabularnewline
29 &  20 &  20 & -3.076e-16 \tabularnewline
30 &  5 &  5 & -2.537e-15 \tabularnewline
31 &  19 &  19 & -7.866e-16 \tabularnewline
32 &  16 &  16 & -1.862e-16 \tabularnewline
33 &  15 &  15 & -3.113e-16 \tabularnewline
34 &  16 &  16 & -7.432e-16 \tabularnewline
35 &  18 &  18 & -3.239e-16 \tabularnewline
36 &  16 &  16 &  5.667e-17 \tabularnewline
37 &  15 &  15 & -3.113e-16 \tabularnewline
38 &  17 &  17 & -5.353e-16 \tabularnewline
39 &  20 &  20 & -3.076e-16 \tabularnewline
40 &  19 &  19 &  1.521e-16 \tabularnewline
41 &  7 &  7 & -1.927e-15 \tabularnewline
42 &  13 &  13 & -1.833e-15 \tabularnewline
43 &  16 &  16 & -1.208e-15 \tabularnewline
44 &  18 &  18 & -3.239e-16 \tabularnewline
45 &  18 &  18 &  5.562e-16 \tabularnewline
46 &  16 &  16 & -7.432e-16 \tabularnewline
47 &  17 &  17 & -6.671e-16 \tabularnewline
48 &  19 &  19 &  1.521e-16 \tabularnewline
49 &  16 &  16 & -7.432e-16 \tabularnewline
50 &  13 &  13 &  7.537e-16 \tabularnewline
51 &  16 &  16 & -7.432e-16 \tabularnewline
52 &  13 &  13 & -1.331e-15 \tabularnewline
53 &  12 &  12 &  7.396e-16 \tabularnewline
54 &  17 &  17 & -6.459e-16 \tabularnewline
55 &  17 &  17 & -5.353e-16 \tabularnewline
56 &  17 &  17 & -6.459e-16 \tabularnewline
57 &  16 &  16 & -1.862e-16 \tabularnewline
58 &  16 &  16 & -7.432e-16 \tabularnewline
59 &  14 &  14 & -1.236e-15 \tabularnewline
60 &  13 &  13 & -8.798e-16 \tabularnewline
61 &  16 &  16 & -1.862e-16 \tabularnewline
62 &  14 &  14 & -7.348e-16 \tabularnewline
63 &  20 &  20 & -3.076e-16 \tabularnewline
64 &  12 &  12 & -1.371e-15 \tabularnewline
65 &  13 &  13 & -1.331e-15 \tabularnewline
66 &  18 &  18 & -1.118e-16 \tabularnewline
67 &  14 &  14 & -1.236e-15 \tabularnewline
68 &  19 &  19 &  1.521e-16 \tabularnewline
69 &  18 &  18 & -8.279e-16 \tabularnewline
70 &  14 &  14 & -1.236e-15 \tabularnewline
71 &  18 &  18 & -1.266e-15 \tabularnewline
72 &  19 &  19 &  1.521e-16 \tabularnewline
73 &  15 &  15 & -4.158e-16 \tabularnewline
74 &  14 &  14 & -7.348e-16 \tabularnewline
75 &  17 &  17 & -5.353e-16 \tabularnewline
76 &  19 &  19 &  1.521e-16 \tabularnewline
77 &  13 &  13 & -5.917e-17 \tabularnewline
78 &  19 &  19 & -6.547e-16 \tabularnewline
79 &  18 &  18 & -3.239e-16 \tabularnewline
80 &  20 &  20 & -3.076e-16 \tabularnewline
81 &  15 &  15 &  6.061e-16 \tabularnewline
82 &  15 &  15 & -3.113e-16 \tabularnewline
83 &  15 &  15 & -3.113e-16 \tabularnewline
84 &  20 &  20 & -3.076e-16 \tabularnewline
85 &  15 &  15 & -3.113e-16 \tabularnewline
86 &  19 &  19 &  1.521e-16 \tabularnewline
87 &  18 &  18 & -3.239e-16 \tabularnewline
88 &  18 &  18 & -1.118e-16 \tabularnewline
89 &  15 &  15 & -3.113e-16 \tabularnewline
90 &  20 &  20 & -3.076e-16 \tabularnewline
91 &  17 &  17 &  1.21e-15 \tabularnewline
92 &  12 &  12 & -1.97e-15 \tabularnewline
93 &  18 &  18 & -1.118e-16 \tabularnewline
94 &  19 &  19 &  1.521e-16 \tabularnewline
95 &  20 &  20 & -3.076e-16 \tabularnewline
96 &  17 &  17 & -3.752e-16 \tabularnewline
97 &  15 &  15 & -3.113e-16 \tabularnewline
98 &  16 &  16 & -7.432e-16 \tabularnewline
99 &  18 &  18 &  5.562e-16 \tabularnewline
100 &  18 &  18 & -3.239e-16 \tabularnewline
101 &  14 &  14 & -2.034e-15 \tabularnewline
102 &  15 &  15 & -1.34e-15 \tabularnewline
103 &  12 &  12 & -1.177e-15 \tabularnewline
104 &  17 &  17 & -3.752e-16 \tabularnewline
105 &  14 &  14 & -7.348e-16 \tabularnewline
106 &  18 &  18 & -3.239e-16 \tabularnewline
107 &  17 &  17 & -5.353e-16 \tabularnewline
108 &  17 &  17 & -3.752e-16 \tabularnewline
109 &  20 &  20 & -3.076e-16 \tabularnewline
110 &  16 &  16 & -4.786e-17 \tabularnewline
111 &  14 &  14 & -7.348e-16 \tabularnewline
112 &  15 &  15 & -1.333e-15 \tabularnewline
113 &  18 &  18 & -3.239e-16 \tabularnewline
114 &  20 &  20 & -3.076e-16 \tabularnewline
115 &  17 &  17 & -6.671e-16 \tabularnewline
116 &  17 &  17 & -6.671e-16 \tabularnewline
117 &  17 &  17 & -6.459e-16 \tabularnewline
118 &  17 &  17 & -5.353e-16 \tabularnewline
119 &  15 &  15 & -1.34e-15 \tabularnewline
120 &  17 &  17 & -3.38e-17 \tabularnewline
121 &  18 &  18 & -1.118e-16 \tabularnewline
122 &  17 &  17 & -6.459e-16 \tabularnewline
123 &  20 &  20 & -3.076e-16 \tabularnewline
124 &  15 &  15 & -3.113e-16 \tabularnewline
125 &  16 &  16 & -7.432e-16 \tabularnewline
126 &  15 &  15 & -3.113e-16 \tabularnewline
127 &  18 &  18 & -4.74e-16 \tabularnewline
128 &  15 &  15 & -3.113e-16 \tabularnewline
129 &  18 &  18 & -1.118e-16 \tabularnewline
130 &  20 &  20 & -3.076e-16 \tabularnewline
131 &  19 &  19 &  1.521e-16 \tabularnewline
132 &  14 &  14 &  9.56e-18 \tabularnewline
133 &  16 &  16 & -1.862e-16 \tabularnewline
134 &  15 &  15 &  6.061e-16 \tabularnewline
135 &  17 &  17 & -5.353e-16 \tabularnewline
136 &  18 &  18 & -1.118e-16 \tabularnewline
137 &  20 &  20 & -3.076e-16 \tabularnewline
138 &  17 &  17 &  3.599e-16 \tabularnewline
139 &  18 &  18 & -1.118e-16 \tabularnewline
140 &  15 &  15 & -3.113e-16 \tabularnewline
141 &  16 &  16 & -4.786e-17 \tabularnewline
142 &  11 &  11 & -9.69e-16 \tabularnewline
143 &  15 &  15 & -1.34e-15 \tabularnewline
144 &  18 &  18 & -8.279e-16 \tabularnewline
145 &  17 &  17 & -6.459e-16 \tabularnewline
146 &  16 &  16 & -2.237e-15 \tabularnewline
147 &  12 &  12 & -1.177e-15 \tabularnewline
148 &  19 &  19 &  1.521e-16 \tabularnewline
149 &  18 &  18 & -3.239e-16 \tabularnewline
150 &  15 &  15 &  6.061e-16 \tabularnewline
151 &  19 &  19 &  1.521e-16 \tabularnewline
152 &  18 &  18 & -1.118e-16 \tabularnewline
153 &  16 &  16 &  1.196e-15 \tabularnewline
154 &  16 &  16 & -7.432e-16 \tabularnewline
155 &  16 &  16 &  5.667e-17 \tabularnewline
156 &  14 &  14 & -4.147e-16 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298038&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C] 14[/C][C] 14[/C][C] 4.126e-14[/C][/ROW]
[ROW][C]2[/C][C] 19[/C][C] 19[/C][C]-1.277e-15[/C][/ROW]
[ROW][C]3[/C][C] 17[/C][C] 17[/C][C] 1.332e-14[/C][/ROW]
[ROW][C]4[/C][C] 17[/C][C] 17[/C][C] 5.439e-15[/C][/ROW]
[ROW][C]5[/C][C] 15[/C][C] 15[/C][C] 8.538e-15[/C][/ROW]
[ROW][C]6[/C][C] 20[/C][C] 20[/C][C]-3.076e-16[/C][/ROW]
[ROW][C]7[/C][C] 15[/C][C] 15[/C][C]-4.158e-16[/C][/ROW]
[ROW][C]8[/C][C] 19[/C][C] 19[/C][C] 1.521e-16[/C][/ROW]
[ROW][C]9[/C][C] 15[/C][C] 15[/C][C] 1.496e-15[/C][/ROW]
