Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimaforecasting.wasp
Title produced by softwareARIMA Forecasting
Date of computationSun, 18 Dec 2016 19:48:42 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/18/t1482087046m4v92io4e0j69oj.htm/, Retrieved Fri, 01 Nov 2024 03:29:43 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=301215, Retrieved Fri, 01 Nov 2024 03:29:43 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact123
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [(Partial) Autocorrelation Function] [Autocorrelation F...] [2016-12-11 16:38:45] [48565d122ad1a5ad6c25b7f5730e03d6]
- RMP   [ARIMA Backward Selection] [Arima backward] [2016-12-18 16:46:17] [48565d122ad1a5ad6c25b7f5730e03d6]
- RM        [ARIMA Forecasting] [Arima forecast F1] [2016-12-18 18:48:42] [10299735033611e1e2dae6371997f8c9] [Current]
- R P         [ARIMA Forecasting] [ARIMA forecast F1] [2016-12-23 11:21:48] [e37f5c813d0dfcb3787d64bb91655c98]
Feedback Forum

Post a new message
Dataseries X:
3567.2
3968.25
4285.35
4130.95
4219.4
4626.2
3860.75
4174.15
4668.65
4630.05
4553.7
4603.85
4310.7
4831.3
5145.3
4886.65
4934.05
5304.7
4419.45
4804.85
5105
5132.6
4982.5
4906.7
4506.4
5010.85
5392.25
5049.7
5143.9
5449.9
4520.4
4936.95
5358.55
5289.5
5123.55
4985.65
4682.65
5175.55
5374.7
5289
5176.15
5604.25
4608.8
4898.15
5448.65
5373.05
5078.6
5233.4
4629.2
5387.8
5736.65
5357.9
5337.95
5795.5
4804.05
5120.5
5850.45
5734.75
5539
5582.85
4983.1
5672
6185.8
5835.6
5930.4
6444.65
5171.05
5739.1
6413.9
6230.2
6015.45
6174.25
5579.25
6133.45
6478.7
6184.4
6185.65
6556
5123.25
6028.9
6499.95
6190.05
6027.95
6034
5128.75
6087.7
6628.15
6075.3
6352.1
6824
5412.35
6171.25
6521.35
6457.6
5930.95
5842.7
5120.1
5719.95
5946.7
5921.1
6072
6489.4
5291.15
5986.45
6538.15
6442.8
6169.55
5793
5254.85
6050.75
6606.15
6221.15
6293.4
6908.4
5498.95
6145.35




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301215&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=301215&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301215&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[104])
926171.25-------
936521.35-------
946457.6-------
955930.95-------
965842.7-------
975120.1-------
985719.95-------
995946.7-------
1005921.1-------
1016072-------
1026489.4-------
1035291.15-------
1045986.45-------
1056538.156392.9086133.37366652.44250.13640.99890.1660.9989
1066442.86320.84326020.78036620.90610.21280.07790.18590.9855
1076169.555871.49415535.15496207.83320.04124e-040.36450.2515
10857935828.49675408.7056248.28840.43420.05570.47360.2304
1095254.855069.38424607.88985530.87870.21540.00110.41470
1106050.755776.19325274.58526277.80120.14170.97920.5870.2057
1116606.156128.51445574.54236682.48650.04550.60840.740.6924
1126221.155915.65385324.73936506.56830.15550.0110.49280.4072
1136293.46100.87975473.61976728.13960.27370.35350.5360.6397
