Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_structuraltimeseries.wasp
Title produced by softwareStructural Time Series Models
Date of computationFri, 16 Dec 2016 16:41:08 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/16/t14819029006q66dta6e5zwkjy.htm/, Retrieved Fri, 01 Nov 2024 03:47:51 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=300379, Retrieved Fri, 01 Nov 2024 03:47:51 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact79
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [ARIMA Backward Selection] [] [2016-12-16 13:36:55] [683f400e1b95307fc738e729f07c4fce]
-    D  [ARIMA Backward Selection] [] [2016-12-16 14:17:56] [683f400e1b95307fc738e729f07c4fce]
- R  D    [ARIMA Backward Selection] [] [2016-12-16 14:51:40] [683f400e1b95307fc738e729f07c4fce]
- RM D        [Structural Time Series Models] [] [2016-12-16 15:41:08] [404ac5ee4f7301873f6a96ef36861981] [Current]
Feedback Forum

Post a new message
Dataseries X:
1880
3600
4600
6560
7840
8560
10120
9240
9320
7000
3960
4680
3920
1560
4800
5240
8000
9760
9800
9280
7680
7760
5680
4560
1560
3680
4200
7400
7040
8480
9720
9760
9440
7240
5080
4080
5120
4400
5160
6680
8240
8960
9280
9880
8480
7320
4880
5280
4080
4720
6360
5760
9000
9160
10480
10160
9120
7880
5080
4360
4480
6000
6120
6200
8960
8680
10240
10920
8440
7760
5320
3920
4040
2960
6280
6320
7160
8160




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time5 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300379&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]5 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=300379&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300379&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R ServerBig Analytics Cloud Computing Center







Structural Time Series Model -- Interpolation
tObservedLevelSlopeSeasonalStand. Residuals
118801880000
236003097.562058927721171.2380320461728.84247164181541.4055070328187
346004530.244975301831361.9795990650220.49275934387750.192967152634757
465606435.266835458741753.2879527786523.32880725134890.398359292780398
578407878.05403119171527.7299005771819.2225208400936-0.226328985849614
685608675.52132914512996.50556987857718.6586786041259-0.531381560037337
71012010029.68812661181256.7524740092624.5949231280240.260300699833032
892409546.98074711048-8.9739992160336912.63656583472-1.26598527379522
993209334.31378448745-157.18496558040323.1114155422187-0.148239715682723
1070007327.03995389979-1503.3017520579212.8710381981701-1.34637559550441
1139604235.34114526674-2659.0018343051816.4872655151028-1.15592226091667
1246804167.40570184841-773.77051169539636.5503272066761.88559373806938
1339203921.14929803175-399.556142969269-95.64220691528690.419876118984964
1415601800.90678944649-1493.69981033166-28.0032627275953-1.00981525239274
1548004102.185167930841262.732919274096.379030280856062.7535105530263
1652405288.438974604321207.22585336704-34.7103785532093-0.0549362991003821
1780007781.593455327282138.39488139976-14.75508073348720.929778730661267
1897609819.92576919332065.82728949197-41.7016752110627-0.0725809761854845
19980010150.5654585586806.646725025798-34.3199065452722-1.25941382012339
2092809580.57294578986-192.390010218977-49.6638064961809-0.999221355728538
2176807967.79501020679-1223.11650633083-28.9244917786772-1.03092373355862
2277607613.99323861405-592.306956450901-12.42350443300480.630930844593246
2356805939.35304731978-1377.68188685812-62.1030822661012-0.785525913645241
2445604570.58901490986-1371.21158674036-12.21405406522250.00647156861864807
2515601719.47479383607-2431.22183031062107.023098733926-1.13035230924717
2636803107.56041135965104.86019942838229.32606996332322.41861367058804
2742003979.3720157272659.8853043833681.87063932712730.555320761948135
