Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimabackwardselection.wasp
Title produced by softwareARIMA Backward Selection
Date of computationWed, 21 Dec 2016 14:45:55 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/21/t1482327994rngfs1ir0rwpcpt.htm/, Retrieved Fri, 01 Nov 2024 03:44:06 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=302289, Retrieved Fri, 01 Nov 2024 03:44:06 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywordsN1910
Estimated Impact110
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [ML Fitting and QQ Plot- Normal Distribution] [Normal distribution] [2016-12-15 09:27:42] [061bcad4f8cbfaa4a6cadfe6faec1e5a]
- RMPD  [Chi-Squared Test, McNemar Test, and Fisher Exact Test] [Chisquared simula...] [2016-12-15 10:38:18] [061bcad4f8cbfaa4a6cadfe6faec1e5a]
- RMPD      [ARIMA Backward Selection] [Arima backwards] [2016-12-21 13:45:55] [9a9519454d094169f95f881e5b6f16f7] [Current]
Feedback Forum

Post a new message
Dataseries X:
4738.4
4687.2
5930.8
5532
5429.8
6107.4
5960.8
5541.8
5362.2
5237
4827
4781.6
4983.2
4718.4
5523.8
5286.6
5389
5810.4
5057.4
5604.4
5285
5215.2
4625.4
4270.4
4685.4
4233.8
5278.4
4978.8
5333.4
5451
5224
5790.2
5079.4
4705.8
4139.6
3720.8
4594
4638.8
4969.4
4764.4
5010.8
5267.8
5312.2
5723.2
4579.6
5015.2
4282.4
3834.2
4523.4
3884.2
3897.8
4845.6
4929
4955.4
5198.4
5122.2
4643.2
4789.8
3950.8
3824.4
4511.8
4262.4
4616.6
5139.6
4972.8
5222
5242
4979.8
4691.8
4821.6
4123.6
4027.4
4365.2
4333.6
4930
5053
5031.4
5342
5191.4
4852.2
4675.6
4689.2
3809.4
4054.2
4409.6
4210.2
4566.4
4907
5021.8
5215.2
4933.6
5197.8
4734.6
4681.8
4172
4037.8
4462.6
4282.6
4962.4
4969.2
5214.6
5416.8
4764.2
5326.2
4545.4
4797.2
4259
4117
4469.2
4203.2
5033.8
4883
5361.6
5044.6
5005.6
5382
4565.4
4825
4290.2
3933.6
4177.6
3949.4
4492.6
4894.2
5224.4
5071




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time8 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302289&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]8 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=302289&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302289&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R ServerBig Analytics Cloud Computing Center







ARIMA Parameter Estimation and Backward Selection
Iterationar1ar2ar3ma1sar1sar2sma1
Estimates ( 1 )0.13580.16780.35290.2330.30510.0344-0.9424
(p-val)(0.7173 )(0.354 )(0.003 )(0.561 )(0.0627 )(0.7948 )(0.0184 )
Estimates ( 2 )0.14550.1660.34680.22690.29880-0.9157
(p-val)(0.7128 )(0.3833 )(0.0037 )(0.5905 )(0.07 )(NA )(0.0013 )
Estimates ( 3 )00.2270.35890.37410.28730-0.8835
(p-val)(NA )(0.0164 )(0.0011 )(1e-04 )(0.0826 )(NA )(0 )
Estimates ( 4 )00.20750.41380.33600-0.6474
(p-val)(NA )(0.024 )(1e-04 )(5e-04 )(NA )(NA )(1e-04 )
Estimates ( 5 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 6 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 7 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 8 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 9 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 10 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 11 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 12 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 13 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )

\begin{tabular}{lllllllll}
\hline
ARIMA Parameter Estimation and Backward Selection \tabularnewline
