Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_exponentialsmoothing.wasp
Title produced by softwareExponential Smoothing
Date of computationWed, 21 Dec 2016 13:40:01 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/21/t1482324030nr0qjkz53z3mgqd.htm/, Retrieved Fri, 01 Nov 2024 03:37:45 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=302235, Retrieved Fri, 01 Nov 2024 03:37:45 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywordsN2054
Estimated Impact124
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [ML Fitting and QQ Plot- Normal Distribution] [Normal distribution] [2016-12-15 09:27:42] [061bcad4f8cbfaa4a6cadfe6faec1e5a]
- RMPD  [Chi-Squared Test, McNemar Test, and Fisher Exact Test] [Chisquared simula...] [2016-12-15 10:38:18] [061bcad4f8cbfaa4a6cadfe6faec1e5a]
- RMPD      [Exponential Smoothing] [Exponential smoot...] [2016-12-21 12:40:01] [9a9519454d094169f95f881e5b6f16f7] [Current]
Feedback Forum

Post a new message
Dataseries X:
6675.2
7075.3
8344.1
7328.8
7076.7
7137.1
6018
7248.3
6760.3
7047.7
6368.2
6272.6
6245.4
6039.4
6855.3
6155.2
6291.6
6144.5
5490.4
7289.1
6992.7
7134
6827.2
6335.4
6762.2
7340.8
8123.2
7251.1
8067.6
7609.4
7438.1
9036.5
7853.8
6941.9
6403.9
6347.5
6792.1
6689.7
7734.7
7624.1
7797.9
7273.1
6882.1
7921.2
7359.6
7971.1
6888.1
6959.3
7780.4
7220.9
7707.8
7433.3
7256.8
7207.1
6725.3
7591.2
7440.7
7941.2
6977.4
7320.1
7447.3
7144.7
7560.9
7076.8
7043.6
7678
6942.7
8034.8
8211.8
8563
7891.9
7924.6
7536.4
7677.8
8396.4
7535.1
7397.9
7644.8
6919.8
8820.6
8327.2
8085.3
8297.3
8032.4
8196.9
7504
8898.1
7714.5
8248.6
7854.4
6626.9
9082.4
8461.8
8957.4
8696.5
7255.4
9027.6
8175.6
9129.2
8288
8620
8427.6
7953.5
9151.5
8281.3
9307.8
8646.1
7548.7
8599.1
8277.2
8516.8
7938.3
7994.7
7692.7
7987.6
8898.2
8165.6
9044.5
8187
7952.1
8770.5
8188.6
8559.5
8215.8
7998
7975.4




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302235&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=302235&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302235&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Estimated Parameters of Exponential Smoothing
ParameterValue
alpha0.504221001553749
beta0.0177620176145012
gamma0.106004438229901

\begin{tabular}{lllllllll}
\hline
Estimated Parameters of Exponential Smoothing \tabularnewline
Parameter & Value \tabularnewline
alpha & 0.504221001553749 \tabularnewline
beta & 0.0177620176145012 \tabularnewline
gamma & 0.106004438229901 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302235&T=1

[TABLE]
[ROW][C]Estimated Parameters of Exponential Smoothing[/C][/ROW]
[ROW][C]Parameter[/C][C]Value[/C][/ROW]
[ROW][C]alpha[/C][C]0.504221001553749[/C][/ROW]
[ROW][C]beta[/C][C]0.0177620176145012[/C][/ROW]
[ROW][C]gamma[/C][C]0.106004438229901[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302235&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302235&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimated Parameters of Exponential Smoothing
ParameterValue
alpha0.504221001553749
beta0.0177620176145012
gamma0.106004438229901







Interpolation Forecasts of Exponential Smoothing
tObservedFittedResiduals
136245.46753.44901175214-508.049011752142
146039.46263.13631879573-223.736318795726
156855.36904.40961145606-49.1096114560623
166155.26115.397699244439.8023007556039
176291.66198.63184249392.9681575070008
186144.56026.98511512206117.514884877941
195490.45463.7261577745626.6738422254384
207289.16720.15629604444568.943703955556
216992.76580.930736857411.769263143004
2271347147.2798219414-13.2798219413953
236827.26502.9704644513324.229535548702
246335.46608.10254054709-272.702540547095
256762.26440.77704047474321.422959525255
267340.86395.68481059283945.115189407172
278123.27658.00454756617465.195452433827
287251.17160.1044013023690.9955986976447
298067.67299.51949243824768.080507561764
307609.47503.18902468162106.210975318382
317438.16962.97541722794475.12458277206
329036.58511.55817307077524.941826929225
337853.88379.02706197644-525.227061976438
346941.98479.33422619305-1537.43422619305
356403.97099.3512999971-695.451299997102
366347.56664.93437337046-317.434373370462
376792.16511.84477768304280.25522231696
386689.76483.97071932995205.729280670052
397734.77346.83035722034387.869642779656
407624.16788.15827413222835.941725867782
417797.97343.3299656523454.570034347702
427273.17355.88380854194-82.7838085419435
436882.16739.8178785614142.282121438602
447921.28120.26632334821-199.066323348215
457359.67558.07321869364-198.473218693642
467971.17763.45612564803207.64387435197
