Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimaforecasting.wasp
Title produced by softwareARIMA Forecasting
Date of computationFri, 16 Dec 2016 17:57:22 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/16/t14819074551mkqc8hdm9x4gm1.htm/, Retrieved Fri, 01 Nov 2024 03:46:57 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=300453, Retrieved Fri, 01 Nov 2024 03:46:57 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact86
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [ARIMA Backward Selection] [] [2016-12-16 13:36:55] [683f400e1b95307fc738e729f07c4fce]
-    D  [ARIMA Backward Selection] [] [2016-12-16 14:17:56] [683f400e1b95307fc738e729f07c4fce]
- R  D    [ARIMA Backward Selection] [] [2016-12-16 14:51:40] [683f400e1b95307fc738e729f07c4fce]
- RM D        [ARIMA Forecasting] [] [2016-12-16 16:57:22] [404ac5ee4f7301873f6a96ef36861981] [Current]
Feedback Forum

Post a new message
Dataseries X:
2931
3626
4098
3473
3606
4174
4451
3321
3678
4583
5062
5028
5592
6210
6568
5836
6424
6452
6480
2493
2738
2939
3094
2750
2874
3239
3247
2496
2363
2397
2666
2365
2870
2783
2664
1979




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300453&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=300453&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300453&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[31])
302397-------
312666-------
3223651668.3563340.64872996.06390.15190.07040.07040.0704
3328701970.78361.2893880.27710.1780.34290.34290.2377
3427832423.4016-45.28964892.09290.38760.36150.36150.4236
3526642587.3765-309.67235484.42540.47930.44740.44740.4788
3619791663.69-1679.91585007.29580.42670.27880.27880.2784

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast \tabularnewline
time & Y[t] & F[t] & 95% LB & 95% UB & p-value(H0: Y[t] = F[t]) & P(F[t]>Y[t-1]) & P(F[t]>Y[t-s]) & P(F[t]>Y[31]) \tabularnewline
30 & 2397 & - & - & - & - & - & - & - \tabularnewline
31 & 2666 & - & - & - & - & - & - & - \tabularnewline
32 & 2365 & 1668.3563 & 340.6487 & 2996.0639 & 0.1519 & 0.0704 & 0.0704 & 0.0704 \tabularnewline
33 & 2870 & 1970.783 & 61.289 & 3880.2771 & 0.178 & 0.3429 & 0.3429 & 0.2377 \tabularnewline
34 & 2783 & 2423.4016 & -45.2896 & 4892.0929 & 0.3876 & 0.3615 & 0.3615 & 0.4236 \tabularnewline
35 & 2664 & 2587.3765 & -309.6723 & 5484.4254 & 0.4793 & 0.4474 & 0.4474 & 0.4788 \tabularnewline
36 & 1979 & 1663.69 & -1679.9158 & 5007.2958 & 0.4267 & 0.2788 & 0.2788 & 0.2784 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300453&T=1

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast[/C][/ROW]
[ROW][C]time[/C][C]Y[t][/C][C]F[t][/C][C]95% LB[/C][C]95% UB[/C][C]p-value(H0: Y[t] = F[t])[/C][C]P(F[t]>Y[t-1])[/C][C]P(F[t]>Y[t-s])[/C][C]P(F[t]>Y[31])[/C][/ROW]
[ROW][C]30[/C][C]2397[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]31[/C][C]2666[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]32[/C][C]2365[/C][C]1668.3563[/C][C]340.6487[/C][C]2996.0639[/C][C]0.1519[/C][C]0.0704[/C][C]0.0704[/C][C]0.0704[/C][/ROW]
[ROW][C]33[/C][C]2870[/C][C]1970.783[/C][C]61.289[/C][C]3880.2771[/C][C]0.178[/C][C]0.3429[/C][C]0.3429[/C][C]0.2377[/C][/ROW]
[ROW][C]34[/C][C]2783[/C][C]2423.4016[/C][C]-45.2896[/C][C]4892.0929[/C][C]0.3876[/C][C]0.3615[/C][C]0.3615[/C][C]0.4236[/C][/ROW]
[ROW][C]35[/C][C]2664[/C][C]2587.3765[/C][C]-309.6723[/C][C]5484.4254[/C][C]0.4793[/C][C]0.4474[/C][C]0.4474[/C][C]0.4788[/C][/ROW]
[ROW][C]36[/C][C]1979[/C][C]1663.69[/C][C]-1679.9158[/C][C]5007.2958[/C][C]0.4267[/C][C]0.2788[/C][C]0.2788[/C][C]0.2784[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300453&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300453&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[31])
302397-------
312666-------
3223651668.3563340.64872996.06390.15190.07040.07040.0704
3328701970.78361.2893880.27710.1780.34290.34290.2377
3427832423.4016-45.28964892.09290.38760.36150.36150.4236
3526642587.3765-309.67235484.42540.47930.44740.44740.4788
3619791663.69-1679.91585007.29580.42670.27880.27880.2784







Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPEsMAPESq.EMSERMSEScaledEMASE
320.4060.29460.29460.3454485312.4621001.99611.9961
330.49430.31330.30390.3585808591.1464646951.8043804.33312.57662.2863
340.51970.12920.24570.285129310.974474404.8608688.77051.03041.8677
350.57130.02880.19150.22115871.1538357271.4341597.72190.21961.4556
361.02540.15930.1850.211599420.4118305701.2296552.90250.90351.3452

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast Performance \tabularnewline
time & % S.E. & PE & MAPE & sMAPE & Sq.E & MSE & RMSE & ScaledE & MASE \tabularnewline
32 & 0.406 & 0.2946 & 0.2946 & 0.3454 & 485312.4621 & 0 & 0 & 1.9961 & 1.9961 \tabularnewline
33 & 0.4943 & 0.3133 & 0.3039 & 0.3585 & 808591.1464 & 646951.8043 & 804.3331 & 2.5766 & 2.2863 \tabularnewline
34 & 0.5197 & 0.1292 & 0.2457 & 0.285 & 129310.974 & 474404.8608 & 688.7705 & 1.0304 & 1.8677 \tabularnewline
35 & 0.5713 & 0.0288 & 0.1915 & 0.2211 & 5871.1538 & 357271.4341 & 597.7219 & 0.2196 & 1.4556 \tabularnewline
36 & 1.0254 & 0.1593 & 0.185 & 0.2115 & 99420.4118 & 305701.2296 & 552.9025 & 0.9035 & 1.3452 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300453&T=2

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast Performance[/C][/ROW]
[ROW][C]time[/C][C]% S.E.[/C][C]PE[/C][C]MAPE[/C][C]sMAPE[/C][C]Sq.E[/C][C]MSE[/C][C]RMSE[/C][C]ScaledE[/C][C]MASE[/C][/ROW]
[ROW][C]32[/C][C]0.406[/C][C]0.2946[/C][C]0.2946[/C][C]0.3454[/C][C]485312.4621[/C][C]0[/C][C]0[/C][C]1.9961[/C][C]1.9961[/C][/ROW]
[ROW][C]33[/C][C]0.4943[/C][C]0.3133[/C][C]0.3039[/C][C]0.3585[/C][C]808591.1464[/C][C]646951.8043[/C][C]804.3331[/C][C]2.5766[/C][C]2.2863[/C][/ROW]
[ROW][C]34[/C][C]0.5197[/C][C]0.1292[/C][C]0.2457[/C][C]0.285[/C][C]129310.974[/C][C]474404.8608[/C][C]688.7705[/C][C]1.0304[/C][C]1.8677[/C][/ROW]
[ROW][C]35[/C][C]0.5713[/C][C]0.0288[/C][C]0.1915[/C][C]0.2211[/C][C]5871.1538[/C][C]357271.4341[/C][C]597.7219[/C][C]0.2196[/C][C]1.4556[/C][/ROW]
[ROW][C]36[/C][C]1.0254[/C][C]0.1593[/C][C]0.185[/C][C]0.2115[/C][C]99420.4118[/C][C]305701.2296[/C][C]552.9025[/C][C]0.9035[/C][C]1.3452[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300453&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300453&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPEsMAPESq.EMSERMSEScaledEMASE
320.4060.29460.29460.3454485312.4621001.99611.9961
330.49430.31330.30390.3585808591.1464646951.8043804.33312.57662.2863
340.51970.12920.24570.285129310.974474404.8608688.77051.03041.8677
350.57130.02880.19150.22115871.1538357271.4341597.72190.21961.4556
361.02540.15930.1850.211599420.4118305701.2296552.90250.90351.3452