2874006945.240916854362329.3764160394342.00755313023921.65744642077317
2970407370.96327948214953.56780443008612.0810473297371-1.37433358618646
3084808415.511937731911019.3926958780948.03930238077020.0658370837006124
3197209636.044005006591164.9848304985447.57224331741720.145619384363436
3297609900.22252984221512.92432802051122.7281509294376-0.652182089704185
3394409574.1641304689-94.360016290354217.5980456135188-0.607400677917602
3472407546.48761871428-1493.7289056277343.2193578694599-1.39963810044027
3550805226.99378080404-2091.424897712942.37245499077616-0.597810922640953
3640803862.42959677842-1565.4418104651786.12608979896270.526095955715066
3751204829.99378648439253.519880324114-165.4538625036291.89940003166625
3844004501.46694648205-141.445022162301-13.1346969090761-0.382234265746469
3951605023.63076375442337.33613554933917.09972093476140.479490708684022
4066806429.80299918571109.4209471830659.7034623209990.767753304301759
4182408146.80345941661547.65587822335-15.62469812757440.437849580331804
4289609077.130627830131102.0059918677-6.26425478343919-0.445732232624723
4392809406.8332343574544.26345623930711.9268002189376-0.55784748645159
4498809894.27236883984503.224671255255-4.06241594624216-0.0410464634489105
4584808784.59051589436-661.587808299875-14.7974126703989-1.16503572624498
4673207419.82327159031-1169.4036270471926.5161521107355-0.507913612782361
4748805128.5927054122-1979.53918919666-47.0392198199636-0.810291296252794
4852804905.82995703988-711.30772149300958.65013140556021.26855392427039
4940804156.31493379288-738.761048243326-69.4662439155301-0.0283343409184451
5047204539.6377358741532.50014887892363.617147495131790.752702196125188
5163606062.442691430911104.9546009296231.30022009593061.07469498038679
5257605954.7557333194230.72480631368520.4342133122117-0.870207471857483
5390008525.861964986671915.6705311126657.28157413438911.68362676704303
5491609371.368829922261144.65445225376-20.3027885619532-0.771157474875553
551048010472.688051381113.4219509179415.0521437077734-0.0312384003570143
561016010371.2727048332237.8367405169285.71838105173138-0.875749170963591
5791209357.81605556188-664.001564479293-14.3174551865386-0.902011204602079
5878807951.96810524213-1198.6626313754560.5348097797965-0.534764208328084
5950805413.46054065695-2164.28078253961-94.1554150699055-0.965803449649896
6043604109.20508359474-1544.7352490241697.25765168026460.619741268485947
6144804240.16162171052-340.876996484165-59.4762539666841.23317197309451
6260005713.0701378649916.286303393313-5.629247495883821.23366032697586
6361206150.46284439855572.4174649909754.6485231466021-0.344718147112348
6462006319.5334534505282.13279182144-48.2370385303681-0.289157612435492
6589608495.226038618691643.14816365043129.1328271510261.36001525652355
6686808957.89558866314794.135992383838-68.1946050550758-0.849165858839654
671024010124.23837655671061.920084331349.6163796223930.267834843996501
681092010943.2266986437887.13646630147819.9463251889256-0.174816323956222
6984409009.18376816451-1142.59411076142-67.8201611561324-2.03011984291498
7077607675.94417840013-1279.75492931211117.93597868186-0.137187342855147
7153205579.05390223833-1867.61785316091-113.845899546384-0.587975334552351
7239203826.89518141503-1784.5961624965172.59787898603520.0830545581626438
7340403821.13645220942-507.254819567404-97.77048195662351.30156754623098
7429603014.56677358597-715.918445419863-5.49983862440481-0.205555629802037
7562805550.679142630951614.91213524894153.9602304098222.33709467727434
7663206573.774848618761189.61708114343-149.515912942718-0.423881319348371
7771607128.88606497767734.210409477291143.119926958058-0.455081821794779
7881608185.38437154437965.654358788179-82.3922537116230.231485039240996

\begin{tabular}{lllllllll}
\hline
