Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationMon, 12 Dec 2016 23:15:47 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/12/t1481581024bzyq29o5zy2apog.htm/, Retrieved Fri, 01 Nov 2024 03:30:07 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299006, Retrieved Fri, 01 Nov 2024 03:30:07 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact124
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Multiple Regression] [Meervoudige regre...] [2016-12-07 12:17:25] [5ad8e5538a25411d3c3b0ec85050bd51]
- R  D    [Multiple Regression] [Multiple regressi...] [2016-12-12 22:15:47] [c0b73e623858a81821526bb2f691ccd9] [Current]
-   PD      [Multiple Regression] [Multiple regressi...] [2016-12-13 11:55:13] [5ad8e5538a25411d3c3b0ec85050bd51]
Feedback Forum

Post a new message
Dataseries X:
3	4	3	4	15
5	5	5	4	13
5	4	4	4	14
5	4	4	4	13
4	4	3	4	12
5	5	5	5	17
5	4	3	3	12
5	5	5	4	13
5	5	4	1	13
5	4	3	3	16
5	5	5	4	12
NA	4	5	3	12
5	5	5	5	13
5	5	4	4	16
4	4	3	4	15
3	4	4	3	12
5	5	5	5	NA
NA	NA	NA	NA	NA
5	4	3	4	15
5	3	3	5	12
4	4	4	4	15
2	5	1	2	11
5	5	4	5	13
5	5	4	5	13
5	5	4	2	14
4	4	4	3	14
4	5	5	4	14
4	5	4	4	15
5	5	4	5	16
5	5	4	3	16
4	NA	4	2	16
5	5	4	5	13
5	5	5	5	13
1	1	1	2	14
5	5	4	5	13
4	5	4	3	14
4	4	4	3	12
4	4	4	4	17
5	5	4	4	14
4	4	5	3	15
4	4	4	3	13
5	4	4	4	14
3	3	4	NA	15
5	5	5	5	19
5	5	5	4	14
2	2	1	2	13
3	3	3	4	12
4	4	3	5	NA
4	5	3	4	14
NA	NA	NA	4	15
5	5	4	4	15
5	5	5	3	12
4	4	4	4	14
5	5	3	4	11
5	5	5	4	12
4	4	4	4	10
5	5	4	5	NA
4	5	3	1	14
4	4	4	4	14
3	4	3	3	15
4	4	3	1	15
4	5	4	4	13
5	4	4	4	15
4	5	4	4	16
4	5	4	3	12
4	4	4	4	17
4	3	3	4	15
4	4	4	4	NA
2	4	4	3	12
4	5	4	3	16
4	4	3	3	15
5	5	5	5	15
3	3	3	3	12
3	4	3	3	13
5	4	5	4	10
4	3	3	4	14
5	5	5	4	11
4	5	4	5	12
4	3	3	4	14
5	5	3	5	12
5	5	5	4	14
5	4	3	3	12
4	4	3	3	13
5	4	4	4	13
5	5	5	4	14
2	5	4	2	12
5	4	5	5	15
5	5	4	4	13
5	5	5	5	13
5	4	4	2	11
4	4	4	3	12
4	4	4	3	16
5	5	5	5	11
4	4	4	3	13
5	5	5	4	12
5	5	4	4	17
5	4	5	4	14
4	4	4	3	15
5	5	5	5	8
5	5	5	2	13
3	4	2	3	13
5	4	5	4	15
5	5	5	4	14
5	5	5	5	13
4	3	NA	3	14
4	4	5	4	12
4	4	4	3	19
4	4	4	4	15
5	5	5	3	14
5	5	4	4	14
4	4	2	4	15
3	4	4	4	13
3	4	3	2	15
4	4	5	4	14
4	4	3	3	11
5	5	4	4	17
5	4	4	4	13
4	4	5	4	9
5	5	5	5	12
5	4	4	3	13
4	4	3	3	17
4	4	3	4	14
5	5	4	4	13
5	5	5	5	16
5	5	3	4	14
5	5	3	4	14
4	5	4	4	14
5	4	4	4	10
3	4	4	4	12
5	5	4	3	13
5	4	5	4	14
4	5	4	4	18
5	5	5	5	14
4	4	4	3	14
4	4	4	4	13
4	4	4	3	13
4	4	5	5	16
2	3	2	4	NA
4	4	4	3	13
5	4	5	4	14
5	5	5	5	8
5	5	5	4	13
4	4	4	2	13
4	5	4	3	16
5	4	4	2	14
5	4	4	4	13
5	4	5	4	14
5	5	5	5	12
5	3	5	4	16
5	4	5	4	18
4	4	4	3	16
5	4	4	3	15
3	3	3	2	18
3	4	4	4	15
4	5	4	5	14
4	5	4	4	14
3	5	3	5	15
3	4	3	2	9
5	5	5	4	17
5	5	4	4	11
5	4	4	2	15
5	4	4	4	NA
5	5	5	4	15
5	4	5	4	13
5	5	5	4	NA
5	4	5	2	15
4	4	4	4	15
4	4	5	3	14
2	4	5	3	13




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R ServerBig Analytics Cloud Computing Center
R Framework error message
The field 'Names of X columns' contains a hard return which cannot be interpreted.
Please, resubmit your request without hard returns in the 'Names of X columns'.

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time8 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
R Framework error message & 
The field 'Names of X columns' contains a hard return which cannot be interpreted.
Please, resubmit your request without hard returns in the 'Names of X columns'.
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=299006&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]8 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [ROW]R Framework error message[/C][C]
The field 'Names of X columns' contains a hard return which cannot be interpreted.
Please, resubmit your request without hard returns in the 'Names of X columns'.
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299006&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299006&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R ServerBig Analytics Cloud Computing Center
R Framework error message
The field 'Names of X columns' contains a hard return which cannot be interpreted.
Please, resubmit your request without hard returns in the 'Names of X columns'.







Multiple Linear Regression - Estimated Regression Equation
EPSUM [t] = + 14.0758 + 0.142756ITH1[t] -0.172704ITH2[t] -0.0112073ITH3[t] -0.0434003ITH4[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
EPSUM
[t] =  +  14.0758 +  0.142756ITH1[t] -0.172704ITH2[t] -0.0112073ITH3[t] -0.0434003ITH4[t]  + e[t] \tabularnewline
 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299006&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]EPSUM
[t] =  +  14.0758 +  0.142756ITH1[t] -0.172704ITH2[t] -0.0112073ITH3[t] -0.0434003ITH4[t]  + e[t][/C][/ROW]
[ROW][C][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299006&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299006&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
EPSUM [t] = + 14.0758 + 0.142756ITH1[t] -0.172704ITH2[t] -0.0112073ITH3[t] -0.0434003ITH4[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+14.08 1.129+1.2470e+01 5.639e-25 2.82e-25
ITH1+0.1428 0.2449+5.8280e-01 0.5609 0.2804
ITH2-0.1727 0.2768-6.2390e-01 0.5336 0.2668
ITH3-0.01121 0.2295-4.8830e-02 0.9611 0.4806
ITH4-0.0434 0.1918-2.2620e-01 0.8213 0.4107

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & +14.08 &  1.129 & +1.2470e+01 &  5.639e-25 &  2.82e-25 \tabularnewline
ITH1 & +0.1428 &  0.2449 & +5.8280e-01 &  0.5609 &  0.2804 \tabularnewline
ITH2 & -0.1727 &  0.2768 & -6.2390e-01 &  0.5336 &  0.2668 \tabularnewline
ITH3 & -0.01121 &  0.2295 & -4.8830e-02 &  0.9611 &  0.4806 \tabularnewline
ITH4 & -0.0434 &  0.1918 & -2.2620e-01 &  0.8213 &  0.4107 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299006&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]+14.08[/C][C] 1.129[/C][C]+1.2470e+01[/C][C] 5.639e-25[/C][C] 2.82e-25[/C][/ROW]
[ROW][C]ITH1[/C][C]+0.1428[/C][C] 0.2449[/C][C]+5.8280e-01[/C][C] 0.5609[/C][C] 0.2804[/C][/ROW]
[ROW][C]ITH2[/C][C]-0.1727[/C][C] 0.2768[/C][C]-6.2390e-01[/C][C] 0.5336[/C][C] 0.2668[/C][/ROW]
[ROW][C]ITH3[/C][C]-0.01121[/C][C] 0.2295[/C][C]-4.8830e-02[/C][C] 0.9611[/C][C] 0.4806[/C][/ROW]
[ROW][C]ITH4[/C][C]-0.0434[/C][C] 0.1918[/C][C]-2.2620e-01[/C][C] 0.8213[/C][C] 0.4107[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299006&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299006&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+14.08 1.129+1.2470e+01 5.639e-25 2.82e-25
ITH1+0.1428 0.2449+5.8280e-01 0.5609 0.2804
ITH2-0.1727 0.2768-6.2390e-01 0.5336 0.2668
ITH3-0.01121 0.2295-4.8830e-02 0.9611 0.4806
ITH4-0.0434 0.1918-2.2620e-01 0.8213 0.4107







Multiple Linear Regression - Regression Statistics
Multiple R 0.06373
R-squared 0.004062
Adjusted R-squared-0.02232
F-TEST (value) 0.154
F-TEST (DF numerator)4
F-TEST (DF denominator)151
p-value 0.961
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 1.956
Sum Squared Residuals 577.9

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R &  0.06373 \tabularnewline
R-squared &  0.004062 \tabularnewline
Adjusted R-squared & -0.02232 \tabularnewline
F-TEST (value) &  0.154 \tabularnewline
F-TEST (DF numerator) & 4 \tabularnewline
F-TEST (DF denominator) & 151 \tabularnewline
p-value &  0.961 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation &  1.956 \tabularnewline
Sum Squared Residuals &  577.9 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299006&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C] 0.06373[/C][/ROW]
[ROW][C]R-squared[/C][C] 0.004062[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]-0.02232[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C] 0.154[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]4[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]151[/C][/ROW]
[ROW][C]p-value[/C][C] 0.961[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C] 1.956[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C] 577.9[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299006&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299006&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R 0.06373
R-squared 0.004062
Adjusted R-squared-0.02232
F-TEST (value) 0.154
F-TEST (DF numerator)4
F-TEST (DF denominator)151
p-value 0.961
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 1.956
Sum Squared Residuals 577.9