[ROW][C]10[/C][C] 15[/C][C] 15[/C][C]-4.158e-16[/C][/ROW]
[ROW][C]11[/C][C] 19[/C][C] 19[/C][C] 1.521e-16[/C][/ROW]
[ROW][C]12[/C][C] 20[/C][C] 20[/C][C]-3.076e-16[/C][/ROW]
[ROW][C]13[/C][C] 18[/C][C] 18[/C][C]-3.239e-16[/C][/ROW]
[ROW][C]14[/C][C] 15[/C][C] 15[/C][C]-1.333e-15[/C][/ROW]
[ROW][C]15[/C][C] 14[/C][C] 14[/C][C]-9.078e-16[/C][/ROW]
[ROW][C]16[/C][C] 16[/C][C] 16[/C][C]-7.922e-16[/C][/ROW]
[ROW][C]17[/C][C] 16[/C][C] 16[/C][C]-8.496e-16[/C][/ROW]
[ROW][C]18[/C][C] 16[/C][C] 16[/C][C]-7.432e-16[/C][/ROW]
[ROW][C]19[/C][C] 10[/C][C] 10[/C][C]-1.718e-15[/C][/ROW]
[ROW][C]20[/C][C] 19[/C][C] 19[/C][C]-7.866e-16[/C][/ROW]
[ROW][C]21[/C][C] 19[/C][C] 19[/C][C]-7.866e-16[/C][/ROW]
[ROW][C]22[/C][C] 16[/C][C] 16[/C][C] 1.064e-15[/C][/ROW]
[ROW][C]23[/C][C] 15[/C][C] 15[/C][C]-3.113e-16[/C][/ROW]
[ROW][C]24[/C][C] 18[/C][C] 18[/C][C]-3.503e-17[/C][/ROW]
[ROW][C]25[/C][C] 17[/C][C] 17[/C][C]-6.459e-16[/C][/ROW]
[ROW][C]26[/C][C] 19[/C][C] 19[/C][C]-7.866e-16[/C][/ROW]
[ROW][C]27[/C][C] 17[/C][C] 17[/C][C]-3.38e-17[/C][/ROW]
[ROW][C]28[/C][C] 19[/C][C] 19[/C][C]-7.866e-16[/C][/ROW]
[ROW][C]29[/C][C] 20[/C][C] 20[/C][C]-3.076e-16[/C][/ROW]
[ROW][C]30[/C][C] 5[/C][C] 5[/C][C]-2.537e-15[/C][/ROW]
[ROW][C]31[/C][C] 19[/C][C] 19[/C][C]-7.866e-16[/C][/ROW]
[ROW][C]32[/C][C] 16[/C][C] 16[/C][C]-1.862e-16[/C][/ROW]
[ROW][C]33[/C][C] 15[/C][C] 15[/C][C]-3.113e-16[/C][/ROW]
[ROW][C]34[/C][C] 16[/C][C] 16[/C][C]-7.432e-16[/C][/ROW]
[ROW][C]35[/C][C] 18[/C][C] 18[/C][C]-3.239e-16[/C][/ROW]
[ROW][C]36[/C][C] 16[/C][C] 16[/C][C] 5.667e-17[/C][/ROW]
[ROW][C]37[/C][C] 15[/C][C] 15[/C][C]-3.113e-16[/C][/ROW]
[ROW][C]38[/C][C] 17[/C][C] 17[/C][C]-5.353e-16[/C][/ROW]
[ROW][C]39[/C][C] 20[/C][C] 20[/C][C]-3.076e-16[/C][/ROW]
[ROW][C]40[/C][C] 19[/C][C] 19[/C][C] 1.521e-16[/C][/ROW]
[ROW][C]41[/C][C] 7[/C][C] 7[/C][C]-1.927e-15[/C][/ROW]
[ROW][C]42[/C][C] 13[/C][C] 13[/C][C]-1.833e-15[/C][/ROW]
[ROW][C]43[/C][C] 16[/C][C] 16[/C][C]-1.208e-15[/C][/ROW]
[ROW][C]44[/C][C] 18[/C][C] 18[/C][C]-3.239e-16[/C][/ROW]
[ROW][C]45[/C][C] 18[/C][C] 18[/C][C] 5.562e-16[/C][/ROW]
[ROW][C]46[/C][C] 16[/C][C] 16[/C][C]-7.432e-16[/C][/ROW]
[ROW][C]47[/C][C] 17[/C][C] 17[/C][C]-6.671e-16[/C][/ROW]
[ROW][C]48[/C][C] 19[/C][C] 19[/C][C] 1.521e-16[/C][/ROW]
[ROW][C]49[/C][C] 16[/C][C] 16[/C][C]-7.432e-16[/C][/ROW]
[ROW][C]50[/C][C] 13[/C][C] 13[/C][C] 7.537e-16[/C][/ROW]
[ROW][C]51[/C][C] 16[/C][C] 16[/C][C]-7.432e-16[/C][/ROW]
[ROW][C]52[/C][C] 13[/C][C] 13[/C][C]-1.331e-15[/C][/ROW]
[ROW][C]53[/C][C] 12[/C][C] 12[/C][C] 7.396e-16[/C][/ROW]
[ROW][C]54[/C][C] 17[/C][C] 17[/C][C]-6.459e-16[/C][/ROW]
[ROW][C]55[/C][C] 17[/C][C] 17[/C][C]-5.353e-16[/C][/ROW]
[ROW][C]56[/C][C] 17[/C][C] 17[/C][C]-6.459e-16[/C][/ROW]
[ROW][C]57[/C][C] 16[/C][C] 16[/C][C]-1.862e-16[/C][/ROW]
[ROW][C]58[/C][C] 16[/C][C] 16[/C][C]-7.432e-16[/C][/ROW]
[ROW][C]59[/C][C] 14[/C][C] 14[/C][C]-1.236e-15[/C][/ROW]
[ROW][C]60[/C][C] 13[/C][C] 13[/C][C]-8.798e-16[/C][/ROW]
[ROW][C]61[/C][C] 16[/C][C] 16[/C][C]-1.862e-16[/C][/ROW]
[ROW][C]62[/C][C] 14[/C][C] 14[/C][C]-7.348e-16[/C][/ROW]
[ROW][C]63[/C][C] 20[/C][C] 20[/C][C]-3.076e-16[/C][/ROW]
[ROW][C]64[/C][C] 12[/C][C] 12[/C][C]-1.371e-15[/C][/ROW]
[ROW][C]65[/C][C] 13[/C][C] 13[/C][C]-1.331e-15[/C][/ROW]
[ROW][C]66[/C][C] 18[/C][C] 18[/C][C]-1.118e-16[/C][/ROW]
[ROW][C]67[/C][C] 14[/C][C] 14[/C][C]-1.236e-15[/C][/ROW]
[ROW][C]68[/C][C] 19[/C][C] 19[/C][C] 1.521e-16[/C][/ROW]
[ROW][C]69[/C][C] 18[/C][C] 18[/C][C]-8.279e-16[/C][/ROW]
[ROW][C]70[/C][C] 14[/C][C] 14[/C][C]-1.236e-15[/C][/ROW]
[ROW][C]71[/C][C] 18[/C][C] 18[/C][C]-1.266e-15[/C][/ROW]
[ROW][C]72[/C][C] 19[/C][C] 19[/C][C] 1.521e-16[/C][/ROW]
[ROW][C]73[/C][C] 15[/C][C] 15[/C][C]-4.158e-16[/C][/ROW]
[ROW][C]74[/C][C] 14[/C][C] 14[/C][C]-7.348e-16[/C][/ROW]
[ROW][C]75[/C][C] 17[/C][C] 17[/C][C]-5.353e-16[/C][/ROW]
[ROW][C]76[/C][C] 19[/C][C] 19[/C][C] 1.521e-16[/C][/ROW]
[ROW][C]77[/C][C] 13[/C][C] 13[/C][C]-5.917e-17[/C][/ROW]
[ROW][C]78[/C][C] 19[/C][C] 19[/C][C]-6.547e-16[/C][/ROW]
[ROW][C]79[/C][C] 18[/C][C] 18[/C][C]-3.239e-16[/C][/ROW]
[ROW][C]80[/C][C] 20[/C][C] 20[/C][C]-3.076e-16[/C][/ROW]
[ROW][C]81[/C][C] 15[/C][C] 15[/C][C] 6.061e-16[/C][/ROW]
[ROW][C]82[/C][C] 15[/C][C] 15[/C][C]-3.113e-16[/C][/ROW]
[ROW][C]83[/C][C] 15[/C][C] 15[/C][C]-3.113e-16[/C][/ROW]
[ROW][C]84[/C][C] 20[/C][C] 20[/C][C]-3.076e-16[/C][/ROW]
[ROW][C]85[/C][C] 15[/C][C] 15[/C][C]-3.113e-16[/C][/ROW]
[ROW][C]86[/C][C] 19[/C][C] 19[/C][C] 1.521e-16[/C][/ROW]
[ROW][C]87[/C][C] 18[/C][C] 18[/C][C]-3.239e-16[/C][/ROW]
[ROW][C]88[/C][C] 18[/C][C] 18[/C][C]-1.118e-16[/C][/ROW]
[ROW][C]89[/C][C] 15[/C][C] 15[/C][C]-3.113e-16[/C][/ROW]
[ROW][C]90[/C][C] 20[/C][C] 20[/C][C]-3.076e-16[/C][/ROW]
[ROW][C]91[/C][C] 17[/C][C] 17[/C][C] 1.21e-15[/C][/ROW]
[ROW][C]92[/C][C] 12[/C][C] 12[/C][C]-1.97e-15[/C][/ROW]
[ROW][C]93[/C][C] 18[/C][C] 18[/C][C]-1.118e-16[/C][/ROW]
[ROW][C]94[/C][C] 19[/C][C] 19[/C][C] 1.521e-16[/C][/ROW]
[ROW][C]95[/C][C] 20[/C][C] 20[/C][C]-3.076e-16[/C][/ROW]
[ROW][C]96[/C][C] 17[/C][C] 17[/C][C]-3.752e-16[/C][/ROW]
[ROW][C]97[/C][C] 15[/C][C] 15[/C][C]-3.113e-16[/C][/ROW]
[ROW][C]98[/C][C] 16[/C][C] 16[/C][C]-7.432e-16[/C][/ROW]
[ROW][C]99[/C][C] 18[/C][C] 18[/C][C] 5.562e-16[/C][/ROW]
[ROW][C]100[/C][C] 18[/C][C] 18[/C][C]-3.239e-16[/C][/ROW]
[ROW][C]101[/C][C] 14[/C][C] 14[/C][C]-2.034e-15[/C][/ROW]
[ROW][C]102[/C][C] 15[/C][C] 15[/C][C]-1.34e-15[/C][/ROW]
[ROW][C]103[/C][C] 12[/C][C] 12[/C][C]-1.177e-15[/C][/ROW]
[ROW][C]104[/C][C] 17[/C][C] 17[/C][C]-3.752e-16[/C][/ROW]
[ROW][C]105[/C][C] 14[/C][C] 14[/C][C]-7.348e-16[/C][/ROW]
[ROW][C]106[/C][C] 18[/C][C] 18[/C][C]-3.239e-16[/C][/ROW]
[ROW][C]107[/C][C] 17[/C][C] 17[/C][C]-5.353e-16[/C][/ROW]
[ROW][C]108[/C][C] 17[/C][C] 17[/C][C]-3.752e-16[/C][/ROW]
[ROW][C]109[/C][C] 20[/C][C] 20[/C][C]-3.076e-16[/C][/ROW]
[ROW][C]110[/C][C] 16[/C][C] 16[/C][C]-4.786e-17[/C][/ROW]
[ROW][C]111[/C][C] 14[/C][C] 14[/C][C]-7.348e-16[/C][/ROW]
[ROW][C]112[/C][C] 15[/C][C] 15[/C][C]-1.333e-15[/C][/ROW]
[ROW][C]113[/C][C] 18[/C][C] 18[/C][C]-3.239e-16[/C][/ROW]
[ROW][C]114[/C][C] 20[/C][C] 20[/C][C]-3.076e-16[/C][/ROW]
[ROW][C]115[/C][C] 17[/C][C] 17[/C][C]-6.671e-16[/C][/ROW]
[ROW][C]116[/C][C] 17[/C][C] 17[/C][C]-6.671e-16[/C][/ROW]
[ROW][C]117[/C][C] 17[/C][C] 17[/C][C]-6.459e-16[/C][/ROW]