Structural Time Series Model -- Interpolation \tabularnewline
t & Observed & Level & Slope & Seasonal & Stand. Residuals \tabularnewline
1 & 1880 & 1880 & 0 & 0 & 0 \tabularnewline
2 & 3600 & 3097.56205892772 & 1171.23803204617 & 28.8424716418154 & 1.4055070328187 \tabularnewline
3 & 4600 & 4530.24497530183 & 1361.97959906502 & 20.4927593438775 & 0.192967152634757 \tabularnewline
4 & 6560 & 6435.26683545874 & 1753.28795277865 & 23.3288072513489 & 0.398359292780398 \tabularnewline
5 & 7840 & 7878.0540311917 & 1527.72990057718 & 19.2225208400936 & -0.226328985849614 \tabularnewline
6 & 8560 & 8675.52132914512 & 996.505569878577 & 18.6586786041259 & -0.531381560037337 \tabularnewline
7 & 10120 & 10029.6881266118 & 1256.75247400926 & 24.594923128024 & 0.260300699833032 \tabularnewline
8 & 9240 & 9546.98074711048 & -8.97399921603369 & 12.63656583472 & -1.26598527379522 \tabularnewline
9 & 9320 & 9334.31378448745 & -157.184965580403 & 23.1114155422187 & -0.148239715682723 \tabularnewline
10 & 7000 & 7327.03995389979 & -1503.30175205792 & 12.8710381981701 & -1.34637559550441 \tabularnewline
11 & 3960 & 4235.34114526674 & -2659.00183430518 & 16.4872655151028 & -1.15592226091667 \tabularnewline
12 & 4680 & 4167.40570184841 & -773.770511695396 & 36.550327206676 & 1.88559373806938 \tabularnewline
13 & 3920 & 3921.14929803175 & -399.556142969269 & -95.6422069152869 & 0.419876118984964 \tabularnewline
14 & 1560 & 1800.90678944649 & -1493.69981033166 & -28.0032627275953 & -1.00981525239274 \tabularnewline
15 & 4800 & 4102.18516793084 & 1262.73291927409 & 6.37903028085606 & 2.7535105530263 \tabularnewline
16 & 5240 & 5288.43897460432 & 1207.22585336704 & -34.7103785532093 & -0.0549362991003821 \tabularnewline
17 & 8000 & 7781.59345532728 & 2138.39488139976 & -14.7550807334872 & 0.929778730661267 \tabularnewline
18 & 9760 & 9819.9257691933 & 2065.82728949197 & -41.7016752110627 & -0.0725809761854845 \tabularnewline
19 & 9800 & 10150.5654585586 & 806.646725025798 & -34.3199065452722 & -1.25941382012339 \tabularnewline
20 & 9280 & 9580.57294578986 & -192.390010218977 & -49.6638064961809 & -0.999221355728538 \tabularnewline
21 & 7680 & 7967.79501020679 & -1223.11650633083 & -28.9244917786772 & -1.03092373355862 \tabularnewline
22 & 7760 & 7613.99323861405 & -592.306956450901 & -12.4235044330048 & 0.630930844593246 \tabularnewline
23 & 5680 & 5939.35304731978 & -1377.68188685812 & -62.1030822661012 & -0.785525913645241 \tabularnewline
24 & 4560 & 4570.58901490986 & -1371.21158674036 & -12.2140540652225 & 0.00647156861864807 \tabularnewline
25 & 1560 & 1719.47479383607 & -2431.22183031062 & 107.023098733926 & -1.13035230924717 \tabularnewline
26 & 3680 & 3107.56041135965 & 104.860199428382 & 29.3260699633232 & 2.41861367058804 \tabularnewline
27 & 4200 & 3979.3720157272 & 659.88530438336 & 81.8706393271273 & 0.555320761948135 \tabularnewline
28 & 7400 & 6945.24091685436 & 2329.37641603943 & 42.0075531302392 & 1.65744642077317 \tabularnewline
29 & 7040 & 7370.96327948214 & 953.567804430086 & 12.0810473297371 & -1.37433358618646 \tabularnewline
30 & 8480 & 8415.51193773191 & 1019.39269587809 & 48.0393023807702 & 0.0658370837006124 \tabularnewline
31 & 9720 & 9636.04400500659 & 1164.98483049854 & 47.5722433174172 & 0.145619384363436 \tabularnewline
32 & 9760 & 9900.22252984221 & 512.924328020511 & 22.7281509294376 & -0.652182089704185 \tabularnewline
33 & 9440 & 9574.1641304689 & -94.3600162903542 & 17.5980456135188 & -0.607400677917602 \tabularnewline
34 & 7240 & 7546.48761871428 & -1493.72890562773 & 43.2193578694599 & -1.39963810044027 \tabularnewline
35 & 5080 & 5226.99378080404 & -2091.42489771294 & 2.37245499077616 & -0.597810922640953 \tabularnewline
36 & 4080 & 3862.42959677842 & -1565.44181046517 & 86.1260897989627 & 0.526095955715066 \tabularnewline