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 15 13.61 1.394
2 13 13.7-0.6964
3 14 13.88 0.1197
4 13 13.88-0.8803
5 12 13.75-1.749
6 17 13.65 3.347
7 12 13.94-1.935
8 13 13.7-0.6964
9 13 13.84-0.8378
10 16 13.94 2.065
11 12 13.7-1.696
12 13 13.65-0.653
13 16 13.71 2.292
14 15 13.75 1.251
15 12 13.64-1.638
16 15 13.89 1.108
17 12 14.02-2.021
18 15 13.74 1.262
19 11 13.4-2.4
20 13 13.66-0.6642
21 13 13.66-0.6642
22 14 13.79 0.2056
23 14 13.78 0.219
24 14 13.55 0.4463
25 15 13.56 1.435
26 16 13.66 2.336
27 16 13.75 2.249
28 13 13.66-0.6642
29 13 13.65-0.653
30 14 13.95 0.05214
31 13 13.66-0.6642
32 14 13.61 0.3917
33 12 13.78-1.781
34 17 13.74 3.262
35 14 13.71 0.2924
36 15 13.77 1.23
37 13 13.78-0.781
38 14 13.88 0.1197
39 19 13.65 5.347
40 14 13.7 0.3036
41 13 13.92-0.9179
42 12 13.78-1.779
43 14 13.58 0.4239
44 15 13.71 1.292
45 12 13.74-1.74
46 14 13.74 0.2624
47 11 13.72-2.719
48 12 13.7-1.696
49 10 13.74-3.738
50 14 13.71 0.2937
51 14 13.74 0.2624
52 15 13.65 1.351
53 15 13.88 1.121
54 13 13.56-0.5649
55 15 13.88 1.12
56 16 13.56 2.435
57 12 13.61-1.608
58 17 13.74 3.262
59 15 13.92 1.078
60 12 13.5-1.495
61 16 13.61 2.392
62 15 13.79 1.208
63 15 13.65 1.347
64 12 13.82-1.822
65 13 13.65-0.6494
66 10 13.87-3.869
67 14 13.92 0.07849
68 11 13.7-2.696
69 12 13.52-1.521
70 14 13.92 0.07849
71 12 13.68-1.675
72 14 13.7 0.3036
73 12 13.94-1.935
74 13 13.79-0.7922
75 13 13.88-0.8803
76 14 13.7 0.3036
77 12 13.37-1.366
78 15 13.83 1.174
79 13 13.71-0.7076
80 13 13.65-0.653
81 11 13.97-2.967
82 12 13.78-1.781
83 16 13.78 2.219
84 11 13.65-2.653
85 13 13.78-0.781
86 12 13.7-1.696
87 17 13.71 3.292
88 14 13.87 0.1309
89 15 13.78 1.219
90 8 13.65-5.653
91 13 13.78-0.7832
92 13 13.66-0.6607
93 15 13.87 1.131
94 14 13.7 0.3036
95 13 13.65-0.653
96 12 13.73-1.726
97 19 13.78 5.219
98 15 13.74 1.262
99 14 13.74 0.2602
100 14 13.71 0.2924
101 15 13.76 1.24
102 13 13.59-0.5948
103 15 13.69 1.307
104 14 13.73 0.2736
105 11 13.79-2.792
106 17 13.71 3.292
107 13 13.88-0.8803
108 9 13.73-4.726
109 12 13.65-1.653
110 13 13.92-0.9238
111 17 13.79 3.208
112 14 13.75 0.2512
113 13 13.71-0.7076
114 16 13.65 2.347
115 14 13.72 0.2811
116 14 13.72 0.2811
117 14 13.56 0.4351
118 10 13.88-3.88
119 12 13.59-1.595
120 13 13.75-0.751
121 14 13.87 0.1309
122 18 13.56 4.435
123 14 13.65 0.347
124 14 13.78 0.219
125 13 13.74-0.7376
126 13 13.78-0.781
127 16 13.68 2.317
128 13 13.78-0.781
129 14 13.87 0.1309
130 8 13.65-5.653
131 13 13.7-0.6964
132 13 13.82-0.8244
133 16 13.61 2.392
134 14 13.97 0.03285
135 13 13.88-0.8803
136 14 13.87 0.1309
137 12 13.65-1.653
138 16 14.04 1.958
139 18 13.87 4.131
140 16 13.78 2.219
141 15 13.92 1.076
142 18 13.87 4.134
143 15 13.59 1.405
144 14 13.52 0.4785
145 14 13.56 0.4351
146 15 13.39 1.61
147 9 13.69-4.693
148 17 13.7 3.304
149 11 13.71-2.708
150 15 13.97 1.033
151 15 13.7 1.304
152 13 13.87-0.8691
153 15 13.96 1.044
154 15 13.74 1.262
155 14 13.77 0.2302
156 13 13.48-0.4843