1146908.46543.10945876.61137209.60750.14140.76860.56280.9492
1155498.955268.59574569.36315967.82820.259200.47480.0221
1166145.355981.99655250.50866713.48440.33080.90220.49520.4952

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast \tabularnewline
time & Y[t] & F[t] & 95% LB & 95% UB & p-value(H0: Y[t] = F[t]) & P(F[t]>Y[t-1]) & P(F[t]>Y[t-s]) & P(F[t]>Y[104]) \tabularnewline
92 & 6171.25 & - & - & - & - & - & - & - \tabularnewline
93 & 6521.35 & - & - & - & - & - & - & - \tabularnewline
94 & 6457.6 & - & - & - & - & - & - & - \tabularnewline
95 & 5930.95 & - & - & - & - & - & - & - \tabularnewline
96 & 5842.7 & - & - & - & - & - & - & - \tabularnewline
97 & 5120.1 & - & - & - & - & - & - & - \tabularnewline
98 & 5719.95 & - & - & - & - & - & - & - \tabularnewline
99 & 5946.7 & - & - & - & - & - & - & - \tabularnewline
100 & 5921.1 & - & - & - & - & - & - & - \tabularnewline
101 & 6072 & - & - & - & - & - & - & - \tabularnewline
102 & 6489.4 & - & - & - & - & - & - & - \tabularnewline
103 & 5291.15 & - & - & - & - & - & - & - \tabularnewline
104 & 5986.45 & - & - & - & - & - & - & - \tabularnewline
105 & 6538.15 & 6392.908 & 6133.3736 & 6652.4425 & 0.1364 & 0.9989 & 0.166 & 0.9989 \tabularnewline
106 & 6442.8 & 6320.8432 & 6020.7803 & 6620.9061 & 0.2128 & 0.0779 & 0.1859 & 0.9855 \tabularnewline
107 & 6169.55 & 5871.4941 & 5535.1549 & 6207.8332 & 0.0412 & 4e-04 & 0.3645 & 0.2515 \tabularnewline
108 & 5793 & 5828.4967 & 5408.705 & 6248.2884 & 0.4342 & 0.0557 & 0.4736 & 0.2304 \tabularnewline
109 & 5254.85 & 5069.3842 & 4607.8898 & 5530.8787 & 0.2154 & 0.0011 & 0.4147 & 0 \tabularnewline
110 & 6050.75 & 5776.1932 & 5274.5852 & 6277.8012 & 0.1417 & 0.9792 & 0.587 & 0.2057 \tabularnewline
111 & 6606.15 & 6128.5144 & 5574.5423 & 6682.4865 & 0.0455 & 0.6084 & 0.74 & 0.6924 \tabularnewline
112 & 6221.15 & 5915.6538 & 5324.7393 & 6506.5683 & 0.1555 & 0.011 & 0.4928 & 0.4072 \tabularnewline
113 & 6293.4 & 6100.8797 & 5473.6197 & 6728.1396 & 0.2737 & 0.3535 & 0.536 & 0.6397 \tabularnewline
114 & 6908.4 & 6543.1094 & 5876.6113 & 7209.6075 & 0.1414 & 0.7686 & 0.5628 & 0.9492 \tabularnewline
115 & 5498.95 & 5268.5957 & 4569.3631 & 5967.8282 & 0.2592 & 0 & 0.4748 & 0.0221 \tabularnewline
116 & 6145.35 & 5981.9965 & 5250.5086 & 6713.4844 & 0.3308 & 0.9022 & 0.4952 & 0.4952 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301215&T=1

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast[/C][/ROW]
[ROW][C]time[/C][C]Y[t][/C][C]F[t][/C][C]95% LB[/C][C]95% UB[/C][C]p-value(H0: Y[t] = F[t])[/C][C]P(F[t]>Y[t-1])[/C][C]P(F[t]>Y[t-s])[/C][C]P(F[t]>Y[104])[/C][/ROW]