[ROW][C]118[/C][C] 17[/C][C] 17[/C][C]-5.353e-16[/C][/ROW]
[ROW][C]119[/C][C] 15[/C][C] 15[/C][C]-1.34e-15[/C][/ROW]
[ROW][C]120[/C][C] 17[/C][C] 17[/C][C]-3.38e-17[/C][/ROW]
[ROW][C]121[/C][C] 18[/C][C] 18[/C][C]-1.118e-16[/C][/ROW]
[ROW][C]122[/C][C] 17[/C][C] 17[/C][C]-6.459e-16[/C][/ROW]
[ROW][C]123[/C][C] 20[/C][C] 20[/C][C]-3.076e-16[/C][/ROW]
[ROW][C]124[/C][C] 15[/C][C] 15[/C][C]-3.113e-16[/C][/ROW]
[ROW][C]125[/C][C] 16[/C][C] 16[/C][C]-7.432e-16[/C][/ROW]
[ROW][C]126[/C][C] 15[/C][C] 15[/C][C]-3.113e-16[/C][/ROW]
[ROW][C]127[/C][C] 18[/C][C] 18[/C][C]-4.74e-16[/C][/ROW]
[ROW][C]128[/C][C] 15[/C][C] 15[/C][C]-3.113e-16[/C][/ROW]
[ROW][C]129[/C][C] 18[/C][C] 18[/C][C]-1.118e-16[/C][/ROW]
[ROW][C]130[/C][C] 20[/C][C] 20[/C][C]-3.076e-16[/C][/ROW]
[ROW][C]131[/C][C] 19[/C][C] 19[/C][C] 1.521e-16[/C][/ROW]
[ROW][C]132[/C][C] 14[/C][C] 14[/C][C] 9.56e-18[/C][/ROW]
[ROW][C]133[/C][C] 16[/C][C] 16[/C][C]-1.862e-16[/C][/ROW]
[ROW][C]134[/C][C] 15[/C][C] 15[/C][C] 6.061e-16[/C][/ROW]
[ROW][C]135[/C][C] 17[/C][C] 17[/C][C]-5.353e-16[/C][/ROW]
[ROW][C]136[/C][C] 18[/C][C] 18[/C][C]-1.118e-16[/C][/ROW]
[ROW][C]137[/C][C] 20[/C][C] 20[/C][C]-3.076e-16[/C][/ROW]
[ROW][C]138[/C][C] 17[/C][C] 17[/C][C] 3.599e-16[/C][/ROW]
[ROW][C]139[/C][C] 18[/C][C] 18[/C][C]-1.118e-16[/C][/ROW]
[ROW][C]140[/C][C] 15[/C][C] 15[/C][C]-3.113e-16[/C][/ROW]
[ROW][C]141[/C][C] 16[/C][C] 16[/C][C]-4.786e-17[/C][/ROW]
[ROW][C]142[/C][C] 11[/C][C] 11[/C][C]-9.69e-16[/C][/ROW]
[ROW][C]143[/C][C] 15[/C][C] 15[/C][C]-1.34e-15[/C][/ROW]
[ROW][C]144[/C][C] 18[/C][C] 18[/C][C]-8.279e-16[/C][/ROW]
[ROW][C]145[/C][C] 17[/C][C] 17[/C][C]-6.459e-16[/C][/ROW]
[ROW][C]146[/C][C] 16[/C][C] 16[/C][C]-2.237e-15[/C][/ROW]
[ROW][C]147[/C][C] 12[/C][C] 12[/C][C]-1.177e-15[/C][/ROW]
[ROW][C]148[/C][C] 19[/C][C] 19[/C][C] 1.521e-16[/C][/ROW]
[ROW][C]149[/C][C] 18[/C][C] 18[/C][C]-3.239e-16[/C][/ROW]
[ROW][C]150[/C][C] 15[/C][C] 15[/C][C] 6.061e-16[/C][/ROW]
[ROW][C]151[/C][C] 19[/C][C] 19[/C][C] 1.521e-16[/C][/ROW]
[ROW][C]152[/C][C] 18[/C][C] 18[/C][C]-1.118e-16[/C][/ROW]
[ROW][C]153[/C][C] 16[/C][C] 16[/C][C] 1.196e-15[/C][/ROW]
[ROW][C]154[/C][C] 16[/C][C] 16[/C][C]-7.432e-16[/C][/ROW]
[ROW][C]155[/C][C] 16[/C][C] 16[/C][C] 5.667e-17[/C][/ROW]
[ROW][C]156[/C][C] 14[/C][C] 14[/C][C]-4.147e-16[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298038&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298038&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 14 14 4.126e-14
2 19 19-1.277e-15
3 17 17 1.332e-14
4 17 17 5.439e-15
5 15 15 8.538e-15
6 20 20-3.076e-16
7 15 15-4.158e-16
8 19 19 1.521e-16
9 15 15 1.496e-15
10 15 15-4.158e-16
11 19 19 1.521e-16
12 20 20-3.076e-16
13 18 18-3.239e-16
14 15 15-1.333e-15
15 14 14-9.078e-16
16 16 16-7.922e-16
17 16 16-8.496e-16
18 16 16-7.432e-16
19 10 10-1.718e-15
20 19 19-7.866e-16
21 19 19-7.866e-16
22 16 16 1.064e-15
23 15 15-3.113e-16
24 18 18-3.503e-17
25 17 17-6.459e-16
26 19 19-7.866e-16
27 17 17-3.38e-17
28 19 19-7.866e-16
29 20 20-3.076e-16
30 5 5-2.537e-15
31 19 19-7.866e-16
32 16 16-1.862e-16
33 15 15-3.113e-16
34 16 16-7.432e-16
35 18 18-3.239e-16
36 16 16 5.667e-17
37 15 15-3.113e-16
38 17 17-5.353e-16
39 20 20-3.076e-16
40 19 19 1.521e-16
41 7 7-1.927e-15
42 13 13-1.833e-15
43 16 16-1.208e-15
44 18 18-3.239e-16
45 18 18 5.562e-16
46 16 16-7.432e-16
47 17 17-6.671e-16
48 19 19 1.521e-16
49 16 16-7.432e-16
50 13 13 7.537e-16
51 16 16-7.432e-16
52 13 13-1.331e-15
53 12 12 7.396e-16
54 17 17-6.459e-16
55 17 17-5.353e-16
56 17 17-6.459e-16
57 16 16-1.862e-16
58 16 16-7.432e-16
59 14 14-1.236e-15
60 13 13-8.798e-16
61 16 16-1.862e-16
62 14 14-7.348e-16
63 20 20-3.076e-16
64 12 12-1.371e-15
65 13 13-1.331e-15
66 18 18-1.118e-16
67 14 14-1.236e-15
68 19 19 1.521e-16
69 18 18-8.279e-16
70 14 14-1.236e-15
71 18 18-1.266e-15
72 19 19 1.521e-16
73 15 15-4.158e-16
74 14 14-7.348e-16
75 17 17-5.353e-16
76 19 19 1.521e-16
77 13 13-5.917e-17
78 19 19-6.547e-16
79 18 18-3.239e-16
80 20 20-3.076e-16
81 15 15 6.061e-16
82 15 15-3.113e-16
83 15 15-3.113e-16
84 20 20-3.076e-16
85 15 15-3.113e-16
86 19 19 1.521e-16
87 18 18-3.239e-16
88 18 18-1.118e-16
89 15 15-3.113e-16
90 20 20-3.076e-16
91 17 17 1.21e-15
92 12 12-1.97e-15
93 18 18-1.118e-16
94 19 19 1.521e-16
95 20 20-3.076e-16
96 17 17-3.752e-16
97 15 15-3.113e-16
98 16 16-7.432e-16
99 18 18 5.562e-16
100 18 18-3.239e-16
101 14 14-2.034e-15
102 15 15-1.34e-15
103 12 12-1.177e-15
104 17 17-3.752e-16
105 14 14-7.348e-16
106 18 18-3.239e-16
107 17 17-5.353e-16
108 17 17-3.752e-16
109 20 20-3.076e-16
110 16 16-4.786e-17
111 14 14-7.348e-16
112 15 15-1.333e-15
113 18 18-3.239e-16
114 20 20-3.076e-16
115 17 17-6.671e-16
116 17 17-6.671e-16
117 17 17-6.459e-16
118 17 17-5.353e-16
119 15 15-1.34e-15
120 17 17-3.38e-17
121 18 18-1.118e-16
122 17 17-6.459e-16
123 20 20-3.076e-16
124 15 15-3.113e-16
125 16 16-7.432e-16
126 15 15-3.113e-16
127 18 18-4.74e-16
128 15 15-3.113e-16
129 18 18-1.118e-16
130 20 20-3.076e-16
131 19 19 1.521e-16
132 14 14 9.56e-18
133 16 16-1.862e-16
134 15 15 6.061e-16
135 17 17-5.353e-16
136 18 18-1.118e-16
137 20 20-3.076e-16
138 17 17 3.599e-16
139 18 18-1.118e-16
140 15 15-3.113e-16
141 16 16-4.786e-17
142 11 11-9.69e-16
143 15 15-1.34e-15
144 18 18-8.279e-16
145 17 17-6.459e-16
146 16 16-2.237e-15
147 12 12-1.177e-15
148 19 19 1.521e-16
149 18 18-3.239e-16
150 15 15 6.061e-16
151 19 19 1.521e-16
152 18 18-1.118e-16
153 16 16 1.196e-15
154 16 16-7.432e-16
155 16 16 5.667e-17
156 14 14-4.147e-16







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
8 1.24e-05 2.479e-05 1
9 0.0001339 0.0002678 0.9999
10 2.93e-05 5.859e-05 1
11 0.0007876 0.001575 0.9992
12 8.064e-05 0.0001613 0.9999
13 8.788e-12 1.758e-11 1
14 2.565e-08 5.13e-08 1
15 4.045e-06 8.091e-06 1
16 8.709e-20 1.742e-19 1
17 0.0004158 0.0008316 0.9996
18 5.074e-09 1.015e-08 1
19 2.582e-08 5.165e-08 1
20 4.627e-06 9.254e-06 1
21 3.284e-18 6.568e-18 1
22 2.337e-09 4.674e-09 1
23 1.366e-11 2.731e-11 1
24 2.939e-29 5.877e-29 1
25 5.578e-11 1.116e-10 1
26 1.137e-14 2.274e-14 1
27 0.9933 0.01346 0.006731
28 1.075e-05 2.149e-05 1
29 0.9399 0.1202 0.06011
30 2.086e-24 4.172e-24 1
31 1.342e-12 2.683e-12 1
32 1.842e-06 3.684e-06 1
33 4.303e-12 8.607e-12 1
34 1 9.512e-21 4.756e-21
35 5.233e-41 1.047e-40 1
36 1.18e-17 2.359e-17 1
37 6.78e-05 0.0001356 0.9999
38 7.759e-09 1.552e-08 1