476888.17316.7732498708-428.673249870799
486959.37048.27207279025-88.9720727902532
497780.47055.3695728843725.030427115695
507220.97265.40738260397-44.5073826039743
517707.88026.98723286875-319.187232868747
527433.37144.3406098233288.959390176699
537256.87407.76071182381-150.960711823811
547207.17085.42089762344121.679102376563
556725.36584.77708881784140.522911182159
567591.27946.88259526343-355.682595263428
577440.77304.83237790558135.867622094422
587941.27702.21563154914238.984368450861
596977.47240.24975416904-262.849754169036
607320.17077.0542629962243.045737003797
617447.37301.1564570653146.143542934698
627144.77180.49457951394-35.7945795139358
637560.97933.74002537488-372.840025374879
647076.87057.2291873681219.5708126318787
657043.67160.5130113702-116.913011370204
6676786868.78921928616809.210780713837
676942.76721.08110821374221.618891786262
688034.88104.00269119795-69.2026911979547
698211.87640.80442596831570.995574031688
7085638275.47406419106287.525935808941
717891.97824.5112784580967.3887215419109
727924.67870.2749884677554.3250115322553
737536.48008.29617980838-471.896179808382
747677.87575.07744789746102.722552102536
758396.48390.326820855686.07317914431587
767535.17738.76260885141-203.662608851412
777397.97733.58286989055-335.682869890551
787644.87389.53194139222255.268058607779
796919.86935.98140987058-16.1814098705772
808820.68185.93318140588634.666818594123
818327.28119.80818098205207.391819017951
828085.38561.50905838324-476.209058383239
838297.37712.31136180036584.988638199641
848032.48021.4344499949610.965550005044
858196.98112.6103178818584.289682118153
8675047997.68519034202-493.685190342023
878898.18509.44650520918388.65349479082
887714.58045.50372580398-331.003725803978
898248.67973.77618116476274.823818835239
907854.47978.67908129771-124.279081297714
916626.97326.15396972419-699.25396972419
929082.48266.44083142425815.959168575748
938461.88271.44498996259190.35501003741
948957.48670.64956916192286.750430838076
958696.58270.77663586334425.723364136664
967255.48476.85435742599-1221.45435742599
979027.67946.861410734061080.73858926594
988175.68309.30524128792-133.705241287924
999129.29057.4849221015871.7150778984178
10082888401.61302421854-113.613024218545
10186208478.98382422199141.016175778013
1028427.68401.8912164052725.7087835947314
1037953.57802.56662816601150.933371833986
1049151.59266.57291721895-115.072917218948
1058281.38776.31978289769-495.019782897692
1069307.88835.93895583657471.861044163434
1078646.18539.29313859467106.806861405328
1087548.78497.72996400561-949.029964005606
1098599.18228.26073189518370.839268104821
1108277.28164.7461322217112.453867778299
1118516.89045.85735847535-529.057358475355
1127938.38069.96013157283-131.660131572832
1137994.78144.08817868897-149.388178688968
1147692.77904.38178372723-211.681783727231
1157987.67179.68911139455807.910888605455
1168898.28954.6093160698-56.4093160697994
1178165.68468.12492448777-302.52492448777
1189044.58671.49957658846373.000423411544
11981878300.81674931443-113.816749314434
1207952.18085.54128096714-133.441280967137
1218770.58296.99884895583473.501151044173
1228188.68272.91300634478-84.3130063447825
1238559.59020.57738995867-461.077389958675
1248215.88099.93266515317115.86733484683
12579988300.24487014862-302.244870148623
1267975.47981.12941731475-5.72941731474839

\begin{tabular}{lllllllll}
\hline
Interpolation Forecasts of Exponential Smoothing \tabularnewline
t & Observed & Fitted & Residuals \tabularnewline
13 & 6245.4 & 6753.44901175214 & -508.049011752142 \tabularnewline
14 & 6039.4 & 6263.13631879573 & -223.736318795726 \tabularnewline
15 & 6855.3 & 6904.40961145606 & -49.1096114560623 \tabularnewline
16 & 6155.2 & 6115.3976992444 & 39.8023007556039 \tabularnewline
17 & 6291.6 & 6198.631842493 & 92.9681575070008 \tabularnewline
18 & 6144.5 & 6026.98511512206 & 117.514884877941 \tabularnewline
19 & 5490.4 & 5463.72615777456 & 26.6738422254384 \tabularnewline
20 & 7289.1 & 6720.15629604444 & 568.943703955556 \tabularnewline
21 & 6992.7 & 6580.930736857 & 411.769263143004 \tabularnewline
22 & 7134 & 7147.2798219414 & -13.2798219413953 \tabularnewline
23 & 6827.2 & 6502.9704644513 & 324.229535548702 \tabularnewline
24 & 6335.4 & 6608.10254054709 & -272.702540547095 \tabularnewline
25 & 6762.2 & 6440.77704047474 & 321.422959525255 \tabularnewline
26 & 7340.8 & 6395.68481059283 & 945.115189407172 \tabularnewline
27 & 8123.2 & 7658.00454756617 & 465.195452433827 \tabularnewline
28 & 7251.1 & 7160.10440130236 & 90.9955986976447 \tabularnewline
29 & 8067.6 & 7299.51949243824 & 768.080507561764 \tabularnewline