[ROW][C]92[/C][C]6171.25[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]93[/C][C]6521.35[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]94[/C][C]6457.6[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]95[/C][C]5930.95[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]96[/C][C]5842.7[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]97[/C][C]5120.1[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]98[/C][C]5719.95[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]99[/C][C]5946.7[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]100[/C][C]5921.1[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]101[/C][C]6072[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]102[/C][C]6489.4[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]103[/C][C]5291.15[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]104[/C][C]5986.45[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]105[/C][C]6538.15[/C][C]6392.908[/C][C]6133.3736[/C][C]6652.4425[/C][C]0.1364[/C][C]0.9989[/C][C]0.166[/C][C]0.9989[/C][/ROW]
[ROW][C]106[/C][C]6442.8[/C][C]6320.8432[/C][C]6020.7803[/C][C]6620.9061[/C][C]0.2128[/C][C]0.0779[/C][C]0.1859[/C][C]0.9855[/C][/ROW]
[ROW][C]107[/C][C]6169.55[/C][C]5871.4941[/C][C]5535.1549[/C][C]6207.8332[/C][C]0.0412[/C][C]4e-04[/C][C]0.3645[/C][C]0.2515[/C][/ROW]
[ROW][C]108[/C][C]5793[/C][C]5828.4967[/C][C]5408.705[/C][C]6248.2884[/C][C]0.4342[/C][C]0.0557[/C][C]0.4736[/C][C]0.2304[/C][/ROW]
[ROW][C]109[/C][C]5254.85[/C][C]5069.3842[/C][C]4607.8898[/C][C]5530.8787[/C][C]0.2154[/C][C]0.0011[/C][C]0.4147[/C][C]0[/C][/ROW]
[ROW][C]110[/C][C]6050.75[/C][C]5776.1932[/C][C]5274.5852[/C][C]6277.8012[/C][C]0.1417[/C][C]0.9792[/C][C]0.587[/C][C]0.2057[/C][/ROW]
[ROW][C]111[/C][C]6606.15[/C][C]6128.5144[/C][C]5574.5423[/C][C]6682.4865[/C][C]0.0455[/C][C]0.6084[/C][C]0.74[/C][C]0.6924[/C][/ROW]
[ROW][C]112[/C][C]6221.15[/C][C]5915.6538[/C][C]5324.7393[/C][C]6506.5683[/C][C]0.1555[/C][C]0.011[/C][C]0.4928[/C][C]0.4072[/C][/ROW]
[ROW][C]113[/C][C]6293.4[/C][C]6100.8797[/C][C]5473.6197[/C][C]6728.1396[/C][C]0.2737[/C][C]0.3535[/C][C]0.536[/C][C]0.6397[/C][/ROW]
[ROW][C]114[/C][C]6908.4[/C][C]6543.1094[/C][C]5876.6113[/C][C]7209.6075[/C][C]0.1414[/C][C]0.7686[/C][C]0.5628[/C][C]0.9492[/C][/ROW]
[ROW][C]115[/C][C]5498.95[/C][C]5268.5957[/C][C]4569.3631[/C][C]5967.8282[/C][C]0.2592[/C][C]0[/C][C]0.4748[/C][C]0.0221[/C][/ROW]
[ROW][C]116[/C][C]6145.35[/C][C]5981.9965[/C][C]5250.5086[/C][C]6713.4844[/C][C]0.3308[/C][C]0.9022[/C][C]0.4952[/C][C]0.4952[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301215&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301215&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[104])
926171.25-------
936521.35-------
946457.6-------
955930.95-------
965842.7-------
975120.1-------
985719.95-------
995946.7-------
1005921.1-------
1016072-------
1026489.4-------
1035291.15-------
1045986.45-------
1056538.156392.9086133.37366652.44250.13640.99890.1660.9989
1066442.86320.84326020.78036620.90610.21280.07790.18590.9855
1076169.555871.49415535.15496207.83320.04124e-040.36450.2515
10857935828.49675408.7056248.28840.43420.05570.47360.2304
1095254.855069.38424607.88985530.87870.21540.00110.41470