39 1.314e-30 2.629e-30 1
40 0.001604 0.003208 0.9984
41 0.1947 0.3893 0.8053
42 1.259e-35 2.519e-35 1
43 3.826e-26 7.652e-26 1
44 1 2.069e-28 1.034e-28
45 2.462e-08 4.924e-08 1
46 0.9679 0.06416 0.03208
47 0.0001049 0.0002099 0.9999
48 2.048e-24 4.096e-24 1
49 0.003026 0.006052 0.997
50 1 2.928e-42 1.464e-42
51 0.1763 0.3526 0.8237
52 3.482e-11 6.964e-11 1
53 2.393e-20 4.787e-20 1
54 0.2892 0.5785 0.7108
55 5.72e-29 1.144e-28 1
56 2.074e-13 4.148e-13 1
57 4.196e-18 8.393e-18 1
58 5.769e-11 1.154e-10 1
59 1 2.388e-20 1.194e-20
60 0.0002092 0.0004183 0.9998
61 8.821e-32 1.764e-31 1
62 0.01525 0.0305 0.9848
63 1 1.895e-47 9.476e-48
64 5.229e-48 1.046e-47 1
65 0.04109 0.08219 0.9589
66 4.723e-17 9.446e-17 1
67 0.94 0.12 0.05999
68 4.099e-30 8.199e-30 1
69 0.05287 0.1057 0.9471
70 0.001389 0.002778 0.9986
71 2.306e-07 4.612e-07 1
72 0.9913 0.01731 0.008654
73 5.623e-17 1.125e-16 1
74 7.263e-17 1.453e-16 1
75 0.9626 0.07486 0.03743
76 0.9597 0.08056 0.04028
77 0.07901 0.158 0.921
78 0.4201 0.8402 0.5799
79 0.002349 0.004698 0.9977
80 1 1.358e-08 6.79e-09
81 1.212e-15 2.425e-15 1
82 1 2.794e-09 1.397e-09
83 1 8.366e-62 4.183e-62
84 1.084e-26 2.168e-26 1
85 0.9998 0.0003977 0.0001988
86 4.589e-08 9.178e-08 1
87 6.826e-17 1.365e-16 1
88 0.8402 0.3197 0.1598
89 1 2.171e-22 1.085e-22
90 1 1.142e-10 5.709e-11
91 1 2.206e-24 1.103e-24
92 1 1.128e-36 5.638e-37
93 1.171e-77 2.342e-77 1
94 1 6.897e-13 3.449e-13
95 1 1.706e-41 8.528e-42
96 1 1.65e-07 8.252e-08
97 9.65e-11 1.93e-10 1
98 1 3.827e-42 1.914e-42
99 1 9.085e-05 4.543e-05
100 1 3.116e-08 1.558e-08
101 1 3.24e-08 1.62e-08
102 0.91 0.1799 0.08997
103 1 7.292e-16 3.646e-16
104 1 6.035e-05 3.017e-05
105 1.514e-22 3.027e-22 1
106 5.397e-71 1.079e-70 1
107 0.5459 0.9081 0.4541
108 1 2.476e-14 1.238e-14
109 0.9365 0.127 0.06352
110 1 7.389e-13 3.694e-13
111 1 2.546e-10 1.273e-10
112 9.343e-37 1.869e-36 1
113 1 1.592e-31 7.961e-32
114 1 6.61e-43 3.305e-43
115 1 9.614e-08 4.807e-08
116 1 8.054e-05 4.027e-05
117 1 1.182e-17 5.911e-18
118 0.998 0.003929 0.001964
119 1 5.446e-27 2.723e-27
120 1 2.329e-17 1.164e-17
121 1 2.283e-15 1.141e-15
122 0.2865 0.5729 0.7135
123 1 2.897e-21 1.448e-21
124 1 1.612e-10 8.058e-11
125 1 4.665e-06 2.332e-06
126 0.997 0.006045 0.003022
127 0.9426 0.1148 0.05741
128 0.002508 0.005016 0.9975
129 1.968e-16 3.936e-16 1
130 1 1.209e-17 6.044e-18
131 0.9996 0.0007079 0.000354
132 1 2.374e-13 1.187e-13
133 1 1.302e-12 6.51e-13
134 1 2.159e-05 1.079e-05
135 1 1.457e-18 7.285e-19
136 0.2082 0.4164 0.7918
137 1 1.592e-09 7.958e-10
138 1 6.237e-14 3.119e-14
139 0.9911 0.01781 0.008904
140 1 9.516e-17 4.758e-17
141 1 1.218e-11 6.091e-12
142 1 6.709e-09 3.354e-09
143 1 3.055e-05 1.527e-05
144 1 5.654e-05 2.827e-05
145 1 1.679e-07 8.393e-08
146 1 4.341e-05 2.17e-05
147 0.9948 0.01033 0.005166
148 0.9993 0.001339 0.0006696

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
8 &  1.24e-05 &  2.479e-05 &  1 \tabularnewline
9 &  0.0001339 &  0.0002678 &  0.9999 \tabularnewline
10 &  2.93e-05 &  5.859e-05 &  1 \tabularnewline
11 &  0.0007876 &  0.001575 &  0.9992 \tabularnewline
12 &  8.064e-05 &  0.0001613 &  0.9999 \tabularnewline
13 &  8.788e-12 &  1.758e-11 &  1 \tabularnewline
14 &  2.565e-08 &  5.13e-08 &  1 \tabularnewline
15 &  4.045e-06 &  8.091e-06 &  1 \tabularnewline
16 &  8.709e-20 &  1.742e-19 &  1 \tabularnewline
17 &  0.0004158 &  0.0008316 &  0.9996 \tabularnewline
18 &  5.074e-09 &  1.015e-08 &  1 \tabularnewline
19 &  2.582e-08 &  5.165e-08 &  1 \tabularnewline
20 &  4.627e-06 &  9.254e-06 &  1 \tabularnewline
21 &  3.284e-18 &  6.568e-18 &  1 \tabularnewline
22 &  2.337e-09 &  4.674e-09 &  1 \tabularnewline
23 &  1.366e-11 &  2.731e-11 &  1 \tabularnewline
24 &  2.939e-29 &  5.877e-29 &  1 \tabularnewline
25 &  5.578e-11 &  1.116e-10 &  1 \tabularnewline
26 &  1.137e-14 &  2.274e-14 &  1 \tabularnewline
27 &  0.9933 &  0.01346 &  0.006731 \tabularnewline
28 &  1.075e-05 &  2.149e-05 &  1 \tabularnewline
29 &  0.9399 &  0.1202 &  0.06011 \tabularnewline
30 &  2.086e-24 &  4.172e-24 &  1 \tabularnewline
31 &  1.342e-12 &  2.683e-12 &  1 \tabularnewline
32 &  1.842e-06 &  3.684e-06 &  1 \tabularnewline
33 &  4.303e-12 &  8.607e-12 &  1 \tabularnewline
34 &  1 &  9.512e-21 &  4.756e-21 \tabularnewline
35 &  5.233e-41 &  1.047e-40 &  1 \tabularnewline
36 &  1.18e-17 &  2.359e-17 &  1 \tabularnewline
37 &  6.78e-05 &  0.0001356 &  0.9999 \tabularnewline
38 &  7.759e-09 &  1.552e-08 &  1 \tabularnewline
39 &  1.314e-30 &  2.629e-30 &  1 \tabularnewline
40 &  0.001604 &  0.003208 &  0.9984 \tabularnewline
41 &  0.1947 &  0.3893 &  0.8053 \tabularnewline
42 &  1.259e-35 &  2.519e-35 &  1 \tabularnewline
43 &  3.826e-26 &  7.652e-26 &  1 \tabularnewline
44 &  1 &  2.069e-28 &  1.034e-28 \tabularnewline
45 &  2.462e-08 &  4.924e-08 &  1 \tabularnewline
46 &  0.9679 &  0.06416 &  0.03208 \tabularnewline
47 &  0.0001049 &  0.0002099 &  0.9999 \tabularnewline
48 &  2.048e-24 &  4.096e-24 &  1 \tabularnewline
49 &  0.003026 &  0.006052 &  0.997 \tabularnewline
50 &  1 &  2.928e-42 &  1.464e-42 \tabularnewline
51 &  0.1763 &  0.3526 &  0.8237 \tabularnewline
52 &  3.482e-11 &  6.964e-11 &  1 \tabularnewline
53 &  2.393e-20 &  4.787e-20 &  1 \tabularnewline
54 &  0.2892 &  0.5785 &  0.7108 \tabularnewline
55 &  5.72e-29 &  1.144e-28 &  1 \tabularnewline
56 &  2.074e-13 &  4.148e-13 &  1 \tabularnewline
57 &  4.196e-18 &  8.393e-18 &  1 \tabularnewline
58 &  5.769e-11 &  1.154e-10 &  1 \tabularnewline
59 &  1 &  2.388e-20 &  1.194e-20 \tabularnewline
60 &  0.0002092 &  0.0004183 &  0.9998 \tabularnewline
61 &  8.821e-32 &  1.764e-31 &  1 \tabularnewline
62 &  0.01525 &  0.0305 &  0.9848 \tabularnewline
63 &  1 &  1.895e-47 &  9.476e-48 \tabularnewline
64 &  5.229e-48 &  1.046e-47 &  1 \tabularnewline
65 &  0.04109 &  0.08219 &  0.9589 \tabularnewline
66 &  4.723e-17 &  9.446e-17 &  1 \tabularnewline
67 &  0.94 &  0.12 &  0.05999 \tabularnewline
68 &  4.099e-30 &  8.199e-30 &  1 \tabularnewline
69 &  0.05287 &  0.1057 &  0.9471 \tabularnewline
70 &  0.001389 &  0.002778 &  0.9986 \tabularnewline
71 &  2.306e-07 &  4.612e-07 &  1 \tabularnewline
72 &  0.9913 &  0.01731 &  0.008654 \tabularnewline
73 &  5.623e-17 &  1.125e-16 &  1 \tabularnewline
74 &  7.263e-17 &  1.453e-16 &  1 \tabularnewline
75 &  0.9626 &  0.07486 &  0.03743 \tabularnewline