30 & 7609.4 & 7503.18902468162 & 106.210975318382 \tabularnewline
31 & 7438.1 & 6962.97541722794 & 475.12458277206 \tabularnewline
32 & 9036.5 & 8511.55817307077 & 524.941826929225 \tabularnewline
33 & 7853.8 & 8379.02706197644 & -525.227061976438 \tabularnewline
34 & 6941.9 & 8479.33422619305 & -1537.43422619305 \tabularnewline
35 & 6403.9 & 7099.3512999971 & -695.451299997102 \tabularnewline
36 & 6347.5 & 6664.93437337046 & -317.434373370462 \tabularnewline
37 & 6792.1 & 6511.84477768304 & 280.25522231696 \tabularnewline
38 & 6689.7 & 6483.97071932995 & 205.729280670052 \tabularnewline
39 & 7734.7 & 7346.83035722034 & 387.869642779656 \tabularnewline
40 & 7624.1 & 6788.15827413222 & 835.941725867782 \tabularnewline
41 & 7797.9 & 7343.3299656523 & 454.570034347702 \tabularnewline
42 & 7273.1 & 7355.88380854194 & -82.7838085419435 \tabularnewline
43 & 6882.1 & 6739.8178785614 & 142.282121438602 \tabularnewline
44 & 7921.2 & 8120.26632334821 & -199.066323348215 \tabularnewline
45 & 7359.6 & 7558.07321869364 & -198.473218693642 \tabularnewline
46 & 7971.1 & 7763.45612564803 & 207.64387435197 \tabularnewline
47 & 6888.1 & 7316.7732498708 & -428.673249870799 \tabularnewline
48 & 6959.3 & 7048.27207279025 & -88.9720727902532 \tabularnewline
49 & 7780.4 & 7055.3695728843 & 725.030427115695 \tabularnewline
50 & 7220.9 & 7265.40738260397 & -44.5073826039743 \tabularnewline
51 & 7707.8 & 8026.98723286875 & -319.187232868747 \tabularnewline
52 & 7433.3 & 7144.3406098233 & 288.959390176699 \tabularnewline
53 & 7256.8 & 7407.76071182381 & -150.960711823811 \tabularnewline
54 & 7207.1 & 7085.42089762344 & 121.679102376563 \tabularnewline
55 & 6725.3 & 6584.77708881784 & 140.522911182159 \tabularnewline
56 & 7591.2 & 7946.88259526343 & -355.682595263428 \tabularnewline
57 & 7440.7 & 7304.83237790558 & 135.867622094422 \tabularnewline
58 & 7941.2 & 7702.21563154914 & 238.984368450861 \tabularnewline
59 & 6977.4 & 7240.24975416904 & -262.849754169036 \tabularnewline
60 & 7320.1 & 7077.0542629962 & 243.045737003797 \tabularnewline
61 & 7447.3 & 7301.1564570653 & 146.143542934698 \tabularnewline
62 & 7144.7 & 7180.49457951394 & -35.7945795139358 \tabularnewline
63 & 7560.9 & 7933.74002537488 & -372.840025374879 \tabularnewline
64 & 7076.8 & 7057.22918736812 & 19.5708126318787 \tabularnewline
65 & 7043.6 & 7160.5130113702 & -116.913011370204 \tabularnewline
66 & 7678 & 6868.78921928616 & 809.210780713837 \tabularnewline
67 & 6942.7 & 6721.08110821374 & 221.618891786262 \tabularnewline
68 & 8034.8 & 8104.00269119795 & -69.2026911979547 \tabularnewline
69 & 8211.8 & 7640.80442596831 & 570.995574031688 \tabularnewline
70 & 8563 & 8275.47406419106 & 287.525935808941 \tabularnewline
71 & 7891.9 & 7824.51127845809 & 67.3887215419109 \tabularnewline
72 & 7924.6 & 7870.27498846775 & 54.3250115322553 \tabularnewline
73 & 7536.4 & 8008.29617980838 & -471.896179808382 \tabularnewline
74 & 7677.8 & 7575.07744789746 & 102.722552102536 \tabularnewline
75 & 8396.4 & 8390.32682085568 & 6.07317914431587 \tabularnewline
76 & 7535.1 & 7738.76260885141 & -203.662608851412 \tabularnewline
77 & 7397.9 & 7733.58286989055 & -335.682869890551 \tabularnewline
78 & 7644.8 & 7389.53194139222 & 255.268058607779 \tabularnewline
79 & 6919.8 & 6935.98140987058 & -16.1814098705772 \tabularnewline
80 & 8820.6 & 8185.93318140588 & 634.666818594123 \tabularnewline
81 & 8327.2 & 8119.80818098205 & 207.391819017951 \tabularnewline
82 & 8085.3 & 8561.50905838324 & -476.209058383239 \tabularnewline
83 & 8297.3 & 7712.31136180036 & 584.988638199641 \tabularnewline
84 & 8032.4 & 8021.43444999496 & 10.965550005044 \tabularnewline
85 & 8196.9 & 8112.61031788185 & 84.289682118153 \tabularnewline
86 & 7504 & 7997.68519034202 & -493.685190342023 \tabularnewline
87 & 8898.1 & 8509.44650520918 & 388.65349479082 \tabularnewline
88 & 7714.5 & 8045.50372580398 & -331.003725803978 \tabularnewline
89 & 8248.6 & 7973.77618116476 & 274.823818835239 \tabularnewline
90 & 7854.4 & 7978.67908129771 & -124.279081297714 \tabularnewline
91 & 6626.9 & 7326.15396972419 & -699.25396972419 \tabularnewline
92 & 9082.4 & 8266.44083142425 & 815.959168575748 \tabularnewline
93 & 8461.8 & 8271.44498996259 & 190.35501003741 \tabularnewline
94 & 8957.4 & 8670.64956916192 & 286.750430838076 \tabularnewline
95 & 8696.5 & 8270.77663586334 & 425.723364136664 \tabularnewline
96 & 7255.4 & 8476.85435742599 & -1221.45435742599 \tabularnewline
97 & 9027.6 & 7946.86141073406 & 1080.73858926594 \tabularnewline