Iteration & ar1 & ar2 & ar3 & ma1 & sar1 & sar2 & sma1 \tabularnewline
Estimates ( 1 ) & 0.1358 & 0.1678 & 0.3529 & 0.233 & 0.3051 & 0.0344 & -0.9424 \tabularnewline
(p-val) & (0.7173 ) & (0.354 ) & (0.003 ) & (0.561 ) & (0.0627 ) & (0.7948 ) & (0.0184 ) \tabularnewline
Estimates ( 2 ) & 0.1455 & 0.166 & 0.3468 & 0.2269 & 0.2988 & 0 & -0.9157 \tabularnewline
(p-val) & (0.7128 ) & (0.3833 ) & (0.0037 ) & (0.5905 ) & (0.07 ) & (NA ) & (0.0013 ) \tabularnewline
Estimates ( 3 ) & 0 & 0.227 & 0.3589 & 0.3741 & 0.2873 & 0 & -0.8835 \tabularnewline
(p-val) & (NA ) & (0.0164 ) & (0.0011 ) & (1e-04 ) & (0.0826 ) & (NA ) & (0 ) \tabularnewline
Estimates ( 4 ) & 0 & 0.2075 & 0.4138 & 0.336 & 0 & 0 & -0.6474 \tabularnewline
(p-val) & (NA ) & (0.024 ) & (1e-04 ) & (5e-04 ) & (NA ) & (NA ) & (1e-04 ) \tabularnewline
Estimates ( 5 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 6 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 7 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 8 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 9 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 10 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 11 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 12 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 13 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302289&T=1

[TABLE]
[ROW][C]ARIMA Parameter Estimation and Backward Selection[/C][/ROW]
[ROW][C]Iteration[/C][C]ar1[/C][C]ar2[/C][C]ar3[/C][C]ma1[/C][C]sar1[/C][C]sar2[/C][C]sma1[/C][/ROW]
[ROW][C]Estimates ( 1 )[/C][C]0.1358[/C][C]0.1678[/C][C]0.3529[/C][C]0.233[/C][C]0.3051[/C][C]0.0344[/C][C]-0.9424[/C][/ROW]
[ROW][C](p-val)[/C][C](0.7173 )[/C][C](0.354 )[/C][C](0.003 )[/C][C](0.561 )[/C][C](0.0627 )[/C][C](0.7948 )[/C][C](0.0184 )[/C][/ROW]
[ROW][C]Estimates ( 2 )[/C][C]0.1455[/C][C]0.166[/C][C]0.3468[/C][C]0.2269[/C][C]0.2988[/C][C]0[/C][C]-0.9157[/C][/ROW]
[ROW][C](p-val)[/C][C](0.7128 )[/C][C](0.3833 )[/C][C](0.0037 )[/C][C](0.5905 )[/C][C](0.07 )[/C][C](NA )[/C][C](0.0013 )[/C][/ROW]
[ROW][C]Estimates ( 3 )[/C][C]0[/C][C]0.227[/C][C]0.3589[/C][C]0.3741[/C][C]0.2873[/C][C]0[/C][C]-0.8835[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](0.0164 )[/C][C](0.0011 )[/C][C](1e-04 )[/C][C](0.0826 )[/C][C](NA )[/C][C](0 )[/C][/ROW]
[ROW][C]Estimates ( 4 )[/C][C]0[/C][C]0.2075[/C][C]0.4138[/C][C]0.336[/C][C]0[/C][C]0[/C][C]-0.6474[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](0.024 )[/C][C](1e-04 )[/C][C](5e-04 )[/C][C](NA )[/C][C](NA )[/C][C](1e-04 )[/C][/ROW]
[ROW][C]Estimates ( 5 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 6 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 7 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 8 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 9 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 10 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 11 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 12 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 13 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302289&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302289&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ARIMA Parameter Estimation and Backward Selection
Iterationar1ar2ar3ma1sar1sar2sma1
Estimates ( 1 )0.13580.16780.35290.2330.30510.0344-0.9424
(p-val)(0.7173 )(0.354 )(0.003 )(0.561 )(0.0627 )(0.7948 )(0.0184 )