76 &  0.9597 &  0.08056 &  0.04028 \tabularnewline
77 &  0.07901 &  0.158 &  0.921 \tabularnewline
78 &  0.4201 &  0.8402 &  0.5799 \tabularnewline
79 &  0.002349 &  0.004698 &  0.9977 \tabularnewline
80 &  1 &  1.358e-08 &  6.79e-09 \tabularnewline
81 &  1.212e-15 &  2.425e-15 &  1 \tabularnewline
82 &  1 &  2.794e-09 &  1.397e-09 \tabularnewline
83 &  1 &  8.366e-62 &  4.183e-62 \tabularnewline
84 &  1.084e-26 &  2.168e-26 &  1 \tabularnewline
85 &  0.9998 &  0.0003977 &  0.0001988 \tabularnewline
86 &  4.589e-08 &  9.178e-08 &  1 \tabularnewline
87 &  6.826e-17 &  1.365e-16 &  1 \tabularnewline
88 &  0.8402 &  0.3197 &  0.1598 \tabularnewline
89 &  1 &  2.171e-22 &  1.085e-22 \tabularnewline
90 &  1 &  1.142e-10 &  5.709e-11 \tabularnewline
91 &  1 &  2.206e-24 &  1.103e-24 \tabularnewline
92 &  1 &  1.128e-36 &  5.638e-37 \tabularnewline
93 &  1.171e-77 &  2.342e-77 &  1 \tabularnewline
94 &  1 &  6.897e-13 &  3.449e-13 \tabularnewline
95 &  1 &  1.706e-41 &  8.528e-42 \tabularnewline
96 &  1 &  1.65e-07 &  8.252e-08 \tabularnewline
97 &  9.65e-11 &  1.93e-10 &  1 \tabularnewline
98 &  1 &  3.827e-42 &  1.914e-42 \tabularnewline
99 &  1 &  9.085e-05 &  4.543e-05 \tabularnewline
100 &  1 &  3.116e-08 &  1.558e-08 \tabularnewline
101 &  1 &  3.24e-08 &  1.62e-08 \tabularnewline
102 &  0.91 &  0.1799 &  0.08997 \tabularnewline
103 &  1 &  7.292e-16 &  3.646e-16 \tabularnewline
104 &  1 &  6.035e-05 &  3.017e-05 \tabularnewline
105 &  1.514e-22 &  3.027e-22 &  1 \tabularnewline
106 &  5.397e-71 &  1.079e-70 &  1 \tabularnewline
107 &  0.5459 &  0.9081 &  0.4541 \tabularnewline
108 &  1 &  2.476e-14 &  1.238e-14 \tabularnewline
109 &  0.9365 &  0.127 &  0.06352 \tabularnewline
110 &  1 &  7.389e-13 &  3.694e-13 \tabularnewline
111 &  1 &  2.546e-10 &  1.273e-10 \tabularnewline
112 &  9.343e-37 &  1.869e-36 &  1 \tabularnewline
113 &  1 &  1.592e-31 &  7.961e-32 \tabularnewline
114 &  1 &  6.61e-43 &  3.305e-43 \tabularnewline
115 &  1 &  9.614e-08 &  4.807e-08 \tabularnewline
116 &  1 &  8.054e-05 &  4.027e-05 \tabularnewline
117 &  1 &  1.182e-17 &  5.911e-18 \tabularnewline
118 &  0.998 &  0.003929 &  0.001964 \tabularnewline
119 &  1 &  5.446e-27 &  2.723e-27 \tabularnewline
120 &  1 &  2.329e-17 &  1.164e-17 \tabularnewline
121 &  1 &  2.283e-15 &  1.141e-15 \tabularnewline
122 &  0.2865 &  0.5729 &  0.7135 \tabularnewline
123 &  1 &  2.897e-21 &  1.448e-21 \tabularnewline
124 &  1 &  1.612e-10 &  8.058e-11 \tabularnewline
125 &  1 &  4.665e-06 &  2.332e-06 \tabularnewline
126 &  0.997 &  0.006045 &  0.003022 \tabularnewline
127 &  0.9426 &  0.1148 &  0.05741 \tabularnewline
128 &  0.002508 &  0.005016 &  0.9975 \tabularnewline
129 &  1.968e-16 &  3.936e-16 &  1 \tabularnewline
130 &  1 &  1.209e-17 &  6.044e-18 \tabularnewline
131 &  0.9996 &  0.0007079 &  0.000354 \tabularnewline
132 &  1 &  2.374e-13 &  1.187e-13 \tabularnewline
133 &  1 &  1.302e-12 &  6.51e-13 \tabularnewline
134 &  1 &  2.159e-05 &  1.079e-05 \tabularnewline
135 &  1 &  1.457e-18 &  7.285e-19 \tabularnewline
136 &  0.2082 &  0.4164 &  0.7918 \tabularnewline
137 &  1 &  1.592e-09 &  7.958e-10 \tabularnewline
138 &  1 &  6.237e-14 &  3.119e-14 \tabularnewline
139 &  0.9911 &  0.01781 &  0.008904 \tabularnewline
140 &  1 &  9.516e-17 &  4.758e-17 \tabularnewline
141 &  1 &  1.218e-11 &  6.091e-12 \tabularnewline
142 &  1 &  6.709e-09 &  3.354e-09 \tabularnewline
143 &  1 &  3.055e-05 &  1.527e-05 \tabularnewline
144 &  1 &  5.654e-05 &  2.827e-05 \tabularnewline
145 &  1 &  1.679e-07 &  8.393e-08 \tabularnewline
146 &  1 &  4.341e-05 &  2.17e-05 \tabularnewline
147 &  0.9948 &  0.01033 &  0.005166 \tabularnewline
148 &  0.9993 &  0.001339 &  0.0006696 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298038&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]8[/C][C] 1.24e-05[/C][C] 2.479e-05[/C][C] 1[/C][/ROW]
[ROW][C]9[/C][C] 0.0001339[/C][C] 0.0002678[/C][C] 0.9999[/C][/ROW]
[ROW][C]10[/C][C] 2.93e-05[/C][C] 5.859e-05[/C][C] 1[/C][/ROW]
[ROW][C]11[/C][C] 0.0007876[/C][C] 0.001575[/C][C] 0.9992[/C][/ROW]
[ROW][C]12[/C][C] 8.064e-05[/C][C] 0.0001613[/C][C] 0.9999[/C][/ROW]
[ROW][C]13[/C][C] 8.788e-12[/C][C] 1.758e-11[/C][C] 1[/C][/ROW]
[ROW][C]14[/C][C] 2.565e-08[/C][C] 5.13e-08[/C][C] 1[/C][/ROW]
[ROW][C]15[/C][C] 4.045e-06[/C][C] 8.091e-06[/C][C] 1[/C][/ROW]
[ROW][C]16[/C][C] 8.709e-20[/C][C] 1.742e-19[/C][C] 1[/C][/ROW]
[ROW][C]17[/C][C] 0.0004158[/C][C] 0.0008316[/C][C] 0.9996[/C][/ROW]
[ROW][C]18[/C][C] 5.074e-09[/C][C] 1.015e-08[/C][C] 1[/C][/ROW]
[ROW][C]19[/C][C] 2.582e-08[/C][C] 5.165e-08[/C][C] 1[/C][/ROW]
[ROW][C]20[/C][C] 4.627e-06[/C][C] 9.254e-06[/C][C] 1[/C][/ROW]
[ROW][C]21[/C][C] 3.284e-18[/C][C] 6.568e-18[/C][C] 1[/C][/ROW]
[ROW][C]22[/C][C] 2.337e-09[/C][C] 4.674e-09[/C][C] 1[/C][/ROW]
[ROW][C]23[/C][C] 1.366e-11[/C][C] 2.731e-11[/C][C] 1[/C][/ROW]
[ROW][C]24[/C][C] 2.939e-29[/C][C] 5.877e-29[/C][C] 1[/C][/ROW]
[ROW][C]25[/C][C] 5.578e-11[/C][C] 1.116e-10[/C][C] 1[/C][/ROW]
[ROW][C]26[/C][C] 1.137e-14[/C][C] 2.274e-14[/C][C] 1[/C][/ROW]
[ROW][C]27[/C][C] 0.9933[/C][C] 0.01346[/C][C] 0.006731[/C][/ROW]
[ROW][C]28[/C][C] 1.075e-05[/C][C] 2.149e-05[/C][C] 1[/C][/ROW]
[ROW][C]29[/C][C] 0.9399[/C][C] 0.1202[/C][C] 0.06011[/C][/ROW]
[ROW][C]30[/C][C] 2.086e-24[/C][C] 4.172e-24[/C][C] 1[/C][/ROW]
[ROW][C]31[/C][C] 1.342e-12[/C][C] 2.683e-12[/C][C] 1[/C][/ROW]
[ROW][C]32[/C][C] 1.842e-06[/C][C] 3.684e-06[/C][C] 1[/C][/ROW]
[ROW][C]33[/C][C] 4.303e-12[/C][C] 8.607e-12[/C][C] 1[/C][/ROW]
[ROW][C]34[/C][C] 1[/C][C] 9.512e-21[/C][C] 4.756e-21[/C][/ROW]
[ROW][C]35[/C][C] 5.233e-41[/C][C] 1.047e-40[/C][C] 1[/C][/ROW]
[ROW][C]36[/C][C] 1.18e-17[/C][C] 2.359e-17[/C][C] 1[/C][/ROW]
[ROW][C]37[/C][C] 6.78e-05[/C][C] 0.0001356[/C][C] 0.9999[/C][/ROW]
[ROW][C]38[/C][C] 7.759e-09[/C][C] 1.552e-08[/C][C] 1[/C][/ROW]
[ROW][C]39[/C][C] 1.314e-30[/C][C] 2.629e-30[/C][C] 1[/C][/ROW]
[ROW][C]40[/C][C] 0.001604[/C][C] 0.003208[/C][C] 0.9984[/C][/ROW]
[ROW][C]41[/C][C] 0.1947[/C][C] 0.3893[/C][C] 0.8053[/C][/ROW]
[ROW][C]42[/C][C] 1.259e-35[/C][C] 2.519e-35[/C][C] 1[/C][/ROW]
[ROW][C]43[/C][C] 3.826e-26[/C][C] 7.652e-26[/C][C] 1[/C][/ROW]
[ROW][C]44[/C][C] 1[/C][C] 2.069e-28[/C][C] 1.034e-28[/C][/ROW]
[ROW][C]45[/C][C] 2.462e-08[/C][C] 4.924e-08[/C][C] 1[/C][/ROW]