1106050.755776.19325274.58526277.80120.14170.97920.5870.2057
1116606.156128.51445574.54236682.48650.04550.60840.740.6924
1126221.155915.65385324.73936506.56830.15550.0110.49280.4072
1136293.46100.87975473.61976728.13960.27370.35350.5360.6397
1146908.46543.10945876.61137209.60750.14140.76860.56280.9492
1155498.955268.59574569.36315967.82820.259200.47480.0221
1166145.355981.99655250.50866713.48440.33080.90220.49520.4952







Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPEsMAPESq.EMSERMSEScaledEMASE
1050.02070.02220.02220.022521095.2323000.27720.2772
1060.02420.01890.02060.020814873.46917984.3506134.10570.23280.255
1070.02920.04830.02980.030488837.33941602.0134203.96570.56890.3597
1080.0367-0.00610.02390.02431260.016131516.5141177.5289-0.06780.2867
1090.04640.03530.02620.026634397.549532092.7212179.14440.3540.3002
1100.04430.04540.02940.029975381.433339307.5065198.26120.52410.3375
1110.04610.07230.03550.0364228135.785366282.9749257.45480.91170.4195
1120.0510.04910.03720.038193327.921269663.5932263.93860.58310.44
1130.05250.03060.03650.037337064.081566041.4252256.98530.36750.4319
1140.0520.05290.03810.039133437.21772781.0044269.77950.69730.4584
1150.06770.04190.03850.039453063.112770988.4688266.43660.43970.4567
1160.06240.02660.03750.038326684.365267296.4602259.41560.31180.4447

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast Performance \tabularnewline
time & % S.E. & PE & MAPE & sMAPE & Sq.E & MSE & RMSE & ScaledE & MASE \tabularnewline
105 & 0.0207 & 0.0222 & 0.0222 & 0.0225 & 21095.2323 & 0 & 0 & 0.2772 & 0.2772 \tabularnewline
106 & 0.0242 & 0.0189 & 0.0206 & 0.0208 & 14873.469 & 17984.3506 & 134.1057 & 0.2328 & 0.255 \tabularnewline
107 & 0.0292 & 0.0483 & 0.0298 & 0.0304 & 88837.339 & 41602.0134 & 203.9657 & 0.5689 & 0.3597 \tabularnewline
108 & 0.0367 & -0.0061 & 0.0239 & 0.0243 & 1260.0161 & 31516.5141 & 177.5289 & -0.0678 & 0.2867 \tabularnewline
109 & 0.0464 & 0.0353 & 0.0262 & 0.0266 & 34397.5495 & 32092.7212 & 179.1444 & 0.354 & 0.3002 \tabularnewline
110 & 0.0443 & 0.0454 & 0.0294 & 0.0299 & 75381.4333 & 39307.5065 & 198.2612 & 0.5241 & 0.3375 \tabularnewline
111 & 0.0461 & 0.0723 & 0.0355 & 0.0364 & 228135.7853 & 66282.9749 & 257.4548 & 0.9117 & 0.4195 \tabularnewline
112 & 0.051 & 0.0491 & 0.0372 & 0.0381 & 93327.9212 & 69663.5932 & 263.9386 & 0.5831 & 0.44 \tabularnewline
113 & 0.0525 & 0.0306 & 0.0365 & 0.0373 & 37064.0815 & 66041.4252 & 256.9853 & 0.3675 & 0.4319 \tabularnewline
114 & 0.052 & 0.0529 & 0.0381 & 0.039 & 133437.217 & 72781.0044 & 269.7795 & 0.6973 & 0.4584 \tabularnewline
115 & 0.0677 & 0.0419 & 0.0385 & 0.0394 & 53063.1127 & 70988.4688 & 266.4366 & 0.4397 & 0.4567 \tabularnewline
116 & 0.0624 & 0.0266 & 0.0375 & 0.0383 & 26684.3652 & 67296.4602 & 259.4156 & 0.3118 & 0.4447 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301215&T=2