Estimates ( 2 )0.14550.1660.34680.22690.29880-0.9157
(p-val)(0.7128 )(0.3833 )(0.0037 )(0.5905 )(0.07 )(NA )(0.0013 )
Estimates ( 3 )00.2270.35890.37410.28730-0.8835
(p-val)(NA )(0.0164 )(0.0011 )(1e-04 )(0.0826 )(NA )(0 )
Estimates ( 4 )00.20750.41380.33600-0.6474
(p-val)(NA )(0.024 )(1e-04 )(5e-04 )(NA )(NA )(1e-04 )
Estimates ( 5 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 6 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 7 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 8 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 9 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 10 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 11 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 12 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 13 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )







Estimated ARIMA Residuals
Value
0.161339921470215
3.44058953375333
-1.36647793409928
-7.18580978386532
-2.99358540656619
1.82261312997684
-2.06385633890334
-12.2059420569989
7.02842104461849
1.0802041884828
4.63781699682946
-5.01403186796246
-6.84970117494047
-0.730020689455199
-5.50930804537927
-0.613594928897482
-3.34496313862077
4.75772139245061
-5.75439852731876
2.44225581243091
4.88346213144227
-2.67376134435756
-8.15107295927946
-7.97271844731465
-8.11975871485601
5.49037529220088
8.81725027906826
-6.98038939785796
-4.85434468947149
-4.0104288031304
-0.843319450279415
3.36959682740404
3.32315337428807
-9.90991655490307
5.57638282404927
-2.00421191683267
-0.935217915524694
-2.9684610528909
-11.3096068470416
-20.2616600267612
8.69553955062464
3.0848006000172
-1.52201554997675
-0.689313995628649
-5.84651037259505
1.56986317906957
-1.86059647110948
-4.09751890266501
-1.0682589106502
1.77883229603321
4.51411349225264
-0.404544911424456
3.4109089938323
-3.99799870819821
-0.712998043174082
-1.48861380092041
-5.95230149159836
-0.453438074848705
0.367489148835236
1.25684654202133
1.13093049367761
-4.16002495799357
2.01760430396893
1.32810876261821
0.143319552399065
-1.58021131523461
-0.392184945956144
-1.5474674079103
-7.06637149592329
-0.215116548281102
-1.76296583222504
-5.18986225256298
3.42793846380092
0.0756854405620232
0.28651472628775
-7.54024679311348
1.02472359236001
0.929458946519222
-0.484791798280578
-5.02314275489457
3.74085443725257
-0.376760783758175
-0.813035387842016
2.07114503278437
-0.642773704760302
-0.207946029445894
-0.761674921654357
3.93484092839878
-1.76625244448153
2.50190527749956
-0.553643468882635
-7.76319443519139
2.62157548916066
-5.47002502793056
4.15379604520399
0.30277288408118
2.75351907105892
-2.34561170271642
-2.20835730331853
2.4935049342964
-2.7050910401161
5.30248659373975
-9.17928523863057
2.66783157296304
0.371345068637835
-0.825972744728613
-0.134410309068098
1.30214889408115
-2.95349519311018
-6.15998301905372
-4.36086212793561
-5.23512152452915
4.45871958964345
2.93009905354342
-0.8603115212103

\begin{tabular}{lllllllll}
\hline
Estimated ARIMA Residuals \tabularnewline
Value \tabularnewline
0.161339921470215 \tabularnewline
3.44058953375333 \tabularnewline
-1.36647793409928 \tabularnewline
-7.18580978386532 \tabularnewline
-2.99358540656619 \tabularnewline
1.82261312997684 \tabularnewline
-2.06385633890334 \tabularnewline
-12.2059420569989 \tabularnewline
7.02842104461849 \tabularnewline
1.0802041884828 \tabularnewline
4.63781699682946 \tabularnewline