[ROW][C]46[/C][C] 0.9679[/C][C] 0.06416[/C][C] 0.03208[/C][/ROW]
[ROW][C]47[/C][C] 0.0001049[/C][C] 0.0002099[/C][C] 0.9999[/C][/ROW]
[ROW][C]48[/C][C] 2.048e-24[/C][C] 4.096e-24[/C][C] 1[/C][/ROW]
[ROW][C]49[/C][C] 0.003026[/C][C] 0.006052[/C][C] 0.997[/C][/ROW]
[ROW][C]50[/C][C] 1[/C][C] 2.928e-42[/C][C] 1.464e-42[/C][/ROW]
[ROW][C]51[/C][C] 0.1763[/C][C] 0.3526[/C][C] 0.8237[/C][/ROW]
[ROW][C]52[/C][C] 3.482e-11[/C][C] 6.964e-11[/C][C] 1[/C][/ROW]
[ROW][C]53[/C][C] 2.393e-20[/C][C] 4.787e-20[/C][C] 1[/C][/ROW]
[ROW][C]54[/C][C] 0.2892[/C][C] 0.5785[/C][C] 0.7108[/C][/ROW]
[ROW][C]55[/C][C] 5.72e-29[/C][C] 1.144e-28[/C][C] 1[/C][/ROW]
[ROW][C]56[/C][C] 2.074e-13[/C][C] 4.148e-13[/C][C] 1[/C][/ROW]
[ROW][C]57[/C][C] 4.196e-18[/C][C] 8.393e-18[/C][C] 1[/C][/ROW]
[ROW][C]58[/C][C] 5.769e-11[/C][C] 1.154e-10[/C][C] 1[/C][/ROW]
[ROW][C]59[/C][C] 1[/C][C] 2.388e-20[/C][C] 1.194e-20[/C][/ROW]
[ROW][C]60[/C][C] 0.0002092[/C][C] 0.0004183[/C][C] 0.9998[/C][/ROW]
[ROW][C]61[/C][C] 8.821e-32[/C][C] 1.764e-31[/C][C] 1[/C][/ROW]
[ROW][C]62[/C][C] 0.01525[/C][C] 0.0305[/C][C] 0.9848[/C][/ROW]
[ROW][C]63[/C][C] 1[/C][C] 1.895e-47[/C][C] 9.476e-48[/C][/ROW]
[ROW][C]64[/C][C] 5.229e-48[/C][C] 1.046e-47[/C][C] 1[/C][/ROW]
[ROW][C]65[/C][C] 0.04109[/C][C] 0.08219[/C][C] 0.9589[/C][/ROW]
[ROW][C]66[/C][C] 4.723e-17[/C][C] 9.446e-17[/C][C] 1[/C][/ROW]
[ROW][C]67[/C][C] 0.94[/C][C] 0.12[/C][C] 0.05999[/C][/ROW]
[ROW][C]68[/C][C] 4.099e-30[/C][C] 8.199e-30[/C][C] 1[/C][/ROW]
[ROW][C]69[/C][C] 0.05287[/C][C] 0.1057[/C][C] 0.9471[/C][/ROW]
[ROW][C]70[/C][C] 0.001389[/C][C] 0.002778[/C][C] 0.9986[/C][/ROW]
[ROW][C]71[/C][C] 2.306e-07[/C][C] 4.612e-07[/C][C] 1[/C][/ROW]
[ROW][C]72[/C][C] 0.9913[/C][C] 0.01731[/C][C] 0.008654[/C][/ROW]
[ROW][C]73[/C][C] 5.623e-17[/C][C] 1.125e-16[/C][C] 1[/C][/ROW]
[ROW][C]74[/C][C] 7.263e-17[/C][C] 1.453e-16[/C][C] 1[/C][/ROW]
[ROW][C]75[/C][C] 0.9626[/C][C] 0.07486[/C][C] 0.03743[/C][/ROW]
[ROW][C]76[/C][C] 0.9597[/C][C] 0.08056[/C][C] 0.04028[/C][/ROW]
[ROW][C]77[/C][C] 0.07901[/C][C] 0.158[/C][C] 0.921[/C][/ROW]
[ROW][C]78[/C][C] 0.4201[/C][C] 0.8402[/C][C] 0.5799[/C][/ROW]
[ROW][C]79[/C][C] 0.002349[/C][C] 0.004698[/C][C] 0.9977[/C][/ROW]
[ROW][C]80[/C][C] 1[/C][C] 1.358e-08[/C][C] 6.79e-09[/C][/ROW]
[ROW][C]81[/C][C] 1.212e-15[/C][C] 2.425e-15[/C][C] 1[/C][/ROW]
[ROW][C]82[/C][C] 1[/C][C] 2.794e-09[/C][C] 1.397e-09[/C][/ROW]
[ROW][C]83[/C][C] 1[/C][C] 8.366e-62[/C][C] 4.183e-62[/C][/ROW]
[ROW][C]84[/C][C] 1.084e-26[/C][C] 2.168e-26[/C][C] 1[/C][/ROW]
[ROW][C]85[/C][C] 0.9998[/C][C] 0.0003977[/C][C] 0.0001988[/C][/ROW]
[ROW][C]86[/C][C] 4.589e-08[/C][C] 9.178e-08[/C][C] 1[/C][/ROW]
[ROW][C]87[/C][C] 6.826e-17[/C][C] 1.365e-16[/C][C] 1[/C][/ROW]
[ROW][C]88[/C][C] 0.8402[/C][C] 0.3197[/C][C] 0.1598[/C][/ROW]
[ROW][C]89[/C][C] 1[/C][C] 2.171e-22[/C][C] 1.085e-22[/C][/ROW]
[ROW][C]90[/C][C] 1[/C][C] 1.142e-10[/C][C] 5.709e-11[/C][/ROW]
[ROW][C]91[/C][C] 1[/C][C] 2.206e-24[/C][C] 1.103e-24[/C][/ROW]
[ROW][C]92[/C][C] 1[/C][C] 1.128e-36[/C][C] 5.638e-37[/C][/ROW]
[ROW][C]93[/C][C] 1.171e-77[/C][C] 2.342e-77[/C][C] 1[/C][/ROW]
[ROW][C]94[/C][C] 1[/C][C] 6.897e-13[/C][C] 3.449e-13[/C][/ROW]
[ROW][C]95[/C][C] 1[/C][C] 1.706e-41[/C][C] 8.528e-42[/C][/ROW]
[ROW][C]96[/C][C] 1[/C][C] 1.65e-07[/C][C] 8.252e-08[/C][/ROW]
[ROW][C]97[/C][C] 9.65e-11[/C][C] 1.93e-10[/C][C] 1[/C][/ROW]
[ROW][C]98[/C][C] 1[/C][C] 3.827e-42[/C][C] 1.914e-42[/C][/ROW]
[ROW][C]99[/C][C] 1[/C][C] 9.085e-05[/C][C] 4.543e-05[/C][/ROW]
[ROW][C]100[/C][C] 1[/C][C] 3.116e-08[/C][C] 1.558e-08[/C][/ROW]
[ROW][C]101[/C][C] 1[/C][C] 3.24e-08[/C][C] 1.62e-08[/C][/ROW]
[ROW][C]102[/C][C] 0.91[/C][C] 0.1799[/C][C] 0.08997[/C][/ROW]
[ROW][C]103[/C][C] 1[/C][C] 7.292e-16[/C][C] 3.646e-16[/C][/ROW]
[ROW][C]104[/C][C] 1[/C][C] 6.035e-05[/C][C] 3.017e-05[/C][/ROW]
[ROW][C]105[/C][C] 1.514e-22[/C][C] 3.027e-22[/C][C] 1[/C][/ROW]
[ROW][C]106[/C][C] 5.397e-71[/C][C] 1.079e-70[/C][C] 1[/C][/ROW]
[ROW][C]107[/C][C] 0.5459[/C][C] 0.9081[/C][C] 0.4541[/C][/ROW]
[ROW][C]108[/C][C] 1[/C][C] 2.476e-14[/C][C] 1.238e-14[/C][/ROW]
[ROW][C]109[/C][C] 0.9365[/C][C] 0.127[/C][C] 0.06352[/C][/ROW]
[ROW][C]110[/C][C] 1[/C][C] 7.389e-13[/C][C] 3.694e-13[/C][/ROW]
[ROW][C]111[/C][C] 1[/C][C] 2.546e-10[/C][C] 1.273e-10[/C][/ROW]
[ROW][C]112[/C][C] 9.343e-37[/C][C] 1.869e-36[/C][C] 1[/C][/ROW]
[ROW][C]113[/C][C] 1[/C][C] 1.592e-31[/C][C] 7.961e-32[/C][/ROW]
[ROW][C]114[/C][C] 1[/C][C] 6.61e-43[/C][C] 3.305e-43[/C][/ROW]
[ROW][C]115[/C][C] 1[/C][C] 9.614e-08[/C][C] 4.807e-08[/C][/ROW]
[ROW][C]116[/C][C] 1[/C][C] 8.054e-05[/C][C] 4.027e-05[/C][/ROW]
[ROW][C]117[/C][C] 1[/C][C] 1.182e-17[/C][C] 5.911e-18[/C][/ROW]
[ROW][C]118[/C][C] 0.998[/C][C] 0.003929[/C][C] 0.001964[/C][/ROW]
[ROW][C]119[/C][C] 1[/C][C] 5.446e-27[/C][C] 2.723e-27[/C][/ROW]
[ROW][C]120[/C][C] 1[/C][C] 2.329e-17[/C][C] 1.164e-17[/C][/ROW]
[ROW][C]121[/C][C] 1[/C][C] 2.283e-15[/C][C] 1.141e-15[/C][/ROW]
[ROW][C]122[/C][C] 0.2865[/C][C] 0.5729[/C][C] 0.7135[/C][/ROW]
[ROW][C]123[/C][C] 1[/C][C] 2.897e-21[/C][C] 1.448e-21[/C][/ROW]
[ROW][C]124[/C][C] 1[/C][C] 1.612e-10[/C][C] 8.058e-11[/C][/ROW]
[ROW][C]125[/C][C] 1[/C][C] 4.665e-06[/C][C] 2.332e-06[/C][/ROW]
[ROW][C]126[/C][C] 0.997[/C][C] 0.006045[/C][C] 0.003022[/C][/ROW]
[ROW][C]127[/C][C] 0.9426[/C][C] 0.1148[/C][C] 0.05741[/C][/ROW]
[ROW][C]128[/C][C] 0.002508[/C][C] 0.005016[/C][C] 0.9975[/C][/ROW]
[ROW][C]129[/C][C] 1.968e-16[/C][C] 3.936e-16[/C][C] 1[/C][/ROW]
[ROW][C]130[/C][C] 1[/C][C] 1.209e-17[/C][C] 6.044e-18[/C][/ROW]
[ROW][C]131[/C][C] 0.9996[/C][C] 0.0007079[/C][C] 0.000354[/C][/ROW]
[ROW][C]132[/C][C] 1[/C][C] 2.374e-13[/C][C] 1.187e-13[/C][/ROW]
[ROW][C]133[/C][C] 1[/C][C] 1.302e-12[/C][C] 6.51e-13[/C][/ROW]
[ROW][C]134[/C][C] 1[/C][C] 2.159e-05[/C][C] 1.079e-05[/C][/ROW]
[ROW][C]135[/C][C] 1[/C][C] 1.457e-18[/C][C] 7.285e-19[/C][/ROW]
[ROW][C]136[/C][C] 0.2082[/C][C] 0.4164[/C][C] 0.7918[/C][/ROW]
[ROW][C]137[/C][C] 1[/C][C] 1.592e-09[/C][C] 7.958e-10[/C][/ROW]
[ROW][C]138[/C][C] 1[/C][C] 6.237e-14[/C][C] 3.119e-14[/C][/ROW]
[ROW][C]139[/C][C] 0.9911[/C][C] 0.01781[/C][C] 0.008904[/C][/ROW]
[ROW][C]140[/C][C] 1[/C][C] 9.516e-17[/C][C] 4.758e-17[/C][/ROW]
[ROW][C]141[/C][C] 1[/C][C] 1.218e-11[/C][C] 6.091e-12[/C][/ROW]
[ROW][C]142[/C][C] 1[/C][C] 6.709e-09[/C][C] 3.354e-09[/C][/ROW]
[ROW][C]143[/C][C] 1[/C][C] 3.055e-05[/C][C] 1.527e-05[/C][/ROW]