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 &  15 &  13.61 &  1.394 \tabularnewline
2 &  13 &  13.7 & -0.6964 \tabularnewline
3 &  14 &  13.88 &  0.1197 \tabularnewline
4 &  13 &  13.88 & -0.8803 \tabularnewline
5 &  12 &  13.75 & -1.749 \tabularnewline
6 &  17 &  13.65 &  3.347 \tabularnewline
7 &  12 &  13.94 & -1.935 \tabularnewline
8 &  13 &  13.7 & -0.6964 \tabularnewline
9 &  13 &  13.84 & -0.8378 \tabularnewline
10 &  16 &  13.94 &  2.065 \tabularnewline
11 &  12 &  13.7 & -1.696 \tabularnewline
12 &  13 &  13.65 & -0.653 \tabularnewline
13 &  16 &  13.71 &  2.292 \tabularnewline
14 &  15 &  13.75 &  1.251 \tabularnewline
15 &  12 &  13.64 & -1.638 \tabularnewline
16 &  15 &  13.89 &  1.108 \tabularnewline
17 &  12 &  14.02 & -2.021 \tabularnewline
18 &  15 &  13.74 &  1.262 \tabularnewline
19 &  11 &  13.4 & -2.4 \tabularnewline
20 &  13 &  13.66 & -0.6642 \tabularnewline
21 &  13 &  13.66 & -0.6642 \tabularnewline
22 &  14 &  13.79 &  0.2056 \tabularnewline
23 &  14 &  13.78 &  0.219 \tabularnewline
24 &  14 &  13.55 &  0.4463 \tabularnewline
25 &  15 &  13.56 &  1.435 \tabularnewline
26 &  16 &  13.66 &  2.336 \tabularnewline
27 &  16 &  13.75 &  2.249 \tabularnewline
28 &  13 &  13.66 & -0.6642 \tabularnewline
29 &  13 &  13.65 & -0.653 \tabularnewline
30 &  14 &  13.95 &  0.05214 \tabularnewline
31 &  13 &  13.66 & -0.6642 \tabularnewline
32 &  14 &  13.61 &  0.3917 \tabularnewline
33 &  12 &  13.78 & -1.781 \tabularnewline
34 &  17 &  13.74 &  3.262 \tabularnewline
35 &  14 &  13.71 &  0.2924 \tabularnewline
36 &  15 &  13.77 &  1.23 \tabularnewline
37 &  13 &  13.78 & -0.781 \tabularnewline
38 &  14 &  13.88 &  0.1197 \tabularnewline
39 &  19 &  13.65 &  5.347 \tabularnewline
40 &  14 &  13.7 &  0.3036 \tabularnewline
41 &  13 &  13.92 & -0.9179 \tabularnewline
42 &  12 &  13.78 & -1.779 \tabularnewline
43 &  14 &  13.58 &  0.4239 \tabularnewline
44 &  15 &  13.71 &  1.292 \tabularnewline
45 &  12 &  13.74 & -1.74 \tabularnewline
46 &  14 &  13.74 &  0.2624 \tabularnewline
47 &  11 &  13.72 & -2.719 \tabularnewline
48 &  12 &  13.7 & -1.696 \tabularnewline
49 &  10 &  13.74 & -3.738 \tabularnewline
50 &  14 &  13.71 &  0.2937 \tabularnewline
51 &  14 &  13.74 &  0.2624 \tabularnewline
52 &  15 &  13.65 &  1.351 \tabularnewline
53 &  15 &  13.88 &  1.121 \tabularnewline
54 &  13 &  13.56 & -0.5649 \tabularnewline
55 &  15 &  13.88 &  1.12 \tabularnewline
56 &  16 &  13.56 &  2.435 \tabularnewline
57 &  12 &  13.61 & -1.608 \tabularnewline
58 &  17 &  13.74 &  3.262 \tabularnewline
59 &  15 &  13.92 &  1.078 \tabularnewline
60 &  12 &  13.5 & -1.495 \tabularnewline
61 &  16 &  13.61 &  2.392 \tabularnewline
62 &  15 &  13.79 &  1.208 \tabularnewline
63 &  15 &  13.65 &  1.347 \tabularnewline
64 &  12 &  13.82 & -1.822 \tabularnewline
65 &  13 &  13.65 & -0.6494 \tabularnewline
66 &  10 &  13.87 & -3.869 \tabularnewline
67 &  14 &  13.92 &  0.07849 \tabularnewline
68 &  11 &  13.7 & -2.696 \tabularnewline
69 &  12 &  13.52 & -1.521 \tabularnewline
70 &  14 &  13.92 &  0.07849 \tabularnewline
71 &  12 &  13.68 & -1.675 \tabularnewline
72 &  14 &  13.7 &  0.3036 \tabularnewline
73 &  12 &  13.94 & -1.935 \tabularnewline
74 &  13 &  13.79 & -0.7922 \tabularnewline
75 &  13 &  13.88 & -0.8803 \tabularnewline
76 &  14 &  13.7 &  0.3036 \tabularnewline
77 &  12 &  13.37 & -1.366 \tabularnewline
78 &  15 &  13.83 &  1.174 \tabularnewline
79 &  13 &  13.71 & -0.7076 \tabularnewline
80 &  13 &  13.65 & -0.653 \tabularnewline
81 &  11 &  13.97 & -2.967 \tabularnewline
82 &  12 &  13.78 & -1.781 \tabularnewline
83 &  16 &  13.78 &  2.219 \tabularnewline
84 &  11 &  13.65 & -2.653 \tabularnewline
85 &  13 &  13.78 & -0.781 \tabularnewline
86 &  12 &  13.7 & -1.696 \tabularnewline
87 &  17 &  13.71 &  3.292 \tabularnewline
88 &  14 &  13.87 &  0.1309 \tabularnewline
89 &  15 &  13.78 &  1.219 \tabularnewline
90 &  8 &  13.65 & -5.653 \tabularnewline
91 &  13 &  13.78 & -0.7832 \tabularnewline
92 &  13 &  13.66 & -0.6607 \tabularnewline
93 &  15 &  13.87 &  1.131 \tabularnewline
94 &  14 &  13.7 &  0.3036 \tabularnewline
95 &  13 &  13.65 & -0.653 \tabularnewline
96 &  12 &  13.73 & -1.726 \tabularnewline
97 &  19 &  13.78 &  5.219 \tabularnewline
98 &  15 &  13.74 &  1.262 \tabularnewline
99 &  14 &  13.74 &  0.2602 \tabularnewline
100 &  14 &  13.71 &  0.2924 \tabularnewline
101 &  15 &  13.76 &  1.24 \tabularnewline
102 &  13 &  13.59 & -0.5948 \tabularnewline
103 &  15 &  13.69 &  1.307 \tabularnewline
104 &  14 &  13.73 &  0.2736 \tabularnewline
105 &  11 &  13.79 & -2.792 \tabularnewline
106 &  17 &  13.71 &  3.292 \tabularnewline
107 &  13 &  13.88 & -0.8803 \tabularnewline
108 &  9 &  13.73 & -4.726 \tabularnewline
109 &  12 &  13.65 & -1.653 \tabularnewline
110 &  13 &  13.92 & -0.9238 \tabularnewline
111 &  17 &  13.79 &  3.208 \tabularnewline
112 &  14 &  13.75 &  0.2512 \tabularnewline
113 &  13 &  13.71 & -0.7076 \tabularnewline
114 &  16 &  13.65 &  2.347 \tabularnewline
115 &  14 &  13.72 &  0.2811 \tabularnewline
116 &  14 &  13.72 &  0.2811 \tabularnewline
117 &  14 &  13.56 &  0.4351 \tabularnewline
118 &  10 &  13.88 & -3.88 \tabularnewline
119 &  12 &  13.59 & -1.595 \tabularnewline
120 &  13 &  13.75 & -0.751 \tabularnewline
121 &  14 &  13.87 &  0.1309 \tabularnewline
122 &  18 &  13.56 &  4.435 \tabularnewline
123 &  14 &  13.65 &  0.347 \tabularnewline
124 &  14 &  13.78 &  0.219 \tabularnewline
125 &  13 &  13.74 & -0.7376 \tabularnewline
126 &  13 &  13.78 & -0.781 \tabularnewline
127 &  16 &  13.68 &  2.317 \tabularnewline
128 &  13 &  13.78 & -0.781 \tabularnewline
129 &  14 &  13.87 &  0.1309 \tabularnewline
130 &  8 &  13.65 & -5.653 \tabularnewline
131 &  13 &  13.7 & -0.6964 \tabularnewline
132 &  13 &  13.82 & -0.8244 \tabularnewline
133 &  16 &  13.61 &  2.392 \tabularnewline
134 &  14 &  13.97 &  0.03285 \tabularnewline
135 &  13 &  13.88 & -0.8803 \tabularnewline
136 &  14 &  13.87 &  0.1309 \tabularnewline
137 &  12 &  13.65 & -1.653 \tabularnewline
138 &  16 &  14.04 &  1.958 \tabularnewline
139 &  18 &  13.87 &  4.131 \tabularnewline
140 &  16 &  13.78 &  2.219 \tabularnewline
141 &  15 &  13.92 &  1.076 \tabularnewline
142 &  18 &  13.87 &  4.134 \tabularnewline
143 &  15 &  13.59 &  1.405 \tabularnewline
144 &  14 &  13.52 &  0.4785 \tabularnewline
145 &  14 &  13.56 &  0.4351 \tabularnewline
146 &  15 &  13.39 &  1.61 \tabularnewline
147 &  9 &  13.69 & -4.693 \tabularnewline
148 &  17 &  13.7 &  3.304 \tabularnewline
149 &  11 &  13.71 & -2.708 \tabularnewline
150 &  15 &  13.97 &  1.033 \tabularnewline
151 &  15 &  13.7 &  1.304 \tabularnewline
152 &  13 &  13.87 & -0.8691 \tabularnewline
153 &  15 &  13.96 &  1.044 \tabularnewline
154 &  15 &  13.74 &  1.262 \tabularnewline
155 &  14 &  13.77 &  0.2302 \tabularnewline
156 &  13 &  13.48 & -0.4843 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299006&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C] 15[/C][C] 13.61[/C][C] 1.394[/C][/ROW]
[ROW][C]2[/C][C] 13[/C][C] 13.7[/C][C]-0.6964[/C][/ROW]
[ROW][C]3[/C][C] 14[/C][C] 13.88[/C][C] 0.1197[/C][/ROW]
[ROW][C]4[/C][C] 13[/C][C] 13.88[/C][C]-0.8803[/C][/ROW]
[ROW][C]5[/C][C] 12[/C][C] 13.75[/C][C]-1.749[/C][/ROW]
[ROW][C]6[/C][C] 17[/C][C] 13.65[/C][C] 3.347[/C][/ROW]
[ROW][C]7[/C][C] 12[/C][C] 13.94[/C][C]-1.935[/C][/ROW]
[ROW][C]8[/C][C] 13[/C][C] 13.7[/C][C]-0.6964[/C][/ROW]
[ROW][C]9[/C][C] 13[/C][C] 13.84[/C][C]-0.8378[/C][/ROW]
[ROW][C]10[/C][C] 16[/C][C] 13.94[/C][C] 2.065[/C][/ROW]
[ROW][C]11[/C][C] 12[/C][C] 13.7[/C][C]-1.696[/C][/ROW]
[ROW][C]12[/C][C] 13[/C][C] 13.65[/C][C]-0.653[/C][/ROW]
[ROW][C]13[/C][C] 16[/C][C] 13.71[/C][C] 2.292[/C][/ROW]
[ROW][C]14[/C][C] 15[/C][C] 13.75[/C][C] 1.251[/C][/ROW]
[ROW][C]15[/C][C] 12[/C][C] 13.64[/C][C]-1.638[/C][/ROW]
[ROW][C]16[/C][C] 15[/C][C] 13.89[/C][C] 1.108[/C][/ROW]
[ROW][C]17[/C][C] 12[/C][C] 14.02[/C][C]-2.021[/C][/ROW]
[ROW][C]18[/C][C] 15[/C][C] 13.74[/C][C] 1.262[/C][/ROW]
[ROW][C]19[/C][C] 11[/C][C] 13.4[/C][C]-2.4[/C][/ROW]
[ROW][C]20[/C][C] 13[/C][C] 13.66[/C][C]-0.6642[/C][/ROW]
[ROW][C]21[/C][C] 13[/C][C] 13.66[/C][C]-0.6642[/C][/ROW]
[ROW][C]22[/C][C] 14[/C][C] 13.79[/C][C] 0.2056[/C][/ROW]
[ROW][C]23[/C][C] 14[/C][C] 13.78[/C][C] 0.219[/C][/ROW]
[ROW][C]24[/C][C] 14[/C][C] 13.55[/C][C] 0.4463[/C][/ROW]
[ROW][C]25[/C][C] 15[/C][C] 13.56[/C][C] 1.435[/C][/ROW]
[ROW][C]26[/C][C] 16[/C][C] 13.66[/C][C] 2.336[/C][/ROW]
[ROW][C]27[/C][C] 16[/C][C] 13.75[/C][C] 2.249[/C][/ROW]
[ROW][C]28[/C][C] 13[/C][C] 13.66[/C][C]-0.6642[/C][/ROW]
[ROW][C]29[/C][C] 13[/C][C] 13.65[/C][C]-0.653[/C][/ROW]
[ROW][C]30[/C][C] 14[/C][C] 13.95[/C][C] 0.05214[/C][/ROW]
[ROW][C]31[/C][C] 13[/C][C] 13.66[/C][C]-0.6642[/C][/ROW]
[ROW][C]32[/C][C] 14[/C][C] 13.61[/C][C] 0.3917[/C][/ROW]
[ROW][C]33[/C][C] 12[/C][C] 13.78[/C][C]-1.781[/C][/ROW]
[ROW][C]34[/C][C] 17[/C][C] 13.74[/C][C] 3.262[/C][/ROW]
[ROW][C]35[/C][C] 14[/C][C] 13.71[/C][C] 0.2924[/C][/ROW]
[ROW][C]36[/C][C] 15[/C][C] 13.77[/C][C] 1.23[/C][/ROW]
[ROW][C]37[/C][C] 13[/C][C] 13.78[/C][C]-0.781[/C][/ROW]
[ROW][C]38[/C][C] 14[/C][C] 13.88[/C][C] 0.1197[/C][/ROW]
[ROW][C]39[/C][C] 19[/C][C] 13.65[/C][C] 5.347[/C][/ROW]
[ROW][C]40[/C][C] 14[/C][C] 13.7[/C][C] 0.3036[/C][/ROW]
[ROW][C]41[/C][C] 13[/C][C] 13.92[/C][C]-0.9179[/C][/ROW]
[ROW][C]42[/C][C] 12[/C][C] 13.78[/C][C]-1.779[/C][/ROW]
[ROW][C]43[/C][C] 14[/C][C] 13.58[/C][C] 0.4239[/C][/ROW]
[ROW][C]44[/C][C] 15[/C][C] 13.71[/C][C] 1.292[/C][/ROW]
[ROW][C]45[/C][C] 12[/C][C] 13.74[/C][C]-1.74[/C][/ROW]