98 & 8175.6 & 8309.30524128792 & -133.705241287924 \tabularnewline
99 & 9129.2 & 9057.48492210158 & 71.7150778984178 \tabularnewline
100 & 8288 & 8401.61302421854 & -113.613024218545 \tabularnewline
101 & 8620 & 8478.98382422199 & 141.016175778013 \tabularnewline
102 & 8427.6 & 8401.89121640527 & 25.7087835947314 \tabularnewline
103 & 7953.5 & 7802.56662816601 & 150.933371833986 \tabularnewline
104 & 9151.5 & 9266.57291721895 & -115.072917218948 \tabularnewline
105 & 8281.3 & 8776.31978289769 & -495.019782897692 \tabularnewline
106 & 9307.8 & 8835.93895583657 & 471.861044163434 \tabularnewline
107 & 8646.1 & 8539.29313859467 & 106.806861405328 \tabularnewline
108 & 7548.7 & 8497.72996400561 & -949.029964005606 \tabularnewline
109 & 8599.1 & 8228.26073189518 & 370.839268104821 \tabularnewline
110 & 8277.2 & 8164.7461322217 & 112.453867778299 \tabularnewline
111 & 8516.8 & 9045.85735847535 & -529.057358475355 \tabularnewline
112 & 7938.3 & 8069.96013157283 & -131.660131572832 \tabularnewline
113 & 7994.7 & 8144.08817868897 & -149.388178688968 \tabularnewline
114 & 7692.7 & 7904.38178372723 & -211.681783727231 \tabularnewline
115 & 7987.6 & 7179.68911139455 & 807.910888605455 \tabularnewline
116 & 8898.2 & 8954.6093160698 & -56.4093160697994 \tabularnewline
117 & 8165.6 & 8468.12492448777 & -302.52492448777 \tabularnewline
118 & 9044.5 & 8671.49957658846 & 373.000423411544 \tabularnewline
119 & 8187 & 8300.81674931443 & -113.816749314434 \tabularnewline
120 & 7952.1 & 8085.54128096714 & -133.441280967137 \tabularnewline
121 & 8770.5 & 8296.99884895583 & 473.501151044173 \tabularnewline
122 & 8188.6 & 8272.91300634478 & -84.3130063447825 \tabularnewline
123 & 8559.5 & 9020.57738995867 & -461.077389958675 \tabularnewline
124 & 8215.8 & 8099.93266515317 & 115.86733484683 \tabularnewline
125 & 7998 & 8300.24487014862 & -302.244870148623 \tabularnewline
126 & 7975.4 & 7981.12941731475 & -5.72941731474839 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302235&T=2

[TABLE]
[ROW][C]Interpolation Forecasts of Exponential Smoothing[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Fitted[/C][C]Residuals[/C][/ROW]
[ROW][C]13[/C][C]6245.4[/C][C]6753.44901175214[/C][C]-508.049011752142[/C][/ROW]
[ROW][C]14[/C][C]6039.4[/C][C]6263.13631879573[/C][C]-223.736318795726[/C][/ROW]
[ROW][C]15[/C][C]6855.3[/C][C]6904.40961145606[/C][C]-49.1096114560623[/C][/ROW]
[ROW][C]16[/C][C]6155.2[/C][C]6115.3976992444[/C][C]39.8023007556039[/C][/ROW]
[ROW][C]17[/C][C]6291.6[/C][C]6198.631842493[/C][C]92.9681575070008[/C][/ROW]
[ROW][C]18[/C][C]6144.5[/C][C]6026.98511512206[/C][C]117.514884877941[/C][/ROW]
[ROW][C]19[/C][C]5490.4[/C][C]5463.72615777456[/C][C]26.6738422254384[/C][/ROW]
[ROW][C]20[/C][C]7289.1[/C][C]6720.15629604444[/C][C]568.943703955556[/C][/ROW]
[ROW][C]21[/C][C]6992.7[/C][C]6580.930736857[/C][C]411.769263143004[/C][/ROW]
[ROW][C]22[/C][C]7134[/C][C]7147.2798219414[/C][C]-13.2798219413953[/C][/ROW]
[ROW][C]23[/C][C]6827.2[/C][C]6502.9704644513[/C][C]324.229535548702[/C][/ROW]
[ROW][C]24[/C][C]6335.4[/C][C]6608.10254054709[/C][C]-272.702540547095[/C][/ROW]
[ROW][C]25[/C][C]6762.2[/C][C]6440.77704047474[/C][C]321.422959525255[/C][/ROW]
[ROW][C]26[/C][C]7340.8[/C][C]6395.68481059283[/C][C]945.115189407172[/C][/ROW]
[ROW][C]27[/C][C]8123.2[/C][C]7658.00454756617[/C][C]465.195452433827[/C][/ROW]
[ROW][C]28[/C][C]7251.1[/C][C]7160.10440130236[/C][C]90.9955986976447[/C][/ROW]
[ROW][C]29[/C][C]8067.6[/C][C]7299.51949243824[/C][C]768.080507561764[/C][/ROW]
[ROW][C]30[/C][C]7609.4[/C][C]7503.18902468162[/C][C]106.210975318382[/C][/ROW]
[ROW][C]31[/C][C]7438.1[/C][C]6962.97541722794[/C][C]475.12458277206[/C][/ROW]
[ROW][C]32[/C][C]9036.5[/C][C]8511.55817307077[/C][C]524.941826929225[/C][/ROW]
[ROW][C]33[/C][C]7853.8[/C][C]8379.02706197644[/C][C]-525.227061976438[/C][/ROW]
[ROW][C]34[/C][C]6941.9[/C][C]8479.33422619305[/C][C]-1537.43422619305[/C][/ROW]
[ROW][C]35[/C][C]6403.9[/C][C]7099.3512999971[/C][C]-695.451299997102[/C][/ROW]
[ROW][C]36[/C][C]6347.5[/C][C]6664.93437337046[/C][C]-317.434373370462[/C][/ROW]
[ROW][C]37[/C][C]6792.1[/C][C]6511.84477768304[/C][C]280.25522231696[/C][/ROW]
[ROW][C]38[/C][C]6689.7[/C][C]6483.97071932995[/C][C]205.729280670052[/C][/ROW]
[ROW][C]39[/C][C]7734.7[/C][C]7346.83035722034[/C][C]387.869642779656[/C][/ROW]
[ROW][C]40[/C][C]7624.1[/C][C]6788.15827413222[/C][C]835.941725867782[/C][/ROW]
[ROW][C]41[/C][C]7797.9[/C][C]7343.3299656523[/C][C]454.570034347702[/C][/ROW]
[ROW][C]42[/C][C]7273.1[/C][C]7355.88380854194[/C][C]-82.7838085419435[/C][/ROW]