-5.01403186796246 \tabularnewline
-6.84970117494047 \tabularnewline
-0.730020689455199 \tabularnewline
-5.50930804537927 \tabularnewline
-0.613594928897482 \tabularnewline
-3.34496313862077 \tabularnewline
4.75772139245061 \tabularnewline
-5.75439852731876 \tabularnewline
2.44225581243091 \tabularnewline
4.88346213144227 \tabularnewline
-2.67376134435756 \tabularnewline
-8.15107295927946 \tabularnewline
-7.97271844731465 \tabularnewline
-8.11975871485601 \tabularnewline
5.49037529220088 \tabularnewline
8.81725027906826 \tabularnewline
-6.98038939785796 \tabularnewline
-4.85434468947149 \tabularnewline
-4.0104288031304 \tabularnewline
-0.843319450279415 \tabularnewline
3.36959682740404 \tabularnewline
3.32315337428807 \tabularnewline
-9.90991655490307 \tabularnewline
5.57638282404927 \tabularnewline
-2.00421191683267 \tabularnewline
-0.935217915524694 \tabularnewline
-2.9684610528909 \tabularnewline
-11.3096068470416 \tabularnewline
-20.2616600267612 \tabularnewline
8.69553955062464 \tabularnewline
3.0848006000172 \tabularnewline
-1.52201554997675 \tabularnewline
-0.689313995628649 \tabularnewline
-5.84651037259505 \tabularnewline
1.56986317906957 \tabularnewline
-1.86059647110948 \tabularnewline
-4.09751890266501 \tabularnewline
-1.0682589106502 \tabularnewline
1.77883229603321 \tabularnewline
4.51411349225264 \tabularnewline
-0.404544911424456 \tabularnewline
3.4109089938323 \tabularnewline
-3.99799870819821 \tabularnewline
-0.712998043174082 \tabularnewline
-1.48861380092041 \tabularnewline
-5.95230149159836 \tabularnewline
-0.453438074848705 \tabularnewline
0.367489148835236 \tabularnewline
1.25684654202133 \tabularnewline
1.13093049367761 \tabularnewline
-4.16002495799357 \tabularnewline
2.01760430396893 \tabularnewline
1.32810876261821 \tabularnewline
0.143319552399065 \tabularnewline
-1.58021131523461 \tabularnewline
-0.392184945956144 \tabularnewline
-1.5474674079103 \tabularnewline
-7.06637149592329 \tabularnewline
-0.215116548281102 \tabularnewline
-1.76296583222504 \tabularnewline
-5.18986225256298 \tabularnewline
3.42793846380092 \tabularnewline
0.0756854405620232 \tabularnewline
0.28651472628775 \tabularnewline
-7.54024679311348 \tabularnewline
1.02472359236001 \tabularnewline
0.929458946519222 \tabularnewline
-0.484791798280578 \tabularnewline
-5.02314275489457 \tabularnewline
3.74085443725257 \tabularnewline
-0.376760783758175 \tabularnewline
-0.813035387842016 \tabularnewline
2.07114503278437 \tabularnewline
-0.642773704760302 \tabularnewline
-0.207946029445894 \tabularnewline
-0.761674921654357 \tabularnewline
3.93484092839878 \tabularnewline
-1.76625244448153 \tabularnewline
2.50190527749956 \tabularnewline
-0.553643468882635 \tabularnewline
-7.76319443519139 \tabularnewline
2.62157548916066 \tabularnewline
-5.47002502793056 \tabularnewline
4.15379604520399 \tabularnewline
0.30277288408118 \tabularnewline
2.75351907105892 \tabularnewline
-2.34561170271642 \tabularnewline
-2.20835730331853 \tabularnewline
2.4935049342964 \tabularnewline
-2.7050910401161 \tabularnewline
5.30248659373975 \tabularnewline
-9.17928523863057 \tabularnewline
2.66783157296304 \tabularnewline
0.371345068637835 \tabularnewline
-0.825972744728613 \tabularnewline
-0.134410309068098 \tabularnewline
1.30214889408115 \tabularnewline
-2.95349519311018 \tabularnewline
-6.15998301905372 \tabularnewline
-4.36086212793561 \tabularnewline