[ROW][C]46[/C][C] 14[/C][C] 13.74[/C][C] 0.2624[/C][/ROW]
[ROW][C]47[/C][C] 11[/C][C] 13.72[/C][C]-2.719[/C][/ROW]
[ROW][C]48[/C][C] 12[/C][C] 13.7[/C][C]-1.696[/C][/ROW]
[ROW][C]49[/C][C] 10[/C][C] 13.74[/C][C]-3.738[/C][/ROW]
[ROW][C]50[/C][C] 14[/C][C] 13.71[/C][C] 0.2937[/C][/ROW]
[ROW][C]51[/C][C] 14[/C][C] 13.74[/C][C] 0.2624[/C][/ROW]
[ROW][C]52[/C][C] 15[/C][C] 13.65[/C][C] 1.351[/C][/ROW]
[ROW][C]53[/C][C] 15[/C][C] 13.88[/C][C] 1.121[/C][/ROW]
[ROW][C]54[/C][C] 13[/C][C] 13.56[/C][C]-0.5649[/C][/ROW]
[ROW][C]55[/C][C] 15[/C][C] 13.88[/C][C] 1.12[/C][/ROW]
[ROW][C]56[/C][C] 16[/C][C] 13.56[/C][C] 2.435[/C][/ROW]
[ROW][C]57[/C][C] 12[/C][C] 13.61[/C][C]-1.608[/C][/ROW]
[ROW][C]58[/C][C] 17[/C][C] 13.74[/C][C] 3.262[/C][/ROW]
[ROW][C]59[/C][C] 15[/C][C] 13.92[/C][C] 1.078[/C][/ROW]
[ROW][C]60[/C][C] 12[/C][C] 13.5[/C][C]-1.495[/C][/ROW]
[ROW][C]61[/C][C] 16[/C][C] 13.61[/C][C] 2.392[/C][/ROW]
[ROW][C]62[/C][C] 15[/C][C] 13.79[/C][C] 1.208[/C][/ROW]
[ROW][C]63[/C][C] 15[/C][C] 13.65[/C][C] 1.347[/C][/ROW]
[ROW][C]64[/C][C] 12[/C][C] 13.82[/C][C]-1.822[/C][/ROW]
[ROW][C]65[/C][C] 13[/C][C] 13.65[/C][C]-0.6494[/C][/ROW]
[ROW][C]66[/C][C] 10[/C][C] 13.87[/C][C]-3.869[/C][/ROW]
[ROW][C]67[/C][C] 14[/C][C] 13.92[/C][C] 0.07849[/C][/ROW]
[ROW][C]68[/C][C] 11[/C][C] 13.7[/C][C]-2.696[/C][/ROW]
[ROW][C]69[/C][C] 12[/C][C] 13.52[/C][C]-1.521[/C][/ROW]
[ROW][C]70[/C][C] 14[/C][C] 13.92[/C][C] 0.07849[/C][/ROW]
[ROW][C]71[/C][C] 12[/C][C] 13.68[/C][C]-1.675[/C][/ROW]
[ROW][C]72[/C][C] 14[/C][C] 13.7[/C][C] 0.3036[/C][/ROW]
[ROW][C]73[/C][C] 12[/C][C] 13.94[/C][C]-1.935[/C][/ROW]
[ROW][C]74[/C][C] 13[/C][C] 13.79[/C][C]-0.7922[/C][/ROW]
[ROW][C]75[/C][C] 13[/C][C] 13.88[/C][C]-0.8803[/C][/ROW]
[ROW][C]76[/C][C] 14[/C][C] 13.7[/C][C] 0.3036[/C][/ROW]
[ROW][C]77[/C][C] 12[/C][C] 13.37[/C][C]-1.366[/C][/ROW]
[ROW][C]78[/C][C] 15[/C][C] 13.83[/C][C] 1.174[/C][/ROW]
[ROW][C]79[/C][C] 13[/C][C] 13.71[/C][C]-0.7076[/C][/ROW]
[ROW][C]80[/C][C] 13[/C][C] 13.65[/C][C]-0.653[/C][/ROW]
[ROW][C]81[/C][C] 11[/C][C] 13.97[/C][C]-2.967[/C][/ROW]
[ROW][C]82[/C][C] 12[/C][C] 13.78[/C][C]-1.781[/C][/ROW]
[ROW][C]83[/C][C] 16[/C][C] 13.78[/C][C] 2.219[/C][/ROW]
[ROW][C]84[/C][C] 11[/C][C] 13.65[/C][C]-2.653[/C][/ROW]
[ROW][C]85[/C][C] 13[/C][C] 13.78[/C][C]-0.781[/C][/ROW]
[ROW][C]86[/C][C] 12[/C][C] 13.7[/C][C]-1.696[/C][/ROW]
[ROW][C]87[/C][C] 17[/C][C] 13.71[/C][C] 3.292[/C][/ROW]
[ROW][C]88[/C][C] 14[/C][C] 13.87[/C][C] 0.1309[/C][/ROW]
[ROW][C]89[/C][C] 15[/C][C] 13.78[/C][C] 1.219[/C][/ROW]
[ROW][C]90[/C][C] 8[/C][C] 13.65[/C][C]-5.653[/C][/ROW]
[ROW][C]91[/C][C] 13[/C][C] 13.78[/C][C]-0.7832[/C][/ROW]
[ROW][C]92[/C][C] 13[/C][C] 13.66[/C][C]-0.6607[/C][/ROW]
[ROW][C]93[/C][C] 15[/C][C] 13.87[/C][C] 1.131[/C][/ROW]
[ROW][C]94[/C][C] 14[/C][C] 13.7[/C][C] 0.3036[/C][/ROW]
[ROW][C]95[/C][C] 13[/C][C] 13.65[/C][C]-0.653[/C][/ROW]
[ROW][C]96[/C][C] 12[/C][C] 13.73[/C][C]-1.726[/C][/ROW]
[ROW][C]97[/C][C] 19[/C][C] 13.78[/C][C] 5.219[/C][/ROW]
[ROW][C]98[/C][C] 15[/C][C] 13.74[/C][C] 1.262[/C][/ROW]
[ROW][C]99[/C][C] 14[/C][C] 13.74[/C][C] 0.2602[/C][/ROW]
[ROW][C]100[/C][C] 14[/C][C] 13.71[/C][C] 0.2924[/C][/ROW]
[ROW][C]101[/C][C] 15[/C][C] 13.76[/C][C] 1.24[/C][/ROW]
[ROW][C]102[/C][C] 13[/C][C] 13.59[/C][C]-0.5948[/C][/ROW]
[ROW][C]103[/C][C] 15[/C][C] 13.69[/C][C] 1.307[/C][/ROW]
[ROW][C]104[/C][C] 14[/C][C] 13.73[/C][C] 0.2736[/C][/ROW]
[ROW][C]105[/C][C] 11[/C][C] 13.79[/C][C]-2.792[/C][/ROW]
[ROW][C]106[/C][C] 17[/C][C] 13.71[/C][C] 3.292[/C][/ROW]
[ROW][C]107[/C][C] 13[/C][C] 13.88[/C][C]-0.8803[/C][/ROW]
[ROW][C]108[/C][C] 9[/C][C] 13.73[/C][C]-4.726[/C][/ROW]
[ROW][C]109[/C][C] 12[/C][C] 13.65[/C][C]-1.653[/C][/ROW]
[ROW][C]110[/C][C] 13[/C][C] 13.92[/C][C]-0.9238[/C][/ROW]
[ROW][C]111[/C][C] 17[/C][C] 13.79[/C][C] 3.208[/C][/ROW]
[ROW][C]112[/C][C] 14[/C][C] 13.75[/C][C] 0.2512[/C][/ROW]
[ROW][C]113[/C][C] 13[/C][C] 13.71[/C][C]-0.7076[/C][/ROW]
[ROW][C]114[/C][C] 16[/C][C] 13.65[/C][C] 2.347[/C][/ROW]
[ROW][C]115[/C][C] 14[/C][C] 13.72[/C][C] 0.2811[/C][/ROW]
[ROW][C]116[/C][C] 14[/C][C] 13.72[/C][C] 0.2811[/C][/ROW]
[ROW][C]117[/C][C] 14[/C][C] 13.56[/C][C] 0.4351[/C][/ROW]
[ROW][C]118[/C][C] 10[/C][C] 13.88[/C][C]-3.88[/C][/ROW]
[ROW][C]119[/C][C] 12[/C][C] 13.59[/C][C]-1.595[/C][/ROW]
[ROW][C]120[/C][C] 13[/C][C] 13.75[/C][C]-0.751[/C][/ROW]
[ROW][C]121[/C][C] 14[/C][C] 13.87[/C][C] 0.1309[/C][/ROW]
[ROW][C]122[/C][C] 18[/C][C] 13.56[/C][C] 4.435[/C][/ROW]
[ROW][C]123[/C][C] 14[/C][C] 13.65[/C][C] 0.347[/C][/ROW]
[ROW][C]124[/C][C] 14[/C][C] 13.78[/C][C] 0.219[/C][/ROW]
[ROW][C]125[/C][C] 13[/C][C] 13.74[/C][C]-0.7376[/C][/ROW]
[ROW][C]126[/C][C] 13[/C][C] 13.78[/C][C]-0.781[/C][/ROW]
[ROW][C]127[/C][C] 16[/C][C] 13.68[/C][C] 2.317[/C][/ROW]
[ROW][C]128[/C][C] 13[/C][C] 13.78[/C][C]-0.781[/C][/ROW]
[ROW][C]129[/C][C] 14[/C][C] 13.87[/C][C] 0.1309[/C][/ROW]
[ROW][C]130[/C][C] 8[/C][C] 13.65[/C][C]-5.653[/C][/ROW]
[ROW][C]131[/C][C] 13[/C][C] 13.7[/C][C]-0.6964[/C][/ROW]
[ROW][C]132[/C][C] 13[/C][C] 13.82[/C][C]-0.8244[/C][/ROW]
[ROW][C]133[/C][C] 16[/C][C] 13.61[/C][C] 2.392[/C][/ROW]
[ROW][C]134[/C][C] 14[/C][C] 13.97[/C][C] 0.03285[/C][/ROW]
[ROW][C]135[/C][C] 13[/C][C] 13.88[/C][C]-0.8803[/C][/ROW]
[ROW][C]136[/C][C] 14[/C][C] 13.87[/C][C] 0.1309[/C][/ROW]
[ROW][C]137[/C][C] 12[/C][C] 13.65[/C][C]-1.653[/C][/ROW]
[ROW][C]138[/C][C] 16[/C][C] 14.04[/C][C] 1.958[/C][/ROW]
[ROW][C]139[/C][C] 18[/C][C] 13.87[/C][C] 4.131[/C][/ROW]
[ROW][C]140[/C][C] 16[/C][C] 13.78[/C][C] 2.219[/C][/ROW]
[ROW][C]141[/C][C] 15[/C][C] 13.92[/C][C] 1.076[/C][/ROW]
[ROW][C]142[/C][C] 18[/C][C] 13.87[/C][C] 4.134[/C][/ROW]
[ROW][C]143[/C][C] 15[/C][C] 13.59[/C][C] 1.405[/C][/ROW]
[ROW][C]144[/C][C] 14[/C][C] 13.52[/C][C] 0.4785[/C][/ROW]
[ROW][C]145[/C][C] 14[/C][C] 13.56[/C][C] 0.4351[/C][/ROW]
[ROW][C]146[/C][C] 15[/C][C] 13.39[/C][C] 1.61[/C][/ROW]
[ROW][C]147[/C][C] 9[/C][C] 13.69[/C][C]-4.693[/C][/ROW]
[ROW][C]148[/C][C] 17[/C][C] 13.7[/C][C] 3.304[/C][/ROW]
[ROW][C]149[/C][C] 11[/C][C] 13.71[/C][C]-2.708[/C][/ROW]
[ROW][C]150[/C][C] 15[/C][C] 13.97[/C][C] 1.033[/C][/ROW]
[ROW][C]151[/C][C] 15[/C][C] 13.7[/C][C] 1.304[/C][/ROW]
[ROW][C]152[/C][C] 13[/C][C] 13.87[/C][C]-0.8691[/C][/ROW]
[ROW][C]153[/C][C] 15[/C][C] 13.96[/C][C] 1.044[/C][/ROW]
[ROW][C]154[/C][C] 15[/C][C] 13.74[/C][C] 1.262[/C][/ROW]
[ROW][C]155[/C][C] 14[/C][C] 13.77[/C][C] 0.2302[/C][/ROW]
[ROW][C]156[/C][C] 13[/C][C] 13.48[/C][C]-0.4843[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299006&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299006&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 15 13.61 1.394
2 13 13.7-0.6964
3 14 13.88 0.1197
4 13 13.88-0.8803
5 12 13.75-1.749
6 17 13.65 3.347
7 12 13.94-1.935
8 13 13.7-0.6964
9 13 13.84-0.8378
10 16 13.94 2.065
11 12 13.7-1.696
12 13 13.65-0.653
13 16 13.71 2.292
14 15 13.75 1.251
15 12 13.64-1.638
16 15 13.89 1.108
17 12 14.02-2.021
18 15 13.74 1.262
19 11 13.4-2.4
20 13 13.66-0.6642
21 13 13.66-0.6642
22 14 13.79 0.2056
23 14 13.78 0.219
24 14 13.55 0.4463
25 15 13.56 1.435
26 16 13.66 2.336
27 16 13.75 2.249
28 13 13.66-0.6642
29 13 13.65-0.653
30 14 13.95 0.05214
31 13 13.66-0.6642
32 14 13.61 0.3917
33 12 13.78-1.781
34 17 13.74 3.262
35 14 13.71 0.2924
36 15 13.77 1.23
37 13 13.78-0.781
38 14 13.88 0.1197
39 19 13.65 5.347
40 14 13.7 0.3036
41 13 13.92-0.9179
42 12 13.78-1.779
43 14 13.58 0.4239
44 15 13.71 1.292
45 12 13.74-1.74
46 14 13.74 0.2624
47 11 13.72-2.719
48 12 13.7-1.696
49 10 13.74-3.738
50 14 13.71 0.2937
51 14 13.74 0.2624
52 15 13.65 1.351
53 15 13.88 1.121
54 13 13.56-0.5649
55 15 13.88 1.12
56 16 13.56 2.435
57 12 13.61-1.608
58 17 13.74 3.262
59 15 13.92 1.078
60 12 13.5-1.495
61 16 13.61 2.392
62 15 13.79 1.208
63 15 13.65 1.347
64 12 13.82-1.822
65 13 13.65-0.6494
66 10 13.87-3.869
67 14 13.92 0.07849
68 11 13.7-2.696
69 12 13.52-1.521
70 14 13.92 0.07849
71 12 13.68-1.675
72 14 13.7 0.3036
73 12 13.94-1.935
74 13 13.79-0.7922
75 13 13.88-0.8803
76 14 13.7 0.3036
77 12 13.37-1.366
78 15 13.83 1.174
79 13 13.71-0.7076
80 13 13.65-0.653
81 11 13.97-2.967
82 12 13.78-1.781
83 16 13.78 2.219
84 11 13.65-2.653
85 13 13.78-0.781
86 12 13.7-1.696
87 17 13.71 3.292
88 14 13.87 0.1309
89 15 13.78 1.219
90 8 13.65-5.653
91 13 13.78-0.7832
92 13 13.66-0.6607
93 15 13.87 1.131
94 14 13.7 0.3036
95 13 13.65-0.653
96 12 13.73-1.726
97 19 13.78 5.219
98 15 13.74 1.262
99 14 13.74 0.2602
100 14 13.71 0.2924
101 15 13.76 1.24
102 13 13.59-0.5948
103 15 13.69 1.307
104 14 13.73 0.2736
105 11 13.79-2.792
106 17 13.71 3.292
107 13 13.88-0.8803
108 9 13.73-4.726
109 12 13.65-1.653
110 13 13.92-0.9238
111 17 13.79 3.208
112 14 13.75 0.2512
113 13 13.71-0.7076
114 16 13.65 2.347
115 14 13.72 0.2811
116 14 13.72 0.2811
117 14 13.56 0.4351
118 10 13.88-3.88
119 12 13.59-1.595
120 13 13.75-0.751
121 14 13.87 0.1309
122 18 13.56 4.435
123 14 13.65 0.347
124 14 13.78 0.219
125 13 13.74-0.7376
126 13 13.78-0.781
127 16 13.68 2.317
128 13 13.78-0.781
129 14 13.87 0.1309
130 8 13.65-5.653
131 13 13.7-0.6964
132 13 13.82-0.8244
133 16 13.61 2.392
134 14 13.97 0.03285
135 13 13.88-0.8803
136 14 13.87 0.1309
137 12 13.65-1.653
138 16 14.04 1.958
139 18 13.87 4.131
140 16 13.78 2.219
141 15 13.92 1.076
142 18 13.87 4.134
143 15 13.59 1.405
144 14 13.52 0.4785
145 14 13.56 0.4351
146 15 13.39 1.61
147 9 13.69-4.693
148 17 13.7 3.304
149 11 13.71-2.708
150 15 13.97 1.033
151 15 13.7 1.304
152 13 13.87-0.8691
153 15 13.96 1.044
154 15 13.74 1.262
155 14 13.77 0.2302
156 13 13.48-0.4843