[ROW][C]43[/C][C]6882.1[/C][C]6739.8178785614[/C][C]142.282121438602[/C][/ROW]
[ROW][C]44[/C][C]7921.2[/C][C]8120.26632334821[/C][C]-199.066323348215[/C][/ROW]
[ROW][C]45[/C][C]7359.6[/C][C]7558.07321869364[/C][C]-198.473218693642[/C][/ROW]
[ROW][C]46[/C][C]7971.1[/C][C]7763.45612564803[/C][C]207.64387435197[/C][/ROW]
[ROW][C]47[/C][C]6888.1[/C][C]7316.7732498708[/C][C]-428.673249870799[/C][/ROW]
[ROW][C]48[/C][C]6959.3[/C][C]7048.27207279025[/C][C]-88.9720727902532[/C][/ROW]
[ROW][C]49[/C][C]7780.4[/C][C]7055.3695728843[/C][C]725.030427115695[/C][/ROW]
[ROW][C]50[/C][C]7220.9[/C][C]7265.40738260397[/C][C]-44.5073826039743[/C][/ROW]
[ROW][C]51[/C][C]7707.8[/C][C]8026.98723286875[/C][C]-319.187232868747[/C][/ROW]
[ROW][C]52[/C][C]7433.3[/C][C]7144.3406098233[/C][C]288.959390176699[/C][/ROW]
[ROW][C]53[/C][C]7256.8[/C][C]7407.76071182381[/C][C]-150.960711823811[/C][/ROW]
[ROW][C]54[/C][C]7207.1[/C][C]7085.42089762344[/C][C]121.679102376563[/C][/ROW]
[ROW][C]55[/C][C]6725.3[/C][C]6584.77708881784[/C][C]140.522911182159[/C][/ROW]
[ROW][C]56[/C][C]7591.2[/C][C]7946.88259526343[/C][C]-355.682595263428[/C][/ROW]
[ROW][C]57[/C][C]7440.7[/C][C]7304.83237790558[/C][C]135.867622094422[/C][/ROW]
[ROW][C]58[/C][C]7941.2[/C][C]7702.21563154914[/C][C]238.984368450861[/C][/ROW]
[ROW][C]59[/C][C]6977.4[/C][C]7240.24975416904[/C][C]-262.849754169036[/C][/ROW]
[ROW][C]60[/C][C]7320.1[/C][C]7077.0542629962[/C][C]243.045737003797[/C][/ROW]
[ROW][C]61[/C][C]7447.3[/C][C]7301.1564570653[/C][C]146.143542934698[/C][/ROW]
[ROW][C]62[/C][C]7144.7[/C][C]7180.49457951394[/C][C]-35.7945795139358[/C][/ROW]
[ROW][C]63[/C][C]7560.9[/C][C]7933.74002537488[/C][C]-372.840025374879[/C][/ROW]
[ROW][C]64[/C][C]7076.8[/C][C]7057.22918736812[/C][C]19.5708126318787[/C][/ROW]
[ROW][C]65[/C][C]7043.6[/C][C]7160.5130113702[/C][C]-116.913011370204[/C][/ROW]
[ROW][C]66[/C][C]7678[/C][C]6868.78921928616[/C][C]809.210780713837[/C][/ROW]
[ROW][C]67[/C][C]6942.7[/C][C]6721.08110821374[/C][C]221.618891786262[/C][/ROW]
[ROW][C]68[/C][C]8034.8[/C][C]8104.00269119795[/C][C]-69.2026911979547[/C][/ROW]
[ROW][C]69[/C][C]8211.8[/C][C]7640.80442596831[/C][C]570.995574031688[/C][/ROW]
[ROW][C]70[/C][C]8563[/C][C]8275.47406419106[/C][C]287.525935808941[/C][/ROW]
[ROW][C]71[/C][C]7891.9[/C][C]7824.51127845809[/C][C]67.3887215419109[/C][/ROW]
[ROW][C]72[/C][C]7924.6[/C][C]7870.27498846775[/C][C]54.3250115322553[/C][/ROW]
[ROW][C]73[/C][C]7536.4[/C][C]8008.29617980838[/C][C]-471.896179808382[/C][/ROW]
[ROW][C]74[/C][C]7677.8[/C][C]7575.07744789746[/C][C]102.722552102536[/C][/ROW]
[ROW][C]75[/C][C]8396.4[/C][C]8390.32682085568[/C][C]6.07317914431587[/C][/ROW]
[ROW][C]76[/C][C]7535.1[/C][C]7738.76260885141[/C][C]-203.662608851412[/C][/ROW]
[ROW][C]77[/C][C]7397.9[/C][C]7733.58286989055[/C][C]-335.682869890551[/C][/ROW]
[ROW][C]78[/C][C]7644.8[/C][C]7389.53194139222[/C][C]255.268058607779[/C][/ROW]
[ROW][C]79[/C][C]6919.8[/C][C]6935.98140987058[/C][C]-16.1814098705772[/C][/ROW]
[ROW][C]80[/C][C]8820.6[/C][C]8185.93318140588[/C][C]634.666818594123[/C][/ROW]
[ROW][C]81[/C][C]8327.2[/C][C]8119.80818098205[/C][C]207.391819017951[/C][/ROW]
[ROW][C]82[/C][C]8085.3[/C][C]8561.50905838324[/C][C]-476.209058383239[/C][/ROW]
[ROW][C]83[/C][C]8297.3[/C][C]7712.31136180036[/C][C]584.988638199641[/C][/ROW]
[ROW][C]84[/C][C]8032.4[/C][C]8021.43444999496[/C][C]10.965550005044[/C][/ROW]
[ROW][C]85[/C][C]8196.9[/C][C]8112.61031788185[/C][C]84.289682118153[/C][/ROW]
[ROW][C]86[/C][C]7504[/C][C]7997.68519034202[/C][C]-493.685190342023[/C][/ROW]
[ROW][C]87[/C][C]8898.1[/C][C]8509.44650520918[/C][C]388.65349479082[/C][/ROW]
[ROW][C]88[/C][C]7714.5[/C][C]8045.50372580398[/C][C]-331.003725803978[/C][/ROW]
[ROW][C]89[/C][C]8248.6[/C][C]7973.77618116476[/C][C]274.823818835239[/C][/ROW]
[ROW][C]90[/C][C]7854.4[/C][C]7978.67908129771[/C][C]-124.279081297714[/C][/ROW]
[ROW][C]91[/C][C]6626.9[/C][C]7326.15396972419[/C][C]-699.25396972419[/C][/ROW]
[ROW][C]92[/C][C]9082.4[/C][C]8266.44083142425[/C][C]815.959168575748[/C][/ROW]
[ROW][C]93[/C][C]8461.8[/C][C]8271.44498996259[/C][C]190.35501003741[/C][/ROW]
[ROW][C]94[/C][C]8957.4[/C][C]8670.64956916192[/C][C]286.750430838076[/C][/ROW]
[ROW][C]95[/C][C]8696.5[/C][C]8270.77663586334[/C][C]425.723364136664[/C][/ROW]
[ROW][C]96[/C][C]7255.4[/C][C]8476.85435742599[/C][C]-1221.45435742599[/C][/ROW]
[ROW][C]97[/C][C]9027.6[/C][C]7946.86141073406[/C][C]1080.73858926594[/C][/ROW]
[ROW][C]98[/C][C]8175.6[/C][C]8309.30524128792[/C][C]-133.705241287924[/C][/ROW]
[ROW][C]99[/C][C]9129.2[/C][C]9057.48492210158[/C][C]71.7150778984178[/C][/ROW]