-5.23512152452915 \tabularnewline
4.45871958964345 \tabularnewline
2.93009905354342 \tabularnewline
-0.8603115212103 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302289&T=2

[TABLE]
[ROW][C]Estimated ARIMA Residuals[/C][/ROW]
[ROW][C]Value[/C][/ROW]
[ROW][C]0.161339921470215[/C][/ROW]
[ROW][C]3.44058953375333[/C][/ROW]
[ROW][C]-1.36647793409928[/C][/ROW]
[ROW][C]-7.18580978386532[/C][/ROW]
[ROW][C]-2.99358540656619[/C][/ROW]
[ROW][C]1.82261312997684[/C][/ROW]
[ROW][C]-2.06385633890334[/C][/ROW]
[ROW][C]-12.2059420569989[/C][/ROW]
[ROW][C]7.02842104461849[/C][/ROW]
[ROW][C]1.0802041884828[/C][/ROW]
[ROW][C]4.63781699682946[/C][/ROW]
[ROW][C]-5.01403186796246[/C][/ROW]
[ROW][C]-6.84970117494047[/C][/ROW]
[ROW][C]-0.730020689455199[/C][/ROW]
[ROW][C]-5.50930804537927[/C][/ROW]
[ROW][C]-0.613594928897482[/C][/ROW]
[ROW][C]-3.34496313862077[/C][/ROW]
[ROW][C]4.75772139245061[/C][/ROW]
[ROW][C]-5.75439852731876[/C][/ROW]
[ROW][C]2.44225581243091[/C][/ROW]
[ROW][C]4.88346213144227[/C][/ROW]
[ROW][C]-2.67376134435756[/C][/ROW]
[ROW][C]-8.15107295927946[/C][/ROW]
[ROW][C]-7.97271844731465[/C][/ROW]
[ROW][C]-8.11975871485601[/C][/ROW]
[ROW][C]5.49037529220088[/C][/ROW]
[ROW][C]8.81725027906826[/C][/ROW]
[ROW][C]-6.98038939785796[/C][/ROW]
[ROW][C]-4.85434468947149[/C][/ROW]
[ROW][C]-4.0104288031304[/C][/ROW]
[ROW][C]-0.843319450279415[/C][/ROW]
[ROW][C]3.36959682740404[/C][/ROW]
[ROW][C]3.32315337428807[/C][/ROW]
[ROW][C]-9.90991655490307[/C][/ROW]
[ROW][C]5.57638282404927[/C][/ROW]
[ROW][C]-2.00421191683267[/C][/ROW]
[ROW][C]-0.935217915524694[/C][/ROW]
[ROW][C]-2.9684610528909[/C][/ROW]
[ROW][C]-11.3096068470416[/C][/ROW]
[ROW][C]-20.2616600267612[/C][/ROW]
[ROW][C]8.69553955062464[/C][/ROW]
[ROW][C]3.0848006000172[/C][/ROW]
[ROW][C]-1.52201554997675[/C][/ROW]
[ROW][C]-0.689313995628649[/C][/ROW]
[ROW][C]-5.84651037259505[/C][/ROW]
[ROW][C]1.56986317906957[/C][/ROW]
[ROW][C]-1.86059647110948[/C][/ROW]
[ROW][C]-4.09751890266501[/C][/ROW]
[ROW][C]-1.0682589106502[/C][/ROW]
[ROW][C]1.77883229603321[/C][/ROW]
[ROW][C]4.51411349225264[/C][/ROW]
[ROW][C]-0.404544911424456[/C][/ROW]
[ROW][C]3.4109089938323[/C][/ROW]
[ROW][C]-3.99799870819821[/C][/ROW]
[ROW][C]-0.712998043174082[/C][/ROW]
[ROW][C]-1.48861380092041[/C][/ROW]
[ROW][C]-5.95230149159836[/C][/ROW]
[ROW][C]-0.453438074848705[/C][/ROW]
[ROW][C]0.367489148835236[/C][/ROW]
[ROW][C]1.25684654202133[/C][/ROW]
[ROW][C]1.13093049367761[/C][/ROW]
[ROW][C]-4.16002495799357[/C][/ROW]
[ROW][C]2.01760430396893[/C][/ROW]
[ROW][C]1.32810876261821[/C][/ROW]
[ROW][C]0.143319552399065[/C][/ROW]
[ROW][C]-1.58021131523461[/C][/ROW]
[ROW][C]-0.392184945956144[/C][/ROW]
[ROW][C]-1.5474674079103[/C][/ROW]
[ROW][C]-7.06637149592329[/C][/ROW]
[ROW][C]-0.215116548281102[/C][/ROW]
[ROW][C]-1.76296583222504[/C][/ROW]
[ROW][C]-5.18986225256298[/C][/ROW]
[ROW][C]3.42793846380092[/C][/ROW]
[ROW][C]0.0756854405620232[/C][/ROW]
[ROW][C]0.28651472628775[/C][/ROW]
[ROW][C]-7.54024679311348[/C][/ROW]
[ROW][C]1.02472359236001[/C][/ROW]
[ROW][C]0.929458946519222[/C][/ROW]
[ROW][C]-0.484791798280578[/C][/ROW]
[ROW][C]-5.02314275489457[/C][/ROW]
[ROW][C]3.74085443725257[/C][/ROW]
[ROW][C]-0.376760783758175[/C][/ROW]
[ROW][C]-0.813035387842016[/C][/ROW]
[ROW][C]2.07114503278437[/C][/ROW]
[ROW][C]-0.642773704760302[/C][/ROW]
[ROW][C]-0.207946029445894[/C][/ROW]
[ROW][C]-0.761674921654357[/C][/ROW]