[ROW][C]144[/C][C] 1[/C][C] 5.654e-05[/C][C] 2.827e-05[/C][/ROW]
[ROW][C]145[/C][C] 1[/C][C] 1.679e-07[/C][C] 8.393e-08[/C][/ROW]
[ROW][C]146[/C][C] 1[/C][C] 4.341e-05[/C][C] 2.17e-05[/C][/ROW]
[ROW][C]147[/C][C] 0.9948[/C][C] 0.01033[/C][C] 0.005166[/C][/ROW]
[ROW][C]148[/C][C] 0.9993[/C][C] 0.001339[/C][C] 0.0006696[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298038&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298038&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
8 1.24e-05 2.479e-05 1
9 0.0001339 0.0002678 0.9999
10 2.93e-05 5.859e-05 1
11 0.0007876 0.001575 0.9992
12 8.064e-05 0.0001613 0.9999
13 8.788e-12 1.758e-11 1
14 2.565e-08 5.13e-08 1
15 4.045e-06 8.091e-06 1
16 8.709e-20 1.742e-19 1
17 0.0004158 0.0008316 0.9996
18 5.074e-09 1.015e-08 1
19 2.582e-08 5.165e-08 1
20 4.627e-06 9.254e-06 1
21 3.284e-18 6.568e-18 1
22 2.337e-09 4.674e-09 1
23 1.366e-11 2.731e-11 1
24 2.939e-29 5.877e-29 1
25 5.578e-11 1.116e-10 1
26 1.137e-14 2.274e-14 1
27 0.9933 0.01346 0.006731
28 1.075e-05 2.149e-05 1
29 0.9399 0.1202 0.06011
30 2.086e-24 4.172e-24 1
31 1.342e-12 2.683e-12 1
32 1.842e-06 3.684e-06 1
33 4.303e-12 8.607e-12 1
34 1 9.512e-21 4.756e-21
35 5.233e-41 1.047e-40 1
36 1.18e-17 2.359e-17 1
37 6.78e-05 0.0001356 0.9999
38 7.759e-09 1.552e-08 1
39 1.314e-30 2.629e-30 1
40 0.001604 0.003208 0.9984
41 0.1947 0.3893 0.8053
42 1.259e-35 2.519e-35 1
43 3.826e-26 7.652e-26 1
44 1 2.069e-28 1.034e-28
45 2.462e-08 4.924e-08 1
46 0.9679 0.06416 0.03208
47 0.0001049 0.0002099 0.9999
48 2.048e-24 4.096e-24 1
49 0.003026 0.006052 0.997
50 1 2.928e-42 1.464e-42
51 0.1763 0.3526 0.8237
52 3.482e-11 6.964e-11 1
53 2.393e-20 4.787e-20 1
54 0.2892 0.5785 0.7108
55 5.72e-29 1.144e-28 1
56 2.074e-13 4.148e-13 1
57 4.196e-18 8.393e-18 1
58 5.769e-11 1.154e-10 1
59 1 2.388e-20 1.194e-20
60 0.0002092 0.0004183 0.9998
61 8.821e-32 1.764e-31 1
62 0.01525 0.0305 0.9848
63 1 1.895e-47 9.476e-48
64 5.229e-48 1.046e-47 1
65 0.04109 0.08219 0.9589
66 4.723e-17 9.446e-17 1
67 0.94 0.12 0.05999
68 4.099e-30 8.199e-30 1
69 0.05287 0.1057 0.9471
70 0.001389 0.002778 0.9986
71 2.306e-07 4.612e-07 1
72 0.9913 0.01731 0.008654
73 5.623e-17 1.125e-16 1
74 7.263e-17 1.453e-16 1
75 0.9626 0.07486 0.03743
76 0.9597 0.08056 0.04028
77 0.07901 0.158 0.921
78 0.4201 0.8402 0.5799
79 0.002349 0.004698 0.9977
80 1 1.358e-08 6.79e-09
81 1.212e-15 2.425e-15 1
82 1 2.794e-09 1.397e-09
83 1 8.366e-62 4.183e-62
84 1.084e-26 2.168e-26 1
85 0.9998 0.0003977 0.0001988
86 4.589e-08 9.178e-08 1
87 6.826e-17 1.365e-16 1
88 0.8402 0.3197 0.1598
89 1 2.171e-22 1.085e-22
90 1 1.142e-10 5.709e-11
91 1 2.206e-24 1.103e-24
92 1 1.128e-36 5.638e-37
93 1.171e-77 2.342e-77 1
94 1 6.897e-13 3.449e-13
95 1 1.706e-41 8.528e-42
96 1 1.65e-07 8.252e-08
97 9.65e-11 1.93e-10 1
98 1 3.827e-42 1.914e-42
99 1 9.085e-05 4.543e-05
100 1 3.116e-08 1.558e-08
101 1 3.24e-08 1.62e-08
102 0.91 0.1799 0.08997
103 1 7.292e-16 3.646e-16
104 1 6.035e-05 3.017e-05
105 1.514e-22 3.027e-22 1
106 5.397e-71 1.079e-70 1
107 0.5459 0.9081 0.4541
108 1 2.476e-14 1.238e-14
109 0.9365 0.127 0.06352
110 1 7.389e-13 3.694e-13
111 1 2.546e-10 1.273e-10
112 9.343e-37 1.869e-36 1
113 1 1.592e-31 7.961e-32
114 1 6.61e-43 3.305e-43
115 1 9.614e-08 4.807e-08
116 1 8.054e-05 4.027e-05
117 1 1.182e-17 5.911e-18
118 0.998 0.003929 0.001964
119 1 5.446e-27 2.723e-27
120 1 2.329e-17 1.164e-17
121 1 2.283e-15 1.141e-15
122 0.2865 0.5729 0.7135
123 1 2.897e-21 1.448e-21
124 1 1.612e-10 8.058e-11
125 1 4.665e-06 2.332e-06
126 0.997 0.006045 0.003022
127 0.9426 0.1148 0.05741
128 0.002508 0.005016 0.9975
129 1.968e-16 3.936e-16 1
130 1 1.209e-17 6.044e-18
131 0.9996 0.0007079 0.000354
132 1 2.374e-13 1.187e-13
133 1 1.302e-12 6.51e-13
134 1 2.159e-05 1.079e-05
135 1 1.457e-18 7.285e-19
136 0.2082 0.4164 0.7918
137 1 1.592e-09 7.958e-10
138 1 6.237e-14 3.119e-14
139 0.9911 0.01781 0.008904
140 1 9.516e-17 4.758e-17
141 1 1.218e-11 6.091e-12
142 1 6.709e-09 3.354e-09
143 1 3.055e-05 1.527e-05
144 1 5.654e-05 2.827e-05
145 1 1.679e-07 8.393e-08
146 1 4.341e-05 2.17e-05
147 0.9948 0.01033 0.005166
148 0.9993 0.001339 0.0006696







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level117 0.8298NOK
5% type I error level1220.865248NOK
10% type I error level1260.893617NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 117 &  0.8298 & NOK \tabularnewline
5% type I error level & 122 & 0.865248 & NOK \tabularnewline
10% type I error level & 126 & 0.893617 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298038&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]117[/C][C] 0.8298[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]122[/C][C]0.865248[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]126[/C][C]0.893617[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298038&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298038&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level117 0.8298NOK
5% type I error level1220.865248NOK
10% type I error level1260.893617NOK







Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.55789, df1 = 2, df2 = 149, p-value = 0.5736
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.4131, df1 = 8, df2 = 143, p-value = 0.1958
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.62068, df1 = 2, df2 = 149, p-value = 0.539

\begin{tabular}{lllllllll}
\hline
Ramsey RESET F-Test for powers (2 and 3) of fitted values \tabularnewline
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.55789, df1 = 2, df2 = 149, p-value = 0.5736
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of regressors \tabularnewline
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.4131, df1 = 8, df2 = 143, p-value = 0.1958
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of principal components \tabularnewline
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.62068, df1 = 2, df2 = 149, p-value = 0.539
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=298038&T=7

[TABLE]
[ROW][C]Ramsey RESET F-Test for powers (2 and 3) of fitted values[/C][/ROW]
[ROW][C]
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.55789, df1 = 2, df2 = 149, p-value = 0.5736
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of regressors[/C][/ROW] [ROW][C]
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.4131, df1 = 8, df2 = 143, p-value = 0.1958