[ROW][C]100[/C][C]8288[/C][C]8401.61302421854[/C][C]-113.613024218545[/C][/ROW]
[ROW][C]101[/C][C]8620[/C][C]8478.98382422199[/C][C]141.016175778013[/C][/ROW]
[ROW][C]102[/C][C]8427.6[/C][C]8401.89121640527[/C][C]25.7087835947314[/C][/ROW]
[ROW][C]103[/C][C]7953.5[/C][C]7802.56662816601[/C][C]150.933371833986[/C][/ROW]
[ROW][C]104[/C][C]9151.5[/C][C]9266.57291721895[/C][C]-115.072917218948[/C][/ROW]
[ROW][C]105[/C][C]8281.3[/C][C]8776.31978289769[/C][C]-495.019782897692[/C][/ROW]
[ROW][C]106[/C][C]9307.8[/C][C]8835.93895583657[/C][C]471.861044163434[/C][/ROW]
[ROW][C]107[/C][C]8646.1[/C][C]8539.29313859467[/C][C]106.806861405328[/C][/ROW]
[ROW][C]108[/C][C]7548.7[/C][C]8497.72996400561[/C][C]-949.029964005606[/C][/ROW]
[ROW][C]109[/C][C]8599.1[/C][C]8228.26073189518[/C][C]370.839268104821[/C][/ROW]
[ROW][C]110[/C][C]8277.2[/C][C]8164.7461322217[/C][C]112.453867778299[/C][/ROW]
[ROW][C]111[/C][C]8516.8[/C][C]9045.85735847535[/C][C]-529.057358475355[/C][/ROW]
[ROW][C]112[/C][C]7938.3[/C][C]8069.96013157283[/C][C]-131.660131572832[/C][/ROW]
[ROW][C]113[/C][C]7994.7[/C][C]8144.08817868897[/C][C]-149.388178688968[/C][/ROW]
[ROW][C]114[/C][C]7692.7[/C][C]7904.38178372723[/C][C]-211.681783727231[/C][/ROW]
[ROW][C]115[/C][C]7987.6[/C][C]7179.68911139455[/C][C]807.910888605455[/C][/ROW]
[ROW][C]116[/C][C]8898.2[/C][C]8954.6093160698[/C][C]-56.4093160697994[/C][/ROW]
[ROW][C]117[/C][C]8165.6[/C][C]8468.12492448777[/C][C]-302.52492448777[/C][/ROW]
[ROW][C]118[/C][C]9044.5[/C][C]8671.49957658846[/C][C]373.000423411544[/C][/ROW]
[ROW][C]119[/C][C]8187[/C][C]8300.81674931443[/C][C]-113.816749314434[/C][/ROW]
[ROW][C]120[/C][C]7952.1[/C][C]8085.54128096714[/C][C]-133.441280967137[/C][/ROW]
[ROW][C]121[/C][C]8770.5[/C][C]8296.99884895583[/C][C]473.501151044173[/C][/ROW]
[ROW][C]122[/C][C]8188.6[/C][C]8272.91300634478[/C][C]-84.3130063447825[/C][/ROW]
[ROW][C]123[/C][C]8559.5[/C][C]9020.57738995867[/C][C]-461.077389958675[/C][/ROW]
[ROW][C]124[/C][C]8215.8[/C][C]8099.93266515317[/C][C]115.86733484683[/C][/ROW]
[ROW][C]125[/C][C]7998[/C][C]8300.24487014862[/C][C]-302.244870148623[/C][/ROW]
[ROW][C]126[/C][C]7975.4[/C][C]7981.12941731475[/C][C]-5.72941731474839[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302235&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302235&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Interpolation Forecasts of Exponential Smoothing
tObservedFittedResiduals
136245.46753.44901175214-508.049011752142
146039.46263.13631879573-223.736318795726
156855.36904.40961145606-49.1096114560623
166155.26115.397699244439.8023007556039
176291.66198.63184249392.9681575070008
186144.56026.98511512206117.514884877941
195490.45463.7261577745626.6738422254384
207289.16720.15629604444568.943703955556
216992.76580.930736857411.769263143004
2271347147.2798219414-13.2798219413953
236827.26502.9704644513324.229535548702
246335.46608.10254054709-272.702540547095
256762.26440.77704047474321.422959525255
267340.86395.68481059283945.115189407172
278123.27658.00454756617465.195452433827
287251.17160.1044013023690.9955986976447
298067.67299.51949243824768.080507561764
307609.47503.18902468162106.210975318382
317438.16962.97541722794475.12458277206
329036.58511.55817307077524.941826929225
337853.88379.02706197644-525.227061976438
346941.98479.33422619305-1537.43422619305
356403.97099.3512999971-695.451299997102
366347.56664.93437337046-317.434373370462
376792.16511.84477768304280.25522231696
386689.76483.97071932995205.729280670052
397734.77346.83035722034387.869642779656
407624.16788.15827413222835.941725867782
417797.97343.3299656523454.570034347702
427273.17355.88380854194-82.7838085419435
436882.16739.8178785614142.282121438602
447921.28120.26632334821-199.066323348215
457359.67558.07321869364-198.473218693642
467971.17763.45612564803207.64387435197
476888.17316.7732498708-428.673249870799
486959.37048.27207279025-88.9720727902532
497780.47055.3695728843725.030427115695
507220.97265.40738260397-44.5073826039743
517707.88026.98723286875-319.187232868747
527433.37144.3406098233288.959390176699
537256.87407.76071182381-150.960711823811
547207.17085.42089762344121.679102376563
556725.36584.77708881784140.522911182159
567591.27946.88259526343-355.682595263428
577440.77304.83237790558135.867622094422
587941.27702.21563154914238.984368450861
596977.47240.24975416904-262.849754169036
607320.17077.0542629962243.045737003797
617447.37301.1564570653146.143542934698
627144.77180.49457951394-35.7945795139358
637560.97933.74002537488-372.840025374879
647076.87057.2291873681219.5708126318787