[ROW][C]3.93484092839878[/C][/ROW]
[ROW][C]-1.76625244448153[/C][/ROW]
[ROW][C]2.50190527749956[/C][/ROW]
[ROW][C]-0.553643468882635[/C][/ROW]
[ROW][C]-7.76319443519139[/C][/ROW]
[ROW][C]2.62157548916066[/C][/ROW]
[ROW][C]-5.47002502793056[/C][/ROW]
[ROW][C]4.15379604520399[/C][/ROW]
[ROW][C]0.30277288408118[/C][/ROW]
[ROW][C]2.75351907105892[/C][/ROW]
[ROW][C]-2.34561170271642[/C][/ROW]
[ROW][C]-2.20835730331853[/C][/ROW]
[ROW][C]2.4935049342964[/C][/ROW]
[ROW][C]-2.7050910401161[/C][/ROW]
[ROW][C]5.30248659373975[/C][/ROW]
[ROW][C]-9.17928523863057[/C][/ROW]
[ROW][C]2.66783157296304[/C][/ROW]
[ROW][C]0.371345068637835[/C][/ROW]
[ROW][C]-0.825972744728613[/C][/ROW]
[ROW][C]-0.134410309068098[/C][/ROW]
[ROW][C]1.30214889408115[/C][/ROW]
[ROW][C]-2.95349519311018[/C][/ROW]
[ROW][C]-6.15998301905372[/C][/ROW]
[ROW][C]-4.36086212793561[/C][/ROW]
[ROW][C]-5.23512152452915[/C][/ROW]
[ROW][C]4.45871958964345[/C][/ROW]
[ROW][C]2.93009905354342[/C][/ROW]
[ROW][C]-0.8603115212103[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302289&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302289&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimated ARIMA Residuals
Value
0.161339921470215
3.44058953375333
-1.36647793409928
-7.18580978386532
-2.99358540656619
1.82261312997684
-2.06385633890334
-12.2059420569989
7.02842104461849
1.0802041884828
4.63781699682946
-5.01403186796246
-6.84970117494047
-0.730020689455199
-5.50930804537927
-0.613594928897482
-3.34496313862077
4.75772139245061
-5.75439852731876
2.44225581243091
4.88346213144227
-2.67376134435756
-8.15107295927946
-7.97271844731465
-8.11975871485601
5.49037529220088
8.81725027906826
-6.98038939785796
-4.85434468947149
-4.0104288031304
-0.843319450279415
3.36959682740404
3.32315337428807
-9.90991655490307
5.57638282404927
-2.00421191683267
-0.935217915524694
-2.9684610528909
-11.3096068470416
-20.2616600267612
8.69553955062464
3.0848006000172
-1.52201554997675
-0.689313995628649
-5.84651037259505
1.56986317906957
-1.86059647110948
-4.09751890266501
-1.0682589106502
1.77883229603321
4.51411349225264
-0.404544911424456
3.4109089938323
-3.99799870819821
-0.712998043174082
-1.48861380092041
-5.95230149159836
-0.453438074848705
0.367489148835236
1.25684654202133
1.13093049367761
-4.16002495799357
2.01760430396893
1.32810876261821
0.143319552399065
-1.58021131523461
-0.392184945956144
-1.5474674079103
-7.06637149592329
-0.215116548281102
-1.76296583222504
-5.18986225256298
3.42793846380092
0.0756854405620232
0.28651472628775
-7.54024679311348
1.02472359236001
0.929458946519222
-0.484791798280578
-5.02314275489457
3.74085443725257
-0.376760783758175
-0.813035387842016
2.07114503278437
-0.642773704760302
-0.207946029445894
-0.761674921654357
3.93484092839878
-1.76625244448153
2.50190527749956
-0.553643468882635
-7.76319443519139
2.62157548916066
-5.47002502793056
4.15379604520399
0.30277288408118
2.75351907105892
-2.34561170271642
-2.20835730331853
2.4935049342964
-2.7050910401161
5.30248659373975
-9.17928523863057
2.66783157296304
0.371345068637835
-0.825972744728613
-0.134410309068098
1.30214889408115
-2.95349519311018
-6.15998301905372
-4.36086212793561
-5.23512152452915
4.45871958964345
2.93009905354342
-0.8603115212103



Parameters (Session):
par1 = 12 ;
Parameters (R input):
par1 = FALSE ; par2 = 0.6 ; par3 = 0 ; par4 = 1 ; par5 = 12 ; par6 = 3 ; par7 = 1 ; par8 = 2 ; par9 = 1 ;