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
8 0.3862 0.7725 0.6138
9 0.456 0.9121 0.544
10 0.6376 0.7248 0.3624
11 0.6163 0.7674 0.3837
12 0.5461 0.9079 0.4539
13 0.4698 0.9396 0.5302
14 0.3774 0.7547 0.6226
15 0.2944 0.5888 0.7056
16 0.2183 0.4366 0.7817
17 0.1771 0.3541 0.8229
18 0.2032 0.4065 0.7968
19 0.351 0.7021 0.649
20 0.3169 0.6337 0.6831
21 0.2698 0.5397 0.7302
22 0.2163 0.4326 0.7837
23 0.1696 0.3392 0.8304
24 0.1281 0.2563 0.8719
25 0.1137 0.2275 0.8863
26 0.1153 0.2306 0.8847
27 0.1281 0.2562 0.8719
28 0.1106 0.2213 0.8894
29 0.09324 0.1865 0.9068
30 0.07876 0.1575 0.9212
31 0.06159 0.1232 0.9384
32 0.04491 0.08982 0.9551
33 0.04372 0.08743 0.9563
34 0.08268 0.1654 0.9173
35 0.06181 0.1236 0.9382
36 0.04938 0.09875 0.9506
37 0.03862 0.07724 0.9614
38 0.02764 0.05528 0.9724
39 0.1426 0.2852 0.8574
40 0.1138 0.2276 0.8862
41 0.09174 0.1835 0.9083
42 0.09275 0.1855 0.9073
43 0.07265 0.1453 0.9273
44 0.06123 0.1225 0.9388
45 0.06292 0.1258 0.9371
46 0.0478 0.0956 0.9522
47 0.06254 0.1251 0.9375
48 0.06552 0.131 0.9345
49 0.1385 0.2771 0.8615
50 0.1176 0.2351 0.8824
51 0.09409 0.1882 0.9059
52 0.08555 0.1711 0.9145
53 0.07819 0.1564 0.9218
54 0.06323 0.1265 0.9368
55 0.05319 0.1064 0.9468
56 0.06018 0.1204 0.9398
57 0.05696 0.1139 0.943
58 0.08548 0.171 0.9145
59 0.07263 0.1453 0.9274
60 0.06763 0.1353 0.9324
61 0.07657 0.1532 0.9234
62 0.06676 0.1335 0.9332
63 0.05743 0.1149 0.9426
64 0.05671 0.1134 0.9433
65 0.04559 0.09118 0.9544
66 0.09836 0.1967 0.9016
67 0.07957 0.1591 0.9204
68 0.09879 0.1976 0.9012
69 0.09373 0.1875 0.9063
70 0.07567 0.1513 0.9243
71 0.07318 0.1464 0.9268
72 0.05858 0.1172 0.9414
73 0.05864 0.1173 0.9414
74 0.04844 0.09688 0.9516
75 0.03998 0.07996 0.96
76 0.03121 0.06241 0.9688
77 0.02684 0.05367 0.9732
78 0.02233 0.04466 0.9777
79 0.01741 0.03482 0.9826
80 0.01352 0.02703 0.9865
81 0.0196 0.03921 0.9804
82 0.01888 0.03777 0.9811
83 0.02073 0.04147 0.9793
84 0.026 0.05199 0.974
85 0.02077 0.04153 0.9792
86 0.01891 0.03783 0.9811
87 0.03132 0.06265 0.9687
88 0.02395 0.0479 0.976
89 0.02016 0.04033 0.9798
90 0.108 0.2161 0.892
91 0.09076 0.1815 0.9092
92 0.07717 0.1543 0.9228
93 0.06679 0.1336 0.9332
94 0.05311 0.1062 0.9469
95 0.04226 0.08452 0.9577
96 0.03933 0.07866 0.9607
97 0.1371 0.2743 0.8629
98 0.1208 0.2416 0.8792
99 0.09852 0.197 0.9015
100 0.07934 0.1587 0.9207
101 0.0673 0.1346 0.9327
102 0.05437 0.1087 0.9456
103 0.04581 0.09162 0.9542
104 0.03533 0.07067 0.9647
105 0.04777 0.09553 0.9522
106 0.07062 0.1412 0.9294
107 0.05843 0.1169 0.9416
108 0.1642 0.3284 0.8358
109 0.1532 0.3065 0.8468
110 0.1323 0.2646 0.8677
111 0.1701 0.3402 0.8299
112 0.1393 0.2786 0.8607
113 0.115 0.2301 0.885
114 0.1224 0.2447 0.8776
115 0.09926 0.1985 0.9007
116 0.08039 0.1608 0.9196
117 0.06309 0.1262 0.9369
118 0.1255 0.2511 0.8745
119 0.1276 0.2553 0.8724
120 0.1024 0.2048 0.8976
121 0.08063 0.1613 0.9194
122 0.2029 0.4058 0.7971
123 0.1668 0.3335 0.8332
124 0.1334 0.2668 0.8666
125 0.1148 0.2297 0.8852
126 0.0967 0.1934 0.9033
127 0.08877 0.1775 0.9112
128 0.07391 0.1478 0.9261
129 0.05555 0.1111 0.9445
130 0.301 0.602 0.699
131 0.2563 0.5126 0.7437
132 0.2199 0.4397 0.7801
133 0.2605 0.521 0.7395
134 0.2069 0.4137 0.7931
135 0.2059 0.4119 0.7941
136 0.1778 0.3556 0.8222
137 0.2058 0.4117 0.7942
138 0.218 0.436 0.782
139 0.2171 0.4341 0.7829
140 0.1919 0.3838 0.8081
141 0.1389 0.2777 0.8611
142 0.4045 0.8091 0.5955
143 0.3608 0.7217 0.6392
144 0.2702 0.5404 0.7298
145 0.1859 0.3717 0.8141
146 0.2974 0.5949 0.7026
147 0.2838 0.5676 0.7162
148 0.4354 0.8708 0.5646