657043.67160.5130113702-116.913011370204
6676786868.78921928616809.210780713837
676942.76721.08110821374221.618891786262
688034.88104.00269119795-69.2026911979547
698211.87640.80442596831570.995574031688
7085638275.47406419106287.525935808941
717891.97824.5112784580967.3887215419109
727924.67870.2749884677554.3250115322553
737536.48008.29617980838-471.896179808382
747677.87575.07744789746102.722552102536
758396.48390.326820855686.07317914431587
767535.17738.76260885141-203.662608851412
777397.97733.58286989055-335.682869890551
787644.87389.53194139222255.268058607779
796919.86935.98140987058-16.1814098705772
808820.68185.93318140588634.666818594123
818327.28119.80818098205207.391819017951
828085.38561.50905838324-476.209058383239
838297.37712.31136180036584.988638199641
848032.48021.4344499949610.965550005044
858196.98112.6103178818584.289682118153
8675047997.68519034202-493.685190342023
878898.18509.44650520918388.65349479082
887714.58045.50372580398-331.003725803978
898248.67973.77618116476274.823818835239
907854.47978.67908129771-124.279081297714
916626.97326.15396972419-699.25396972419
929082.48266.44083142425815.959168575748
938461.88271.44498996259190.35501003741
948957.48670.64956916192286.750430838076
958696.58270.77663586334425.723364136664
967255.48476.85435742599-1221.45435742599
979027.67946.861410734061080.73858926594
988175.68309.30524128792-133.705241287924
999129.29057.4849221015871.7150778984178
10082888401.61302421854-113.613024218545
10186208478.98382422199141.016175778013
1028427.68401.8912164052725.7087835947314
1037953.57802.56662816601150.933371833986
1049151.59266.57291721895-115.072917218948
1058281.38776.31978289769-495.019782897692
1069307.88835.93895583657471.861044163434
1078646.18539.29313859467106.806861405328
1087548.78497.72996400561-949.029964005606
1098599.18228.26073189518370.839268104821
1108277.28164.7461322217112.453867778299
1118516.89045.85735847535-529.057358475355
1127938.38069.96013157283-131.660131572832
1137994.78144.08817868897-149.388178688968
1147692.77904.38178372723-211.681783727231
1157987.67179.68911139455807.910888605455
1168898.28954.6093160698-56.4093160697994
1178165.68468.12492448777-302.52492448777
1189044.58671.49957658846373.000423411544
11981878300.81674931443-113.816749314434
1207952.18085.54128096714-133.441280967137
1218770.58296.99884895583473.501151044173
1228188.68272.91300634478-84.3130063447825
1238559.59020.57738995867-461.077389958675
1248215.88099.93266515317115.86733484683
12579988300.24487014862-302.244870148623
1267975.47981.12941731475-5.72941731474839







Extrapolation Forecasts of Exponential Smoothing
tForecast95% Lower Bound95% Upper Bound
1277416.649544422456594.125469809118239.17361903578
1288734.327151132357809.819378821989658.83492344272
1298259.403364662277240.013120852859278.79360847169
1308649.581320689757540.536718961029758.62592241849
1318060.660495921976865.966589357539255.35440248641
1327898.183017047156620.996341020519175.36969307379
1338206.457858572066849.319219851819563.5964972923
1347907.701981036856472.689612025689342.71435004803
1358672.228078622237161.0629718541510183.3931853903
1368012.668950453526426.789933071449598.5479678356
1378129.826407023636470.445238104399789.20757594286
1387978.641155445836246.783964781199710.49834611047

\begin{tabular}{lllllllll}
\hline
Extrapolation Forecasts of Exponential Smoothing \tabularnewline
t & Forecast & 95% Lower Bound & 95% Upper Bound \tabularnewline
127 & 7416.64954442245 & 6594.12546980911 & 8239.17361903578 \tabularnewline
128 & 8734.32715113235 & 7809.81937882198 & 9658.83492344272 \tabularnewline
129 & 8259.40336466227 & 7240.01312085285 & 9278.79360847169 \tabularnewline
130 & 8649.58132068975 & 7540.53671896102 & 9758.62592241849 \tabularnewline
131 & 8060.66049592197 & 6865.96658935753 & 9255.35440248641 \tabularnewline
132 & 7898.18301704715 & 6620.99634102051 & 9175.36969307379 \tabularnewline
133 & 8206.45785857206 & 6849.31921985181 & 9563.5964972923 \tabularnewline
134 & 7907.70198103685 & 6472.68961202568 & 9342.71435004803 \tabularnewline
135 & 8672.22807862223 & 7161.06297185415 & 10183.3931853903 \tabularnewline
136 & 8012.66895045352 & 6426.78993307144 & 9598.5479678356 \tabularnewline
137 & 8129.82640702363 & 6470.44523810439 & 9789.20757594286 \tabularnewline
138 & 7978.64115544583 & 6246.78396478119 & 9710.49834611047 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302235&T=3

[TABLE]
[ROW][C]Extrapolation Forecasts of Exponential Smoothing[/C][/ROW]
[ROW][C]t[/C][C]Forecast[/C][C]95% Lower Bound[/C][C]95% Upper Bound[/C][/ROW]