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast Performance[/C][/ROW]
[ROW][C]time[/C][C]% S.E.[/C][C]PE[/C][C]MAPE[/C][C]sMAPE[/C][C]Sq.E[/C][C]MSE[/C][C]RMSE[/C][C]ScaledE[/C][C]MASE[/C][/ROW]
[ROW][C]105[/C][C]0.0207[/C][C]0.0222[/C][C]0.0222[/C][C]0.0225[/C][C]21095.2323[/C][C]0[/C][C]0[/C][C]0.2772[/C][C]0.2772[/C][/ROW]
[ROW][C]106[/C][C]0.0242[/C][C]0.0189[/C][C]0.0206[/C][C]0.0208[/C][C]14873.469[/C][C]17984.3506[/C][C]134.1057[/C][C]0.2328[/C][C]0.255[/C][/ROW]
[ROW][C]107[/C][C]0.0292[/C][C]0.0483[/C][C]0.0298[/C][C]0.0304[/C][C]88837.339[/C][C]41602.0134[/C][C]203.9657[/C][C]0.5689[/C][C]0.3597[/C][/ROW]
[ROW][C]108[/C][C]0.0367[/C][C]-0.0061[/C][C]0.0239[/C][C]0.0243[/C][C]1260.0161[/C][C]31516.5141[/C][C]177.5289[/C][C]-0.0678[/C][C]0.2867[/C][/ROW]
[ROW][C]109[/C][C]0.0464[/C][C]0.0353[/C][C]0.0262[/C][C]0.0266[/C][C]34397.5495[/C][C]32092.7212[/C][C]179.1444[/C][C]0.354[/C][C]0.3002[/C][/ROW]
[ROW][C]110[/C][C]0.0443[/C][C]0.0454[/C][C]0.0294[/C][C]0.0299[/C][C]75381.4333[/C][C]39307.5065[/C][C]198.2612[/C][C]0.5241[/C][C]0.3375[/C][/ROW]
[ROW][C]111[/C][C]0.0461[/C][C]0.0723[/C][C]0.0355[/C][C]0.0364[/C][C]228135.7853[/C][C]66282.9749[/C][C]257.4548[/C][C]0.9117[/C][C]0.4195[/C][/ROW]
[ROW][C]112[/C][C]0.051[/C][C]0.0491[/C][C]0.0372[/C][C]0.0381[/C][C]93327.9212[/C][C]69663.5932[/C][C]263.9386[/C][C]0.5831[/C][C]0.44[/C][/ROW]
[ROW][C]113[/C][C]0.0525[/C][C]0.0306[/C][C]0.0365[/C][C]0.0373[/C][C]37064.0815[/C][C]66041.4252[/C][C]256.9853[/C][C]0.3675[/C][C]0.4319[/C][/ROW]
[ROW][C]114[/C][C]0.052[/C][C]0.0529[/C][C]0.0381[/C][C]0.039[/C][C]133437.217[/C][C]72781.0044[/C][C]269.7795[/C][C]0.6973[/C][C]0.4584[/C][/ROW]
[ROW][C]115[/C][C]0.0677[/C][C]0.0419[/C][C]0.0385[/C][C]0.0394[/C][C]53063.1127[/C][C]70988.4688[/C][C]266.4366[/C][C]0.4397[/C][C]0.4567[/C][/ROW]
[ROW][C]116[/C][C]0.0624[/C][C]0.0266[/C][C]0.0375[/C][C]0.0383[/C][C]26684.3652[/C][C]67296.4602[/C][C]259.4156[/C][C]0.3118[/C][C]0.4447[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301215&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301215&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPEsMAPESq.EMSERMSEScaledEMASE
1050.02070.02220.02220.022521095.2323000.27720.2772
1060.02420.01890.02060.020814873.46917984.3506134.10570.23280.255
1070.02920.04830.02980.030488837.33941602.0134203.96570.56890.3597
1080.0367-0.00610.02390.02431260.016131516.5141177.5289-0.06780.2867
1090.04640.03530.02620.026634397.549532092.7212179.14440.3540.3002
1100.04430.04540.02940.029975381.433339307.5065198.26120.52410.3375
1110.04610.07230.03550.0364228135.785366282.9749257.45480.91170.4195
1120.0510.04910.03720.038193327.921269663.5932263.93860.58310.44
1130.05250.03060.03650.037337064.081566041.4252256.98530.36750.4319
1140.0520.05290.03810.039133437.21772781.0044269.77950.69730.4584
1150.06770.04190.03850.039453063.112770988.4688266.43660.43970.4567