R code (references can be found in the software module):
library(lattice)
if (par1 == 'TRUE') par1 <- TRUE
if (par1 == 'FALSE') par1 <- FALSE
par2 <- as.numeric(par2) #Box-Cox lambda transformation parameter
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #degree (p) of the non-seasonal AR(p) polynomial
par7 <- as.numeric(par7) #degree (q) of the non-seasonal MA(q) polynomial
par8 <- as.numeric(par8) #degree (P) of the seasonal AR(P) polynomial
par9 <- as.numeric(par9) #degree (Q) of the seasonal MA(Q) polynomial
armaGR <- function(arima.out, names, n){
try1 <- arima.out$coef
try2 <- sqrt(diag(arima.out$var.coef))
try.data.frame <- data.frame(matrix(NA,ncol=4,nrow=length(names)))
dimnames(try.data.frame) <- list(names,c('coef','std','tstat','pv'))
try.data.frame[,1] <- try1
for(i in 1:length(try2)) try.data.frame[which(rownames(try.data.frame)==names(try2)[i]),2] <- try2[i]
try.data.frame[,3] <- try.data.frame[,1] / try.data.frame[,2]
try.data.frame[,4] <- round((1-pt(abs(try.data.frame[,3]),df=n-(length(try2)+1)))*2,5)
vector <- rep(NA,length(names))
vector[is.na(try.data.frame[,4])] <- 0
maxi <- which.max(try.data.frame[,4])
continue <- max(try.data.frame[,4],na.rm=TRUE) > .05
vector[maxi] <- 0
list(summary=try.data.frame,next.vector=vector,continue=continue)
}
arimaSelect <- function(series, order=c(13,0,0), seasonal=list(order=c(2,0,0),period=12), include.mean=F){
nrc <- order[1]+order[3]+seasonal$order[1]+seasonal$order[3]
coeff <- matrix(NA, nrow=nrc*2, ncol=nrc)
pval <- matrix(NA, nrow=nrc*2, ncol=nrc)
mylist <- rep(list(NULL), nrc)
names <- NULL
if(order[1] > 0) names <- paste('ar',1:order[1],sep='')
if(order[3] > 0) names <- c( names , paste('ma',1:order[3],sep='') )
if(seasonal$order[1] > 0) names <- c(names, paste('sar',1:seasonal$order[1],sep=''))
if(seasonal$order[3] > 0) names <- c(names, paste('sma',1:seasonal$order[3],sep=''))
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML')
mylist[[1]] <- arima.out
last.arma <- armaGR(arima.out, names, length(series))
mystop <- FALSE
i <- 1
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- 2
aic <- arima.out$aic
while(!mystop){
mylist[[i]] <- arima.out
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML', fixed=last.arma$next.vector)
aic <- c(aic, arima.out$aic)
last.arma <- armaGR(arima.out, names, length(series))
mystop <- !last.arma$continue
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- i+1
}
list(coeff, pval, mylist, aic=aic)
}
arimaSelectplot <- function(arimaSelect.out,noms,choix){
noms <- names(arimaSelect.out[[3]][[1]]$coef)
coeff <- arimaSelect.out[[1]]
k <- min(which(is.na(coeff[,1])))-1
coeff <- coeff[1:k,]
pval <- arimaSelect.out[[2]][1:k,]
aic <- arimaSelect.out$aic[1:k]
coeff[coeff==0] <- NA
n <- ncol(coeff)
if(missing(choix)) choix <- k
layout(matrix(c(1,1,1,2,
3,3,3,2,
3,3,3,4,
5,6,7,7),nr=4),
widths=c(10,35,45,15),
heights=c(30,30,15,15))
couleurs <- rainbow(75)[1:50]#(50)
ticks <- pretty(coeff)
par(mar=c(1,1,3,1))
plot(aic,k:1-.5,type='o',pch=21,bg='blue',cex=2,axes=F,lty=2,xpd=NA)
points(aic[choix],k-choix+.5,pch=21,cex=4,bg=2,xpd=NA)
title('aic',line=2)
par(mar=c(3,0,0,0))
plot(0,axes=F,xlab='',ylab='',xlim=range(ticks),ylim=c(.1,1))
rect(xleft = min(ticks) + (0:49)/50*(max(ticks)-min(ticks)),
xright = min(ticks) + (1:50)/50*(max(ticks)-min(ticks)),
ytop = rep(1,50),
ybottom= rep(0,50),col=couleurs,border=NA)