[ROW][C]127[/C][C]7416.64954442245[/C][C]6594.12546980911[/C][C]8239.17361903578[/C][/ROW]
[ROW][C]128[/C][C]8734.32715113235[/C][C]7809.81937882198[/C][C]9658.83492344272[/C][/ROW]
[ROW][C]129[/C][C]8259.40336466227[/C][C]7240.01312085285[/C][C]9278.79360847169[/C][/ROW]
[ROW][C]130[/C][C]8649.58132068975[/C][C]7540.53671896102[/C][C]9758.62592241849[/C][/ROW]
[ROW][C]131[/C][C]8060.66049592197[/C][C]6865.96658935753[/C][C]9255.35440248641[/C][/ROW]
[ROW][C]132[/C][C]7898.18301704715[/C][C]6620.99634102051[/C][C]9175.36969307379[/C][/ROW]
[ROW][C]133[/C][C]8206.45785857206[/C][C]6849.31921985181[/C][C]9563.5964972923[/C][/ROW]
[ROW][C]134[/C][C]7907.70198103685[/C][C]6472.68961202568[/C][C]9342.71435004803[/C][/ROW]
[ROW][C]135[/C][C]8672.22807862223[/C][C]7161.06297185415[/C][C]10183.3931853903[/C][/ROW]
[ROW][C]136[/C][C]8012.66895045352[/C][C]6426.78993307144[/C][C]9598.5479678356[/C][/ROW]
[ROW][C]137[/C][C]8129.82640702363[/C][C]6470.44523810439[/C][C]9789.20757594286[/C][/ROW]
[ROW][C]138[/C][C]7978.64115544583[/C][C]6246.78396478119[/C][C]9710.49834611047[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302235&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302235&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Extrapolation Forecasts of Exponential Smoothing
tForecast95% Lower Bound95% Upper Bound
1277416.649544422456594.125469809118239.17361903578
1288734.327151132357809.819378821989658.83492344272
1298259.403364662277240.013120852859278.79360847169
1308649.581320689757540.536718961029758.62592241849
1318060.660495921976865.966589357539255.35440248641
1327898.183017047156620.996341020519175.36969307379
1338206.457858572066849.319219851819563.5964972923
1347907.701981036856472.689612025689342.71435004803
1358672.228078622237161.0629718541510183.3931853903
1368012.668950453526426.789933071449598.5479678356
1378129.826407023636470.445238104399789.20757594286
1387978.641155445836246.783964781199710.49834611047



Parameters (Session):
par1 = 12 ;
Parameters (R input):
par1 = 12 ; par2 = Triple ; par3 = additive ; par4 = 12 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
par4 <- as.numeric(par4)
if (par2 == 'Single') K <- 1
if (par2 == 'Double') K <- 2
if (par2 == 'Triple') K <- par1
nx <- length(x)
nxmK <- nx - K
x <- ts(x, frequency = par1)
if (par2 == 'Single') fit <- HoltWinters(x, gamma=F, beta=F)
if (par2 == 'Double') fit <- HoltWinters(x, gamma=F)
if (par2 == 'Triple') fit <- HoltWinters(x, seasonal=par3)
fit
myresid <- x - fit$fitted[,'xhat']
bitmap(file='test1.png')
op <- par(mfrow=c(2,1))
plot(fit,ylab='Observed (black) / Fitted (red)',main='Interpolation Fit of Exponential Smoothing')
plot(myresid,ylab='Residuals',main='Interpolation Prediction Errors')
par(op)
dev.off()
bitmap(file='test2.png')
p <- predict(fit, par4, prediction.interval=TRUE)
np <- length(p[,1])
plot(fit,p,ylab='Observed (black) / Fitted (red)',main='Extrapolation Fit of Exponential Smoothing')
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(myresid),lag.max = nx/2,main='Residual ACF')
spectrum(myresid,main='Residals Periodogram')
cpgram(myresid,main='Residal Cumulative Periodogram')
qqnorm(myresid,main='Residual Normal QQ Plot')
qqline(myresid)
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimated Parameters of Exponential Smoothing',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'Value',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,fit$alpha)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,fit$beta)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'gamma',header=TRUE)
a<-table.element(a,fit$gamma)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Interpolation Forecasts of Exponential Smoothing',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Fitted',header=TRUE)
a<-table.element(a,'Residuals',header=TRUE)
a<-table.row.end(a)
for (i in 1:nxmK) {
a<-table.row.start(a)
a<-table.element(a,i+K,header=TRUE)
a<-table.element(a,x[i+K])
a<-table.element(a,fit$fitted[i,'xhat'])
a<-table.element(a,myresid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Extrapolation Forecasts of Exponential Smoothing',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Forecast',header=TRUE)
a<-table.element(a,'95% Lower Bound',header=TRUE)
a<-table.element(a,'95% Upper Bound',header=TRUE)
a<-table.row.end(a)
for (i in 1:np) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,p[i,'fit'])
a<-table.element(a,p[i,'lwr'])
a<-table.element(a,p[i,'upr'])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')