1160.06240.02660.03750.038326684.365267296.4602259.41560.31180.4447



Parameters (Session):
par1 = Default ; par2 = 1 ; par3 = 0 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ;
Parameters (R input):
par1 = 12 ; par2 = 1 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = 3 ; par7 = 1 ; par8 = 1 ; par9 = 0 ; par10 = FALSE ;
R code (references can be found in the software module):
par1 <- as.numeric(par1) #cut off periods
par2 <- as.numeric(par2) #lambda
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #p
par7 <- as.numeric(par7) #q
par8 <- as.numeric(par8) #P
par9 <- as.numeric(par9) #Q
if (par10 == 'TRUE') par10 <- TRUE
if (par10 == 'FALSE') par10 <- FALSE
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
lx <- length(x)
first <- lx - 2*par1
nx <- lx - par1
nx1 <- nx + 1
fx <- lx - nx
if (fx < 1) {
fx <- par5*2
nx1 <- lx + fx - 1
first <- lx - 2*fx
}
first <- 1
if (fx < 3) fx <- round(lx/10,0)
(arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML'))
(forecast <- predict(arima.out,fx))
(lb <- forecast$pred - 1.96 * forecast$se)
(ub <- forecast$pred + 1.96 * forecast$se)
if (par2 == 0) {
x <- exp(x)
forecast$pred <- exp(forecast$pred)
lb <- exp(lb)
ub <- exp(ub)
}
if (par2 != 0) {
x <- x^(1/par2)
forecast$pred <- forecast$pred^(1/par2)
lb <- lb^(1/par2)
ub <- ub^(1/par2)
}
if (par2 < 0) {
olb <- lb
lb <- ub
ub <- olb
}
(actandfor <- c(x[1:nx], forecast$pred))
(perc.se <- (ub-forecast$pred)/1.96/forecast$pred)
bitmap(file='test1.png')
opar <- par(mar=c(4,4,2,2),las=1)
ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub))
plot(x,ylim=ylim,type='n',xlim=c(first,lx))
usr <- par('usr')
rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon')
rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender')
abline(h= (-3:3)*2 , col ='gray', lty =3)
polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA)
lines(nx1:lx, lb , lty=2)
lines(nx1:lx, ub , lty=2)
lines(x, lwd=2)
lines(nx1:lx, forecast$pred , lwd=2 , col ='white')
box()
par(opar)
dev.off()
prob.dec <- array(NA, dim=fx)
prob.sdec <- array(NA, dim=fx)
prob.ldec <- array(NA, dim=fx)
prob.pval <- array(NA, dim=fx)
perf.pe <- array(0, dim=fx)
perf.spe <- array(0, dim=fx)
perf.scalederr <- array(0, dim=fx)
perf.mase <- array(0, dim=fx)
perf.mase1 <- array(0, dim=fx)
perf.mape <- array(0, dim=fx)
perf.smape <- array(0, dim=fx)
perf.mape1 <- array(0, dim=fx)
perf.smape1 <- array(0,dim=fx)
perf.se <- array(0, dim=fx)
perf.mse <- array(0, dim=fx)
perf.mse1 <- array(0, dim=fx)
perf.rmse <- array(0, dim=fx)
perf.scaleddenom <- 0
for (i in 2:fx) {
perf.scaleddenom = perf.scaleddenom + abs(x[nx+i] - x[nx+i-1])
}
perf.scaleddenom = perf.scaleddenom / (fx-1)
for (i in 1:fx) {
locSD <- (ub[i] - forecast$pred[i]) / 1.96
perf.scalederr[i] = (x[nx+i] - forecast$pred[i]) / perf.scaleddenom
perf.pe[i] = (x[nx+i] - forecast$pred[i]) / x[nx+i]
perf.spe[i] = 2*(x[nx+i] - forecast$pred[i]) / (x[nx+i] + forecast$pred[i])