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
8 &  0.3862 &  0.7725 &  0.6138 \tabularnewline
9 &  0.456 &  0.9121 &  0.544 \tabularnewline
10 &  0.6376 &  0.7248 &  0.3624 \tabularnewline
11 &  0.6163 &  0.7674 &  0.3837 \tabularnewline
12 &  0.5461 &  0.9079 &  0.4539 \tabularnewline
13 &  0.4698 &  0.9396 &  0.5302 \tabularnewline
14 &  0.3774 &  0.7547 &  0.6226 \tabularnewline
15 &  0.2944 &  0.5888 &  0.7056 \tabularnewline
16 &  0.2183 &  0.4366 &  0.7817 \tabularnewline
17 &  0.1771 &  0.3541 &  0.8229 \tabularnewline
18 &  0.2032 &  0.4065 &  0.7968 \tabularnewline
19 &  0.351 &  0.7021 &  0.649 \tabularnewline
20 &  0.3169 &  0.6337 &  0.6831 \tabularnewline
21 &  0.2698 &  0.5397 &  0.7302 \tabularnewline
22 &  0.2163 &  0.4326 &  0.7837 \tabularnewline
23 &  0.1696 &  0.3392 &  0.8304 \tabularnewline
24 &  0.1281 &  0.2563 &  0.8719 \tabularnewline
25 &  0.1137 &  0.2275 &  0.8863 \tabularnewline
26 &  0.1153 &  0.2306 &  0.8847 \tabularnewline
27 &  0.1281 &  0.2562 &  0.8719 \tabularnewline
28 &  0.1106 &  0.2213 &  0.8894 \tabularnewline
29 &  0.09324 &  0.1865 &  0.9068 \tabularnewline
30 &  0.07876 &  0.1575 &  0.9212 \tabularnewline
31 &  0.06159 &  0.1232 &  0.9384 \tabularnewline
32 &  0.04491 &  0.08982 &  0.9551 \tabularnewline
33 &  0.04372 &  0.08743 &  0.9563 \tabularnewline
34 &  0.08268 &  0.1654 &  0.9173 \tabularnewline
35 &  0.06181 &  0.1236 &  0.9382 \tabularnewline
36 &  0.04938 &  0.09875 &  0.9506 \tabularnewline
37 &  0.03862 &  0.07724 &  0.9614 \tabularnewline
38 &  0.02764 &  0.05528 &  0.9724 \tabularnewline
39 &  0.1426 &  0.2852 &  0.8574 \tabularnewline
40 &  0.1138 &  0.2276 &  0.8862 \tabularnewline
41 &  0.09174 &  0.1835 &  0.9083 \tabularnewline
42 &  0.09275 &  0.1855 &  0.9073 \tabularnewline
43 &  0.07265 &  0.1453 &  0.9273 \tabularnewline
44 &  0.06123 &  0.1225 &  0.9388 \tabularnewline
45 &  0.06292 &  0.1258 &  0.9371 \tabularnewline
46 &  0.0478 &  0.0956 &  0.9522 \tabularnewline
47 &  0.06254 &  0.1251 &  0.9375 \tabularnewline
48 &  0.06552 &  0.131 &  0.9345 \tabularnewline
49 &  0.1385 &  0.2771 &  0.8615 \tabularnewline
50 &  0.1176 &  0.2351 &  0.8824 \tabularnewline
51 &  0.09409 &  0.1882 &  0.9059 \tabularnewline
52 &  0.08555 &  0.1711 &  0.9145 \tabularnewline
53 &  0.07819 &  0.1564 &  0.9218 \tabularnewline
54 &  0.06323 &  0.1265 &  0.9368 \tabularnewline
55 &  0.05319 &  0.1064 &  0.9468 \tabularnewline
56 &  0.06018 &  0.1204 &  0.9398 \tabularnewline
57 &  0.05696 &  0.1139 &  0.943 \tabularnewline
58 &  0.08548 &  0.171 &  0.9145 \tabularnewline
59 &  0.07263 &  0.1453 &  0.9274 \tabularnewline
60 &  0.06763 &  0.1353 &  0.9324 \tabularnewline
61 &  0.07657 &  0.1532 &  0.9234 \tabularnewline
62 &  0.06676 &  0.1335 &  0.9332 \tabularnewline
63 &  0.05743 &  0.1149 &  0.9426 \tabularnewline
64 &  0.05671 &  0.1134 &  0.9433 \tabularnewline
65 &  0.04559 &  0.09118 &  0.9544 \tabularnewline
66 &  0.09836 &  0.1967 &  0.9016 \tabularnewline
67 &  0.07957 &  0.1591 &  0.9204 \tabularnewline
68 &  0.09879 &  0.1976 &  0.9012 \tabularnewline
69 &  0.09373 &  0.1875 &  0.9063 \tabularnewline
70 &  0.07567 &  0.1513 &  0.9243 \tabularnewline
71 &  0.07318 &  0.1464 &  0.9268 \tabularnewline
72 &  0.05858 &  0.1172 &  0.9414 \tabularnewline
73 &  0.05864 &  0.1173 &  0.9414 \tabularnewline
74 &  0.04844 &  0.09688 &  0.9516 \tabularnewline
75 &  0.03998 &  0.07996 &  0.96 \tabularnewline
76 &  0.03121 &  0.06241 &  0.9688 \tabularnewline
77 &  0.02684 &  0.05367 &  0.9732 \tabularnewline
78 &  0.02233 &  0.04466 &  0.9777 \tabularnewline
79 &  0.01741 &  0.03482 &  0.9826 \tabularnewline
80 &  0.01352 &  0.02703 &  0.9865 \tabularnewline
81 &  0.0196 &  0.03921 &  0.9804 \tabularnewline
82 &  0.01888 &  0.03777 &  0.9811 \tabularnewline
83 &  0.02073 &  0.04147 &  0.9793 \tabularnewline
84 &  0.026 &  0.05199 &  0.974 \tabularnewline
85 &  0.02077 &  0.04153 &  0.9792 \tabularnewline
86 &  0.01891 &  0.03783 &  0.9811 \tabularnewline
87 &  0.03132 &  0.06265 &  0.9687 \tabularnewline
88 &  0.02395 &  0.0479 &  0.976 \tabularnewline
89 &  0.02016 &  0.04033 &  0.9798 \tabularnewline
90 &  0.108 &  0.2161 &  0.892 \tabularnewline
91 &  0.09076 &  0.1815 &  0.9092 \tabularnewline
92 &  0.07717 &  0.1543 &  0.9228 \tabularnewline
93 &  0.06679 &  0.1336 &  0.9332 \tabularnewline
94 &  0.05311 &  0.1062 &  0.9469 \tabularnewline
95 &  0.04226 &  0.08452 &  0.9577 \tabularnewline
96 &  0.03933 &  0.07866 &  0.9607 \tabularnewline
97 &  0.1371 &  0.2743 &  0.8629 \tabularnewline
98 &  0.1208 &  0.2416 &  0.8792 \tabularnewline
99 &  0.09852 &  0.197 &  0.9015 \tabularnewline
100 &  0.07934 &  0.1587 &  0.9207 \tabularnewline
101 &  0.0673 &  0.1346 &  0.9327 \tabularnewline
102 &  0.05437 &  0.1087 &  0.9456 \tabularnewline
103 &  0.04581 &  0.09162 &  0.9542 \tabularnewline
104 &  0.03533 &  0.07067 &  0.9647 \tabularnewline
105 &  0.04777 &  0.09553 &  0.9522 \tabularnewline
106 &  0.07062 &  0.1412 &  0.9294 \tabularnewline
107 &  0.05843 &  0.1169 &  0.9416 \tabularnewline
108 &  0.1642 &  0.3284 &  0.8358 \tabularnewline
109 &  0.1532 &  0.3065 &  0.8468 \tabularnewline
110 &  0.1323 &  0.2646 &  0.8677 \tabularnewline
111 &  0.1701 &  0.3402 &  0.8299 \tabularnewline
112 &  0.1393 &  0.2786 &  0.8607 \tabularnewline
113 &  0.115 &  0.2301 &  0.885 \tabularnewline
114 &  0.1224 &  0.2447 &  0.8776 \tabularnewline
115 &  0.09926 &  0.1985 &  0.9007 \tabularnewline
116 &  0.08039 &  0.1608 &  0.9196 \tabularnewline
117 &  0.06309 &  0.1262 &  0.9369 \tabularnewline
118 &  0.1255 &  0.2511 &  0.8745 \tabularnewline
119 &  0.1276 &  0.2553 &  0.8724 \tabularnewline
120 &  0.1024 &  0.2048 &  0.8976 \tabularnewline
121 &  0.08063 &  0.1613 &  0.9194 \tabularnewline
122 &  0.2029 &  0.4058 &  0.7971 \tabularnewline
123 &  0.1668 &  0.3335 &  0.8332 \tabularnewline
124 &  0.1334 &  0.2668 &  0.8666 \tabularnewline
125 &  0.1148 &  0.2297 &  0.8852 \tabularnewline
126 &  0.0967 &  0.1934 &  0.9033 \tabularnewline
127 &  0.08877 &  0.1775 &  0.9112 \tabularnewline
128 &  0.07391 &  0.1478 &  0.9261 \tabularnewline
129 &  0.05555 &  0.1111 &  0.9445 \tabularnewline
130 &  0.301 &  0.602 &  0.699 \tabularnewline
131 &  0.2563 &  0.5126 &  0.7437 \tabularnewline
132 &  0.2199 &  0.4397 &  0.7801 \tabularnewline
133 &  0.2605 &  0.521 &  0.7395 \tabularnewline
134 &  0.2069 &  0.4137 &  0.7931 \tabularnewline
135 &  0.2059 &  0.4119 &  0.7941 \tabularnewline
136 &  0.1778 &  0.3556 &  0.8222 \tabularnewline
137 &  0.2058 &  0.4117 &  0.7942 \tabularnewline
138 &  0.218 &  0.436 &  0.782 \tabularnewline
139 &  0.2171 &  0.4341 &  0.7829 \tabularnewline
140 &  0.1919 &  0.3838 &  0.8081 \tabularnewline
141 &  0.1389 &  0.2777 &  0.8611 \tabularnewline
142 &  0.4045 &  0.8091 &  0.5955 \tabularnewline
143 &  0.3608 &  0.7217 &  0.6392 \tabularnewline
144 &  0.2702 &  0.5404 &  0.7298 \tabularnewline
145 &  0.1859 &  0.3717 &  0.8141 \tabularnewline
146 &  0.2974 &  0.5949 &  0.7026 \tabularnewline
147 &  0.2838 &  0.5676 &  0.7162 \tabularnewline
148 &  0.4354 &  0.8708 &  0.5646 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299006&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]8[/C][C] 0.3862[/C][C] 0.7725[/C][C] 0.6138[/C][/ROW]
[ROW][C]9[/C][C] 0.456[/C][C] 0.9121[/C][C] 0.544[/C][/ROW]
[ROW][C]10[/C][C] 0.6376[/C][C] 0.7248[/C][C] 0.3624[/C][/ROW]
[ROW][C]11[/C][C] 0.6163[/C][C] 0.7674[/C][C] 0.3837[/C][/ROW]
[ROW][C]12[/C][C] 0.5461[/C][C] 0.9079[/C][C] 0.4539[/C][/ROW]
[ROW][C]13[/C][C] 0.4698[/C][C] 0.9396[/C][C] 0.5302[/C][/ROW]
[ROW][C]14[/C][C] 0.3774[/C][C] 0.7547[/C][C] 0.6226[/C][/ROW]
[ROW][C]15[/C][C] 0.2944[/C][C] 0.5888[/C][C] 0.7056[/C][/ROW]
[ROW][C]16[/C][C] 0.2183[/C][C] 0.4366[/C][C] 0.7817[/C][/ROW]
[ROW][C]17[/C][C] 0.1771[/C][C] 0.3541[/C][C] 0.8229[/C][/ROW]
[ROW][C]18[/C][C] 0.2032[/C][C] 0.4065[/C][C] 0.7968[/C][/ROW]
[ROW][C]19[/C][C] 0.351[/C][C] 0.7021[/C][C] 0.649[/C][/ROW]
[ROW][C]20[/C][C] 0.3169[/C][C] 0.6337[/C][C] 0.6831[/C][/ROW]
[ROW][C]21[/C][C] 0.2698[/C][C] 0.5397[/C][C] 0.7302[/C][/ROW]
[ROW][C]22[/C][C] 0.2163[/C][C] 0.4326[/C][C] 0.7837[/C][/ROW]
[ROW][C]23[/C][C] 0.1696[/C][C] 0.3392[/C][C] 0.8304[/C][/ROW]
[ROW][C]24[/C][C] 0.1281[/C][C] 0.2563[/C][C] 0.8719[/C][/ROW]
[ROW][C]25[/C][C] 0.1137[/C][C] 0.2275[/C][C] 0.8863[/C][/ROW]
[ROW][C]26[/C][C] 0.1153[/C][C] 0.2306[/C][C] 0.8847[/C][/ROW]
[ROW][C]27[/C][C] 0.1281[/C][C] 0.2562[/C][C] 0.8719[/C][/ROW]
[ROW][C]28[/C][C] 0.1106[/C][C] 0.2213[/C][C] 0.8894[/C][/ROW]
[ROW][C]29[/C][C] 0.09324[/C][C] 0.1865[/C][C] 0.9068[/C][/ROW]
[ROW][C]30[/C][C] 0.07876[/C][C] 0.1575[/C][C] 0.9212[/C][/ROW]
[ROW][C]31[/C][C] 0.06159[/C][C] 0.1232[/C][C] 0.9384[/C][/ROW]
[ROW][C]32[/C][C] 0.04491[/C][C] 0.08982[/C][C] 0.9551[/C][/ROW]
[ROW][C]33[/C][C] 0.04372[/C][C] 0.08743[/C][C] 0.9563[/C][/ROW]
[ROW][C]34[/C][C] 0.08268[/C][C] 0.1654[/C][C] 0.9173[/C][/ROW]
[ROW][C]35[/C][C] 0.06181[/C][C] 0.1236[/C][C] 0.9382[/C][/ROW]
[ROW][C]36[/C][C] 0.04938[/C][C] 0.09875[/C][C] 0.9506[/C][/ROW]
[ROW][C]37[/C][C] 0.03862[/C][C] 0.07724[/C][C] 0.9614[/C][/ROW]
[ROW][C]38[/C][C] 0.02764[/C][C] 0.05528[/C][C] 0.9724[/C][/ROW]
[ROW][C]39[/C][C] 0.1426[/C][C] 0.2852[/C][C] 0.8574[/C][/ROW]
[ROW][C]40[/C][C] 0.1138[/C][C] 0.2276[/C][C] 0.8862[/C][/ROW]
[ROW][C]41[/C][C] 0.09174[/C][C] 0.1835[/C][C] 0.9083[/C][/ROW]
[ROW][C]42[/C][C] 0.09275[/C][C] 0.1855[/C][C] 0.9073[/C][/ROW]
[ROW][C]43[/C][C] 0.07265[/C][C] 0.1453[/C][C] 0.9273[/C][/ROW]
[ROW][C]44[/C][C] 0.06123[/C][C] 0.1225[/C][C] 0.9388[/C][/ROW]
[ROW][C]45[/C][C] 0.06292[/C][C] 0.1258[/C][C] 0.9371[/C][/ROW]
[ROW][C]46[/C][C] 0.0478[/C][C] 0.0956[/C][C] 0.9522[/C][/ROW]
[ROW][C]47[/C][C] 0.06254[/C][C] 0.1251[/C][C] 0.9375[/C][/ROW]
[ROW][C]48[/C][C] 0.06552[/C][C] 0.131[/C][C] 0.9345[/C][/ROW]
[ROW][C]49[/C][C] 0.1385[/C][C] 0.2771[/C][C] 0.8615[/C][/ROW]
[ROW][C]50[/C][C] 0.1176[/C][C] 0.2351[/C][C] 0.8824[/C][/ROW]