axis(1,ticks)
rect(xleft=min(ticks),xright=max(ticks),ytop=1,ybottom=0)
text(mean(coeff,na.rm=T),.5,'coefficients',cex=2,font=2)
par(mar=c(1,1,3,1))
image(1:n,1:k,t(coeff[k:1,]),axes=F,col=couleurs,zlim=range(ticks))
for(i in 1:n) for(j in 1:k) if(!is.na(coeff[j,i])) {
if(pval[j,i]<.01) symb = 'green'
else if( (pval[j,i]<.05) & (pval[j,i]>=.01)) symb = 'orange'
else if( (pval[j,i]<.1) & (pval[j,i]>=.05)) symb = 'red'
else symb = 'black'
polygon(c(i+.5 ,i+.2 ,i+.5 ,i+.5),
c(k-j+0.5,k-j+0.5,k-j+0.8,k-j+0.5),
col=symb)
if(j==choix) {
rect(xleft=i-.5,
xright=i+.5,
ybottom=k-j+1.5,
ytop=k-j+.5,
lwd=4)
text(i,
k-j+1,
round(coeff[j,i],2),
cex=1.2,
font=2)
}
else{
rect(xleft=i-.5,xright=i+.5,ybottom=k-j+1.5,ytop=k-j+.5)
text(i,k-j+1,round(coeff[j,i],2),cex=1.2,font=1)
}
}
axis(3,1:n,noms)
par(mar=c(0.5,0,0,0.5))
plot(0,axes=F,xlab='',ylab='',type='n',xlim=c(0,8),ylim=c(-.2,.8))
cols <- c('green','orange','red','black')
niv <- c('0','0.01','0.05','0.1')
for(i in 0:3){
polygon(c(1+2*i ,1+2*i ,1+2*i-.5 ,1+2*i),
c(.4 ,.7 , .4 , .4),
col=cols[i+1])
text(2*i,0.5,niv[i+1],cex=1.5)
}
text(8,.5,1,cex=1.5)
text(4,0,'p-value',cex=2)
box()
residus <- arimaSelect.out[[3]][[choix]]$res
par(mar=c(1,2,4,1))
acf(residus,main='')
title('acf',line=.5)
par(mar=c(1,2,4,1))
pacf(residus,main='')
title('pacf',line=.5)
par(mar=c(2,2,4,1))
qqnorm(residus,main='')
title('qq-norm',line=.5)
qqline(residus)
residus
}
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
(selection <- arimaSelect(x, order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5)))
bitmap(file='test1.png')
resid <- arimaSelectplot(selection)
dev.off()
resid
bitmap(file='test2.png')
acf(resid,length(resid)/2, main='Residual Autocorrelation Function')
dev.off()
bitmap(file='test3.png')
pacf(resid,length(resid)/2, main='Residual Partial Autocorrelation Function')
dev.off()
bitmap(file='test4.png')
cpgram(resid, main='Residual Cumulative Periodogram')
dev.off()
bitmap(file='test5.png')
hist(resid, main='Residual Histogram', xlab='values of Residuals')
dev.off()
bitmap(file='test6.png')
densityplot(~resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test7.png')
qqnorm(resid, main='Residual Normal Q-Q Plot')
qqline(resid)
dev.off()
ncols <- length(selection[[1]][1,])
nrows <- length(selection[[2]][,1])-1
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'ARIMA Parameter Estimation and Backward Selection', ncols+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Iteration', header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,names(selection[[3]][[1]]$coef)[i],header=TRUE)
}
a<-table.row.end(a)
for (j in 1:nrows) {
a<-table.row.start(a)
mydum <- 'Estimates ('
mydum <- paste(mydum,j)
mydum <- paste(mydum,')')
a<-table.element(a,mydum, header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,round(selection[[1]][j,i],4))
}
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'(p-val)', header=TRUE)
for (i in 1:ncols) {
mydum <- '('
mydum <- paste(mydum,round(selection[[2]][j,i],4),sep='')
mydum <- paste(mydum,')')
a<-table.element(a,mydum)
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimated ARIMA Residuals', 1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Value', 1,TRUE)
a<-table.row.end(a)
for (i in (par4*par5+par3):length(resid)) {
a<-table.row.start(a)
a<-table.element(a,resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')