Parameters (Session):
par1 = FALSE ; par2 = 1 ; par3 = 2 ; par4 = 0 ; par5 = 1 ; par6 = 3 ; par7 = 1 ; par8 = 2 ; par9 = 0 ;
Parameters (R input):
par1 = 5 ; par2 = 1 ; par3 = 1 ; par4 = 0 ; par5 = 1 ; par6 = 3 ; par7 = 2 ; par8 = 2 ; par9 = 1 ; par10 = FALSE ;
R code (references can be found in the software module):
par1 <- as.numeric(par1) #cut off periods
par2 <- as.numeric(par2) #lambda
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #p
par7 <- as.numeric(par7) #q
par8 <- as.numeric(par8) #P
par9 <- as.numeric(par9) #Q
if (par10 == 'TRUE') par10 <- TRUE
if (par10 == 'FALSE') par10 <- FALSE
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
lx <- length(x)
first <- lx - 2*par1
nx <- lx - par1
nx1 <- nx + 1
fx <- lx - nx
if (fx < 1) {
fx <- par5*2
nx1 <- lx + fx - 1
first <- lx - 2*fx
}
first <- 1
if (fx < 3) fx <- round(lx/10,0)
(arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML'))
(forecast <- predict(arima.out,fx))
(lb <- forecast$pred - 1.96 * forecast$se)
(ub <- forecast$pred + 1.96 * forecast$se)
if (par2 == 0) {
x <- exp(x)
forecast$pred <- exp(forecast$pred)
lb <- exp(lb)
ub <- exp(ub)
}
if (par2 != 0) {
x <- x^(1/par2)
forecast$pred <- forecast$pred^(1/par2)
lb <- lb^(1/par2)
ub <- ub^(1/par2)
}
if (par2 < 0) {
olb <- lb
lb <- ub
ub <- olb
}
(actandfor <- c(x[1:nx], forecast$pred))
(perc.se <- (ub-forecast$pred)/1.96/forecast$pred)
bitmap(file='test1.png')
opar <- par(mar=c(4,4,2,2),las=1)
ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub))
plot(x,ylim=ylim,type='n',xlim=c(first,lx))
usr <- par('usr')
rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon')
rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender')
abline(h= (-3:3)*2 , col ='gray', lty =3)
polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA)
lines(nx1:lx, lb , lty=2)
lines(nx1:lx, ub , lty=2)
lines(x, lwd=2)
lines(nx1:lx, forecast$pred , lwd=2 , col ='white')
box()
par(opar)
dev.off()
prob.dec <- array(NA, dim=fx)
prob.sdec <- array(NA, dim=fx)
prob.ldec <- array(NA, dim=fx)
prob.pval <- array(NA, dim=fx)
perf.pe <- array(0, dim=fx)
perf.spe <- array(0, dim=fx)
perf.scalederr <- array(0, dim=fx)
perf.mase <- array(0, dim=fx)
perf.mase1 <- array(0, dim=fx)
perf.mape <- array(0, dim=fx)
perf.smape <- array(0, dim=fx)
perf.mape1 <- array(0, dim=fx)
perf.smape1 <- array(0,dim=fx)
perf.se <- array(0, dim=fx)
perf.mse <- array(0, dim=fx)
perf.mse1 <- array(0, dim=fx)
perf.rmse <- array(0, dim=fx)
perf.scaleddenom <- 0
for (i in 2:fx) {
perf.scaleddenom = perf.scaleddenom + abs(x[nx+i] - x[nx+i-1])
}
perf.scaleddenom = perf.scaleddenom / (fx-1)
for (i in 1:fx) {
locSD <- (ub[i] - forecast$pred[i]) / 1.96
perf.scalederr[i] = (x[nx+i] - forecast$pred[i]) / perf.scaleddenom
perf.pe[i] = (x[nx+i] - forecast$pred[i]) / x[nx+i]
perf.spe[i] = 2*(x[nx+i] - forecast$pred[i]) / (x[nx+i] + forecast$pred[i])