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of principal components[/C][/ROW] [ROW][C]
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.62068, df1 = 2, df2 = 149, p-value = 0.539
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298038&T=7

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298038&T=7

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.55789, df1 = 2, df2 = 149, p-value = 0.5736
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.4131, df1 = 8, df2 = 143, p-value = 0.1958
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.62068, df1 = 2, df2 = 149, p-value = 0.539







Variance Inflation Factors (Multicollinearity)
> vif
    ITH1     ITH2     ITH3     ITH4 
1.650852 1.404998 1.581077 1.265520 

\begin{tabular}{lllllllll}
\hline
Variance Inflation Factors (Multicollinearity) \tabularnewline
> vif
    ITH1     ITH2     ITH3     ITH4 
1.650852 1.404998 1.581077 1.265520 
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=298038&T=8

[TABLE]
[ROW][C]Variance Inflation Factors (Multicollinearity)[/C][/ROW]
[ROW][C]
> vif
    ITH1     ITH2     ITH3     ITH4 
1.650852 1.404998 1.581077 1.265520 
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298038&T=8

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298038&T=8

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variance Inflation Factors (Multicollinearity)
> vif
    ITH1     ITH2     ITH3     ITH4 
1.650852 1.404998 1.581077 1.265520 



Parameters (Session):
par1 = 5 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ;
Parameters (R input):
par1 = 5 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ;
R code (references can be found in the software module):
par5 <- '0'
par4 <- '0'
par3 <- 'No Linear Trend'
par2 <- 'Do not include Seasonal Dummies'
par1 <- '4'
library(lattice)
library(lmtest)
library(car)
library(MASS)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
mywarning <- ''
par1 <- as.numeric(par1)
if(is.na(par1)) {
par1 <- 1
mywarning = 'Warning: you did not specify the column number of the endogenous series! The first column was selected by default.'
}
if (par4=='') par4 <- 0
par4 <- as.numeric(par4)
if (par5=='') par5 <- 0
par5 <- as.numeric(par5)
x <- na.omit(t(y))
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'Seasonal Differences (s=12)'){
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'First and Seasonal Differences (s=12)'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if(par4 > 0) {
x2 <- array(0, dim=c(n-par4,par4), dimnames=list(1:(n-par4), paste(colnames(x)[par1],'(t-',1:par4,')',sep='')))
for (i in 1:(n-par4)) {
for (j in 1:par4) {
x2[i,j] <- x[i+par4-j,par1]
}
}
x <- cbind(x[(par4+1):n,], x2)
n <- n - par4
}
if(par5 > 0) {
x2 <- array(0, dim=c(n-par5*12,par5), dimnames=list(1:(n-par5*12), paste(colnames(x)[par1],'(t-',1:par5,'s)',sep='')))
for (i in 1:(n-par5*12)) {
for (j in 1:par5) {
x2[i,j] <- x[i+par5*12-j*12,par1]
}
}
x <- cbind(x[(par5*12+1):n,], x2)
n <- n - par5*12
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
(k <- length(x[n,]))
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
print(x)
(k <- length(x[n,]))
head(x)
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
sresid <- studres(mylm)
hist(sresid, freq=FALSE, main='Distribution of Studentized Residuals')
xfit<-seq(min(sresid),max(sresid),length=40)
yfit<-dnorm(xfit)
lines(xfit, yfit)
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqPlot(mylm, main='QQ Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
print(z)
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, mywarning)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Multiple Linear Regression - Ordinary Least Squares', 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,formatC(signif(mysum$coefficients[i,1],5),format='g',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,2],5),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,3],4),format='e',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4],4),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4]/2,4),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a,formatC(signif(sqrt(mysum$r.squared),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$adj.r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a,formatC(signif(mysum$fstatistic[1],6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a,formatC(signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a,formatC(signif(mysum$sigma,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a,formatC(signif(sum(myerror*myerror),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
myr <- as.numeric(mysum$resid)
myr
if(n < 200) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,formatC(signif(x[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(x[i]-mysum$resid[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$resid[i],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,1],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,2],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,3],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,formatC(signif(numsignificant1/numgqtests,6),format='g',flag=' '))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
}
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of fitted values',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_fitted <- resettest(mylm,power=2:3,type='fitted')
a<-table.element(a,paste('
',RC.texteval('reset_test_fitted'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of regressors',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_regressors <- resettest(mylm,power=2:3,type='regressor')
a<-table.element(a,paste('
',RC.texteval('reset_test_regressors'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of principal components',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_principal_components <- resettest(mylm,power=2:3,type='princomp')
a<-table.element(a,paste('
',RC.texteval('reset_test_principal_components'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable8.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variance Inflation Factors (Multicollinearity)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
vif <- vif(mylm)
a<-table.element(a,paste('
',RC.texteval('vif'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable9.tab')