[ROW][C]51[/C][C] 0.09409[/C][C] 0.1882[/C][C] 0.9059[/C][/ROW]
[ROW][C]52[/C][C] 0.08555[/C][C] 0.1711[/C][C] 0.9145[/C][/ROW]
[ROW][C]53[/C][C] 0.07819[/C][C] 0.1564[/C][C] 0.9218[/C][/ROW]
[ROW][C]54[/C][C] 0.06323[/C][C] 0.1265[/C][C] 0.9368[/C][/ROW]
[ROW][C]55[/C][C] 0.05319[/C][C] 0.1064[/C][C] 0.9468[/C][/ROW]
[ROW][C]56[/C][C] 0.06018[/C][C] 0.1204[/C][C] 0.9398[/C][/ROW]
[ROW][C]57[/C][C] 0.05696[/C][C] 0.1139[/C][C] 0.943[/C][/ROW]
[ROW][C]58[/C][C] 0.08548[/C][C] 0.171[/C][C] 0.9145[/C][/ROW]
[ROW][C]59[/C][C] 0.07263[/C][C] 0.1453[/C][C] 0.9274[/C][/ROW]
[ROW][C]60[/C][C] 0.06763[/C][C] 0.1353[/C][C] 0.9324[/C][/ROW]
[ROW][C]61[/C][C] 0.07657[/C][C] 0.1532[/C][C] 0.9234[/C][/ROW]
[ROW][C]62[/C][C] 0.06676[/C][C] 0.1335[/C][C] 0.9332[/C][/ROW]
[ROW][C]63[/C][C] 0.05743[/C][C] 0.1149[/C][C] 0.9426[/C][/ROW]
[ROW][C]64[/C][C] 0.05671[/C][C] 0.1134[/C][C] 0.9433[/C][/ROW]
[ROW][C]65[/C][C] 0.04559[/C][C] 0.09118[/C][C] 0.9544[/C][/ROW]
[ROW][C]66[/C][C] 0.09836[/C][C] 0.1967[/C][C] 0.9016[/C][/ROW]
[ROW][C]67[/C][C] 0.07957[/C][C] 0.1591[/C][C] 0.9204[/C][/ROW]
[ROW][C]68[/C][C] 0.09879[/C][C] 0.1976[/C][C] 0.9012[/C][/ROW]
[ROW][C]69[/C][C] 0.09373[/C][C] 0.1875[/C][C] 0.9063[/C][/ROW]
[ROW][C]70[/C][C] 0.07567[/C][C] 0.1513[/C][C] 0.9243[/C][/ROW]
[ROW][C]71[/C][C] 0.07318[/C][C] 0.1464[/C][C] 0.9268[/C][/ROW]
[ROW][C]72[/C][C] 0.05858[/C][C] 0.1172[/C][C] 0.9414[/C][/ROW]
[ROW][C]73[/C][C] 0.05864[/C][C] 0.1173[/C][C] 0.9414[/C][/ROW]
[ROW][C]74[/C][C] 0.04844[/C][C] 0.09688[/C][C] 0.9516[/C][/ROW]
[ROW][C]75[/C][C] 0.03998[/C][C] 0.07996[/C][C] 0.96[/C][/ROW]
[ROW][C]76[/C][C] 0.03121[/C][C] 0.06241[/C][C] 0.9688[/C][/ROW]
[ROW][C]77[/C][C] 0.02684[/C][C] 0.05367[/C][C] 0.9732[/C][/ROW]
[ROW][C]78[/C][C] 0.02233[/C][C] 0.04466[/C][C] 0.9777[/C][/ROW]
[ROW][C]79[/C][C] 0.01741[/C][C] 0.03482[/C][C] 0.9826[/C][/ROW]
[ROW][C]80[/C][C] 0.01352[/C][C] 0.02703[/C][C] 0.9865[/C][/ROW]
[ROW][C]81[/C][C] 0.0196[/C][C] 0.03921[/C][C] 0.9804[/C][/ROW]
[ROW][C]82[/C][C] 0.01888[/C][C] 0.03777[/C][C] 0.9811[/C][/ROW]
[ROW][C]83[/C][C] 0.02073[/C][C] 0.04147[/C][C] 0.9793[/C][/ROW]
[ROW][C]84[/C][C] 0.026[/C][C] 0.05199[/C][C] 0.974[/C][/ROW]
[ROW][C]85[/C][C] 0.02077[/C][C] 0.04153[/C][C] 0.9792[/C][/ROW]
[ROW][C]86[/C][C] 0.01891[/C][C] 0.03783[/C][C] 0.9811[/C][/ROW]
[ROW][C]87[/C][C] 0.03132[/C][C] 0.06265[/C][C] 0.9687[/C][/ROW]
[ROW][C]88[/C][C] 0.02395[/C][C] 0.0479[/C][C] 0.976[/C][/ROW]
[ROW][C]89[/C][C] 0.02016[/C][C] 0.04033[/C][C] 0.9798[/C][/ROW]
[ROW][C]90[/C][C] 0.108[/C][C] 0.2161[/C][C] 0.892[/C][/ROW]
[ROW][C]91[/C][C] 0.09076[/C][C] 0.1815[/C][C] 0.9092[/C][/ROW]
[ROW][C]92[/C][C] 0.07717[/C][C] 0.1543[/C][C] 0.9228[/C][/ROW]
[ROW][C]93[/C][C] 0.06679[/C][C] 0.1336[/C][C] 0.9332[/C][/ROW]
[ROW][C]94[/C][C] 0.05311[/C][C] 0.1062[/C][C] 0.9469[/C][/ROW]
[ROW][C]95[/C][C] 0.04226[/C][C] 0.08452[/C][C] 0.9577[/C][/ROW]
[ROW][C]96[/C][C] 0.03933[/C][C] 0.07866[/C][C] 0.9607[/C][/ROW]
[ROW][C]97[/C][C] 0.1371[/C][C] 0.2743[/C][C] 0.8629[/C][/ROW]
[ROW][C]98[/C][C] 0.1208[/C][C] 0.2416[/C][C] 0.8792[/C][/ROW]
[ROW][C]99[/C][C] 0.09852[/C][C] 0.197[/C][C] 0.9015[/C][/ROW]
[ROW][C]100[/C][C] 0.07934[/C][C] 0.1587[/C][C] 0.9207[/C][/ROW]
[ROW][C]101[/C][C] 0.0673[/C][C] 0.1346[/C][C] 0.9327[/C][/ROW]
[ROW][C]102[/C][C] 0.05437[/C][C] 0.1087[/C][C] 0.9456[/C][/ROW]
[ROW][C]103[/C][C] 0.04581[/C][C] 0.09162[/C][C] 0.9542[/C][/ROW]
[ROW][C]104[/C][C] 0.03533[/C][C] 0.07067[/C][C] 0.9647[/C][/ROW]
[ROW][C]105[/C][C] 0.04777[/C][C] 0.09553[/C][C] 0.9522[/C][/ROW]
[ROW][C]106[/C][C] 0.07062[/C][C] 0.1412[/C][C] 0.9294[/C][/ROW]
[ROW][C]107[/C][C] 0.05843[/C][C] 0.1169[/C][C] 0.9416[/C][/ROW]
[ROW][C]108[/C][C] 0.1642[/C][C] 0.3284[/C][C] 0.8358[/C][/ROW]
[ROW][C]109[/C][C] 0.1532[/C][C] 0.3065[/C][C] 0.8468[/C][/ROW]
[ROW][C]110[/C][C] 0.1323[/C][C] 0.2646[/C][C] 0.8677[/C][/ROW]
[ROW][C]111[/C][C] 0.1701[/C][C] 0.3402[/C][C] 0.8299[/C][/ROW]
[ROW][C]112[/C][C] 0.1393[/C][C] 0.2786[/C][C] 0.8607[/C][/ROW]
[ROW][C]113[/C][C] 0.115[/C][C] 0.2301[/C][C] 0.885[/C][/ROW]
[ROW][C]114[/C][C] 0.1224[/C][C] 0.2447[/C][C] 0.8776[/C][/ROW]
[ROW][C]115[/C][C] 0.09926[/C][C] 0.1985[/C][C] 0.9007[/C][/ROW]
[ROW][C]116[/C][C] 0.08039[/C][C] 0.1608[/C][C] 0.9196[/C][/ROW]
[ROW][C]117[/C][C] 0.06309[/C][C] 0.1262[/C][C] 0.9369[/C][/ROW]
[ROW][C]118[/C][C] 0.1255[/C][C] 0.2511[/C][C] 0.8745[/C][/ROW]
[ROW][C]119[/C][C] 0.1276[/C][C] 0.2553[/C][C] 0.8724[/C][/ROW]
[ROW][C]120[/C][C] 0.1024[/C][C] 0.2048[/C][C] 0.8976[/C][/ROW]
[ROW][C]121[/C][C] 0.08063[/C][C] 0.1613[/C][C] 0.9194[/C][/ROW]
[ROW][C]122[/C][C] 0.2029[/C][C] 0.4058[/C][C] 0.7971[/C][/ROW]
[ROW][C]123[/C][C] 0.1668[/C][C] 0.3335[/C][C] 0.8332[/C][/ROW]
[ROW][C]124[/C][C] 0.1334[/C][C] 0.2668[/C][C] 0.8666[/C][/ROW]
[ROW][C]125[/C][C] 0.1148[/C][C] 0.2297[/C][C] 0.8852[/C][/ROW]
[ROW][C]126[/C][C] 0.0967[/C][C] 0.1934[/C][C] 0.9033[/C][/ROW]
[ROW][C]127[/C][C] 0.08877[/C][C] 0.1775[/C][C] 0.9112[/C][/ROW]
[ROW][C]128[/C][C] 0.07391[/C][C] 0.1478[/C][C] 0.9261[/C][/ROW]
[ROW][C]129[/C][C] 0.05555[/C][C] 0.1111[/C][C] 0.9445[/C][/ROW]
[ROW][C]130[/C][C] 0.301[/C][C] 0.602[/C][C] 0.699[/C][/ROW]
[ROW][C]131[/C][C] 0.2563[/C][C] 0.5126[/C][C] 0.7437[/C][/ROW]
[ROW][C]132[/C][C] 0.2199[/C][C] 0.4397[/C][C] 0.7801[/C][/ROW]
[ROW][C]133[/C][C] 0.2605[/C][C] 0.521[/C][C] 0.7395[/C][/ROW]
[ROW][C]134[/C][C] 0.2069[/C][C] 0.4137[/C][C] 0.7931[/C][/ROW]
[ROW][C]135[/C][C] 0.2059[/C][C] 0.4119[/C][C] 0.7941[/C][/ROW]
[ROW][C]136[/C][C] 0.1778[/C][C] 0.3556[/C][C] 0.8222[/C][/ROW]
[ROW][C]137[/C][C] 0.2058[/C][C] 0.4117[/C][C] 0.7942[/C][/ROW]
[ROW][C]138[/C][C] 0.218[/C][C] 0.436[/C][C] 0.782[/C][/ROW]
[ROW][C]139[/C][C] 0.2171[/C][C] 0.4341[/C][C] 0.7829[/C][/ROW]
[ROW][C]140[/C][C] 0.1919[/C][C] 0.3838[/C][C] 0.8081[/C][/ROW]
[ROW][C]141[/C][C] 0.1389[/C][C] 0.2777[/C][C] 0.8611[/C][/ROW]
[ROW][C]142[/C][C] 0.4045[/C][C] 0.8091[/C][C] 0.5955[/C][/ROW]
[ROW][C]143[/C][C] 0.3608[/C][C] 0.7217[/C][C] 0.6392[/C][/ROW]
[ROW][C]144[/C][C] 0.2702[/C][C] 0.5404[/C][C] 0.7298[/C][/ROW]
[ROW][C]145[/C][C] 0.1859[/C][C] 0.3717[/C][C] 0.8141[/C][/ROW]
[ROW][C]146[/C][C] 0.2974[/C][C] 0.5949[/C][C] 0.7026[/C][/ROW]
[ROW][C]147[/C][C] 0.2838[/C][C] 0.5676[/C][C] 0.7162[/C][/ROW]
[ROW][C]148[/C][C] 0.4354[/C][C] 0.8708[/C][C] 0.5646[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299006&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299006&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
8 0.3862 0.7725 0.6138
9 0.456 0.9121 0.544
10 0.6376 0.7248 0.3624
11 0.6163 0.7674 0.3837
12 0.5461 0.9079 0.4539
13 0.4698 0.9396 0.5302
14 0.3774 0.7547 0.6226
15 0.2944 0.5888 0.7056
16 0.2183 0.4366 0.7817
17 0.1771 0.3541 0.8229
18 0.2032 0.4065 0.7968
19 0.351 0.7021 0.649
20 0.3169 0.6337 0.6831
21 0.2698 0.5397 0.7302
22 0.2163 0.4326 0.7837
23 0.1696 0.3392 0.8304
24 0.1281 0.2563 0.8719
25 0.1137 0.2275 0.8863
26 0.1153 0.2306 0.8847
27 0.1281 0.2562 0.8719
28 0.1106 0.2213 0.8894
29 0.09324 0.1865 0.9068
30 0.07876 0.1575 0.9212
31 0.06159 0.1232 0.9384
32 0.04491 0.08982 0.9551
33 0.04372 0.08743 0.9563
34 0.08268 0.1654 0.9173
35 0.06181 0.1236 0.9382
36 0.04938 0.09875 0.9506
37 0.03862 0.07724 0.9614
38 0.02764 0.05528 0.9724
39 0.1426 0.2852 0.8574
40 0.1138 0.2276 0.8862
41 0.09174 0.1835 0.9083
42 0.09275 0.1855 0.9073
43 0.07265 0.1453 0.9273
44 0.06123 0.1225 0.9388
45 0.06292 0.1258 0.9371
46 0.0478 0.0956 0.9522
47 0.06254 0.1251 0.9375
48 0.06552 0.131 0.9345
49 0.1385 0.2771 0.8615
50 0.1176 0.2351 0.8824
51 0.09409 0.1882 0.9059
52 0.08555 0.1711 0.9145
53 0.07819 0.1564 0.9218
54 0.06323 0.1265 0.9368
55 0.05319 0.1064 0.9468
56 0.06018 0.1204 0.9398
57 0.05696 0.1139 0.943
58 0.08548 0.171 0.9145
59 0.07263 0.1453 0.9274
60 0.06763 0.1353 0.9324
61 0.07657 0.1532 0.9234
62 0.06676 0.1335 0.9332
63 0.05743 0.1149 0.9426
64 0.05671 0.1134 0.9433
65 0.04559 0.09118 0.9544
66 0.09836 0.1967 0.9016
67 0.07957 0.1591 0.9204
68 0.09879 0.1976 0.9012
69 0.09373 0.1875 0.9063
70 0.07567 0.1513 0.9243
71 0.07318 0.1464 0.9268
72 0.05858 0.1172 0.9414
73 0.05864 0.1173 0.9414
74 0.04844 0.09688 0.9516
75 0.03998 0.07996 0.96
76 0.03121 0.06241 0.9688
77 0.02684 0.05367 0.9732
78 0.02233 0.04466 0.9777
79 0.01741 0.03482 0.9826
80 0.01352 0.02703 0.9865
81 0.0196 0.03921 0.9804
82 0.01888 0.03777 0.9811
83 0.02073 0.04147 0.9793
84 0.026 0.05199 0.974
85 0.02077 0.04153 0.9792
86 0.01891 0.03783 0.9811
87 0.03132 0.06265 0.9687
88 0.02395 0.0479 0.976
89 0.02016 0.04033 0.9798
90 0.108 0.2161 0.892
91 0.09076 0.1815 0.9092
92 0.07717 0.1543 0.9228
93 0.06679 0.1336 0.9332
94 0.05311 0.1062 0.9469
95 0.04226 0.08452 0.9577
96 0.03933 0.07866 0.9607
97 0.1371 0.2743 0.8629
98 0.1208 0.2416 0.8792
99 0.09852 0.197 0.9015
100 0.07934 0.1587 0.9207
101 0.0673 0.1346 0.9327
102 0.05437 0.1087 0.9456
103 0.04581 0.09162 0.9542
104 0.03533 0.07067 0.9647
105 0.04777 0.09553 0.9522
106 0.07062 0.1412 0.9294
107 0.05843 0.1169 0.9416
108 0.1642 0.3284 0.8358
109 0.1532 0.3065 0.8468
110 0.1323 0.2646 0.8677
111 0.1701 0.3402 0.8299
112 0.1393 0.2786 0.8607
113 0.115 0.2301 0.885
114 0.1224 0.2447 0.8776
115 0.09926 0.1985 0.9007
116 0.08039 0.1608 0.9196
117 0.06309 0.1262 0.9369
118 0.1255 0.2511 0.8745
119 0.1276 0.2553 0.8724
120 0.1024 0.2048 0.8976
121 0.08063 0.1613 0.9194
122 0.2029 0.4058 0.7971
123 0.1668 0.3335 0.8332
124 0.1334 0.2668 0.8666
125 0.1148 0.2297 0.8852
126 0.0967 0.1934 0.9033
127 0.08877 0.1775 0.9112
128 0.07391 0.1478 0.9261
129 0.05555 0.1111 0.9445
130 0.301 0.602 0.699
131 0.2563 0.5126 0.7437
132 0.2199 0.4397 0.7801
133 0.2605 0.521 0.7395
134 0.2069 0.4137 0.7931
135 0.2059 0.4119 0.7941
136 0.1778 0.3556 0.8222
137 0.2058 0.4117 0.7942
138 0.218 0.436 0.782
139 0.2171 0.4341 0.7829
140 0.1919 0.3838 0.8081
141 0.1389 0.2777 0.8611
142 0.4045 0.8091 0.5955
143 0.3608 0.7217 0.6392
144 0.2702 0.5404 0.7298
145 0.1859 0.3717 0.8141
146 0.2974 0.5949 0.7026
147 0.2838 0.5676 0.7162
148 0.4354 0.8708 0.5646