perf.se[i] = (x[nx+i] - forecast$pred[i])^2
prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD)
prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD)
prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD)
prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD)
}
perf.mape[1] = abs(perf.pe[1])
perf.smape[1] = abs(perf.spe[1])
perf.mape1[1] = perf.mape[1]
perf.smape1[1] = perf.smape[1]
perf.mse[1] = perf.se[1]
perf.mase[1] = abs(perf.scalederr[1])
perf.mase1[1] = perf.mase[1]
for (i in 2:fx) {
perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i])
perf.mape1[i] = perf.mape[i] / i
perf.smape[i] = perf.smape[i-1] + abs(perf.spe[i])
perf.smape1[i] = perf.smape[i] / i
perf.mse[i] = perf.mse[i-1] + perf.se[i]
perf.mse1[i] = perf.mse[i] / i
perf.mase[i] = perf.mase[i-1] + abs(perf.scalederr[i])
perf.mase1[i] = perf.mase[i] / i
}
perf.rmse = sqrt(perf.mse1)
bitmap(file='test2.png')
plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub)))
dum <- forecast$pred
dum[1:par1] <- x[(nx+1):lx]
lines(dum, lty=1)
lines(ub,lty=3)
lines(lb,lty=3)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'Y[t]',1,header=TRUE)
a<-table.element(a,'F[t]',1,header=TRUE)
a<-table.element(a,'95% LB',1,header=TRUE)
a<-table.element(a,'95% UB',1,header=TRUE)
a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE)
mylab <- paste('P(F[t]>Y[',nx,sep='')
mylab <- paste(mylab,'])',sep='')
a<-table.element(a,mylab,1,header=TRUE)
a<-table.row.end(a)
for (i in (nx-par5):nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.row.end(a)
}
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(x[nx+i],4))
a<-table.element(a,round(forecast$pred[i],4))
a<-table.element(a,round(lb[i],4))
a<-table.element(a,round(ub[i],4))
a<-table.element(a,round((1-prob.pval[i]),4))
a<-table.element(a,round((1-prob.dec[i]),4))
a<-table.element(a,round((1-prob.sdec[i]),4))
a<-table.element(a,round((1-prob.ldec[i]),4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',10,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'% S.E.',1,header=TRUE)
a<-table.element(a,'PE',1,header=TRUE)
a<-table.element(a,'MAPE',1,header=TRUE)
a<-table.element(a,'sMAPE',1,header=TRUE)
a<-table.element(a,'Sq.E',1,header=TRUE)
a<-table.element(a,'MSE',1,header=TRUE)
a<-table.element(a,'RMSE',1,header=TRUE)
a<-table.element(a,'ScaledE',1,header=TRUE)
a<-table.element(a,'MASE',1,header=TRUE)
a<-table.row.end(a)
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(perc.se[i],4))
a<-table.element(a,round(perf.pe[i],4))
a<-table.element(a,round(perf.mape1[i],4))
a<-table.element(a,round(perf.smape1[i],4))
a<-table.element(a,round(perf.se[i],4))
a<-table.element(a,round(perf.mse1[i],4))
a<-table.element(a,round(perf.rmse[i],4))
a<-table.element(a,round(perf.scalederr[i],4))
a<-table.element(a,round(perf.mase1[i],4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')