perf.se[i] = (x[nx+i] - forecast$pred[i])^2
prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD)
prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD)
prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD)
prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD)
}
perf.mape[1] = abs(perf.pe[1])
perf.smape[1] = abs(perf.spe[1])
perf.mape1[1] = perf.mape[1]
perf.smape1[1] = perf.smape[1]
perf.mse[1] = perf.se[1]
perf.mase[1] = abs(perf.scalederr[1])
perf.mase1[1] = perf.mase[1]
for (i in 2:fx) {
perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i])
perf.mape1[i] = perf.mape[i] / i
perf.smape[i] = perf.smape[i-1] + abs(perf.spe[i])
perf.smape1[i] = perf.smape[i] / i
perf.mse[i] = perf.mse[i-1] + perf.se[i]
perf.mse1[i] = perf.mse[i] / i
perf.mase[i] = perf.mase[i-1] + abs(perf.scalederr[i])
perf.mase1[i] = perf.mase[i] / i
}
perf.rmse = sqrt(perf.mse1)
bitmap(file='test2.png')
plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub)))
dum <- forecast$pred
dum[1:par1] <- x[(nx+1):lx]
lines(dum, lty=1)
lines(ub,lty=3)
lines(lb,lty=3)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'Y[t]',1,header=TRUE)
a<-table.element(a,'F[t]',1,header=TRUE)
a<-table.element(a,'95% LB',1,header=TRUE)
a<-table.element(a,'95% UB',1,header=TRUE)
a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE)
mylab <- paste('P(F[t]>Y[',nx,sep='')
mylab <- paste(mylab,'])',sep='')
a<-table.element(a,mylab,1,header=TRUE)
a<-table.row.end(a)
for (i in (nx-par5):nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.row.end(a)
}
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(x[nx+i],4))
a<-table.element(a,round(forecast$pred[i],4))
a<-table.element(a,round(lb[i],4))
a<-table.element(a,round(ub[i],4))
a<-table.element(a,round((1-prob.pval[i]),4))
a<-table.element(a,round((1-prob.dec[i]),4))
a<-table.element(a,round((1-prob.sdec[i]),4))
a<-table.element(a,round((1-prob.ldec[i]),4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',10,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'% S.E.',1,header=TRUE)
a<-table.element(a,'PE',1,header=TRUE)
a<-table.element(a,'MAPE',1,header=TRUE)
a<-table.element(a,'sMAPE',1,header=TRUE)
a<-table.element(a,'Sq.E',1,header=TRUE)
a<-table.element(a,'MSE',1,header=TRUE)
a<-table.element(a,'RMSE',1,header=TRUE)
a<-table.element(a,'ScaledE',1,header=TRUE)
a<-table.element(a,'MASE',1,header=TRUE)
a<-table.row.end(a)
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(perc.se[i],4))
a<-table.element(a,round(perf.pe[i],4))
a<-table.element(a,round(perf.mape1[i],4))
a<-table.element(a,round(perf.smape1[i],4))
a<-table.element(a,round(perf.se[i],4))
a<-table.element(a,round(perf.mse1[i],4))
a<-table.element(a,round(perf.rmse[i],4))
a<-table.element(a,round(perf.scalederr[i],4))
a<-table.element(a,round(perf.mase1[i],4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')