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level0 0OK
5% type I error level100.070922NOK
10% type I error level280.198582NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 0 &  0 & OK \tabularnewline
5% type I error level & 10 & 0.070922 & NOK \tabularnewline
10% type I error level & 28 & 0.198582 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299006&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]0[/C][C] 0[/C][C]OK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]10[/C][C]0.070922[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]28[/C][C]0.198582[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299006&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299006&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level0 0OK
5% type I error level100.070922NOK
10% type I error level280.198582NOK







Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.22117, df1 = 2, df2 = 149, p-value = 0.8018
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0.97089, df1 = 8, df2 = 143, p-value = 0.4612
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.3543, df1 = 2, df2 = 149, p-value = 0.2613

\begin{tabular}{lllllllll}
\hline
Ramsey RESET F-Test for powers (2 and 3) of fitted values \tabularnewline
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.22117, df1 = 2, df2 = 149, p-value = 0.8018
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of regressors \tabularnewline
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0.97089, df1 = 8, df2 = 143, p-value = 0.4612
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of principal components \tabularnewline
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.3543, df1 = 2, df2 = 149, p-value = 0.2613
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=299006&T=7

[TABLE]
[ROW][C]Ramsey RESET F-Test for powers (2 and 3) of fitted values[/C][/ROW]
[ROW][C]
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.22117, df1 = 2, df2 = 149, p-value = 0.8018
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of regressors[/C][/ROW] [ROW][C]
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0.97089, df1 = 8, df2 = 143, p-value = 0.4612
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of principal components[/C][/ROW] [ROW][C]
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.3543, df1 = 2, df2 = 149, p-value = 0.2613
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299006&T=7

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299006&T=7

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.22117, df1 = 2, df2 = 149, p-value = 0.8018
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0.97089, df1 = 8, df2 = 143, p-value = 0.4612
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.3543, df1 = 2, df2 = 149, p-value = 0.2613







Variance Inflation Factors (Multicollinearity)
> vif
    ITH1     ITH2     ITH3     ITH4 
1.650852 1.404998 1.581077 1.265520 

\begin{tabular}{lllllllll}
\hline
Variance Inflation Factors (Multicollinearity) \tabularnewline
> vif
    ITH1     ITH2     ITH3     ITH4 
1.650852 1.404998 1.581077 1.265520 
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=299006&T=8

[TABLE]
[ROW][C]Variance Inflation Factors (Multicollinearity)[/C][/ROW]
[ROW][C]
> vif
    ITH1     ITH2     ITH3     ITH4 
1.650852 1.404998 1.581077 1.265520 
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299006&T=8

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299006&T=8

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variance Inflation Factors (Multicollinearity)
> vif
    ITH1     ITH2     ITH3     ITH4 
1.650852 1.404998 1.581077 1.265520 



Parameters (Session):
par1 = 5 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ;
Parameters (R input):
par1 = 5 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
library(car)
library(MASS)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
mywarning <- ''
par1 <- as.numeric(par1)
if(is.na(par1)) {
par1 <- 1
mywarning = 'Warning: you did not specify the column number of the endogenous series! The first column was selected by default.'
}
if (par4=='') par4 <- 0
par4 <- as.numeric(par4)
if (par5=='') par5 <- 0
par5 <- as.numeric(par5)
x <- na.omit(t(y))
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'Seasonal Differences (s=12)'){
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'First and Seasonal Differences (s=12)'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if(par4 > 0) {
x2 <- array(0, dim=c(n-par4,par4), dimnames=list(1:(n-par4), paste(colnames(x)[par1],'(t-',1:par4,')',sep='')))
for (i in 1:(n-par4)) {
for (j in 1:par4) {
x2[i,j] <- x[i+par4-j,par1]
}
}
x <- cbind(x[(par4+1):n,], x2)
n <- n - par4
}
if(par5 > 0) {
x2 <- array(0, dim=c(n-par5*12,par5), dimnames=list(1:(n-par5*12), paste(colnames(x)[par1],'(t-',1:par5,'s)',sep='')))
for (i in 1:(n-par5*12)) {
for (j in 1:par5) {
x2[i,j] <- x[i+par5*12-j*12,par1]
}
}
x <- cbind(x[(par5*12+1):n,], x2)
n <- n - par5*12
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
(k <- length(x[n,]))
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
print(x)
(k <- length(x[n,]))
head(x)
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
sresid <- studres(mylm)
hist(sresid, freq=FALSE, main='Distribution of Studentized Residuals')
xfit<-seq(min(sresid),max(sresid),length=40)
yfit<-dnorm(xfit)
lines(xfit, yfit)
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqPlot(mylm, main='QQ Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
print(z)
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, mywarning)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Multiple Linear Regression - Ordinary Least Squares', 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,formatC(signif(mysum$coefficients[i,1],5),format='g',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,2],5),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,3],4),format='e',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4],4),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4]/2,4),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a,formatC(signif(sqrt(mysum$r.squared),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$adj.r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a,formatC(signif(mysum$fstatistic[1],6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a,formatC(signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a,formatC(signif(mysum$sigma,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a,formatC(signif(sum(myerror*myerror),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
myr <- as.numeric(mysum$resid)
myr
if(n < 200) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,formatC(signif(x[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(x[i]-mysum$resid[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$resid[i],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,1],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,2],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,3],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,formatC(signif(numsignificant1/numgqtests,6),format='g',flag=' '))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
}
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of fitted values',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_fitted <- resettest(mylm,power=2:3,type='fitted')
a<-table.element(a,paste('
',RC.texteval('reset_test_fitted'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of regressors',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_regressors <- resettest(mylm,power=2:3,type='regressor')
a<-table.element(a,paste('
',RC.texteval('reset_test_regressors'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of principal components',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_principal_components <- resettest(mylm,power=2:3,type='princomp')
a<-table.element(a,paste('
',RC.texteval('reset_test_principal_components'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable8.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variance Inflation Factors (Multicollinearity)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
vif <- vif(mylm)
a<-table.element(a,paste('
',RC.texteval('vif'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable9.tab')