37 & 5120 & 4829.99378648439 & 253.519880324114 & -165.453862503629 & 1.89940003166625 \tabularnewline
38 & 4400 & 4501.46694648205 & -141.445022162301 & -13.1346969090761 & -0.382234265746469 \tabularnewline
39 & 5160 & 5023.63076375442 & 337.336135549339 & 17.0997209347614 & 0.479490708684022 \tabularnewline
40 & 6680 & 6429.8029991857 & 1109.42094718306 & 59.703462320999 & 0.767753304301759 \tabularnewline
41 & 8240 & 8146.8034594166 & 1547.65587822335 & -15.6246981275744 & 0.437849580331804 \tabularnewline
42 & 8960 & 9077.13062783013 & 1102.0059918677 & -6.26425478343919 & -0.445732232624723 \tabularnewline
43 & 9280 & 9406.8332343574 & 544.263456239307 & 11.9268002189376 & -0.55784748645159 \tabularnewline
44 & 9880 & 9894.27236883984 & 503.224671255255 & -4.06241594624216 & -0.0410464634489105 \tabularnewline
45 & 8480 & 8784.59051589436 & -661.587808299875 & -14.7974126703989 & -1.16503572624498 \tabularnewline
46 & 7320 & 7419.82327159031 & -1169.40362704719 & 26.5161521107355 & -0.507913612782361 \tabularnewline
47 & 4880 & 5128.5927054122 & -1979.53918919666 & -47.0392198199636 & -0.810291296252794 \tabularnewline
48 & 5280 & 4905.82995703988 & -711.307721493009 & 58.6501314055602 & 1.26855392427039 \tabularnewline
49 & 4080 & 4156.31493379288 & -738.761048243326 & -69.4662439155301 & -0.0283343409184451 \tabularnewline
50 & 4720 & 4539.63773587415 & 32.5001488789236 & 3.61714749513179 & 0.752702196125188 \tabularnewline
51 & 6360 & 6062.44269143091 & 1104.95460092962 & 31.3002200959306 & 1.07469498038679 \tabularnewline
52 & 5760 & 5954.7557333194 & 230.724806313685 & 20.4342133122117 & -0.870207471857483 \tabularnewline
53 & 9000 & 8525.86196498667 & 1915.67053111266 & 57.2815741343891 & 1.68362676704303 \tabularnewline
54 & 9160 & 9371.36882992226 & 1144.65445225376 & -20.3027885619532 & -0.771157474875553 \tabularnewline
55 & 10480 & 10472.68805138 & 1113.42195091794 & 15.0521437077734 & -0.0312384003570143 \tabularnewline
56 & 10160 & 10371.2727048332 & 237.836740516928 & 5.71838105173138 & -0.875749170963591 \tabularnewline
57 & 9120 & 9357.81605556188 & -664.001564479293 & -14.3174551865386 & -0.902011204602079 \tabularnewline
58 & 7880 & 7951.96810524213 & -1198.66263137545 & 60.5348097797965 & -0.534764208328084 \tabularnewline
59 & 5080 & 5413.46054065695 & -2164.28078253961 & -94.1554150699055 & -0.965803449649896 \tabularnewline
60 & 4360 & 4109.20508359474 & -1544.73524902416 & 97.2576516802646 & 0.619741268485947 \tabularnewline
61 & 4480 & 4240.16162171052 & -340.876996484165 & -59.476253966684 & 1.23317197309451 \tabularnewline
62 & 6000 & 5713.0701378649 & 916.286303393313 & -5.62924749588382 & 1.23366032697586 \tabularnewline
63 & 6120 & 6150.46284439855 & 572.41746499097 & 54.6485231466021 & -0.344718147112348 \tabularnewline
64 & 6200 & 6319.5334534505 & 282.13279182144 & -48.2370385303681 & -0.289157612435492 \tabularnewline
65 & 8960 & 8495.22603861869 & 1643.14816365043 & 129.132827151026 & 1.36001525652355 \tabularnewline
66 & 8680 & 8957.89558866314 & 794.135992383838 & -68.1946050550758 & -0.849165858839654 \tabularnewline
67 & 10240 & 10124.2383765567 & 1061.9200843313 & 49.616379622393 & 0.267834843996501 \tabularnewline
68 & 10920 & 10943.2266986437 & 887.136466301478 & 19.9463251889256 & -0.174816323956222 \tabularnewline
69 & 8440 & 9009.18376816451 & -1142.59411076142 & -67.8201611561324 & -2.03011984291498 \tabularnewline
70 & 7760 & 7675.94417840013 & -1279.75492931211 & 117.93597868186 & -0.137187342855147 \tabularnewline
71 & 5320 & 5579.05390223833 & -1867.61785316091 & -113.845899546384 & -0.587975334552351 \tabularnewline
72 & 3920 & 3826.89518141503 & -1784.59616249651 & 72.5978789860352 & 0.0830545581626438 \tabularnewline
73 & 4040 & 3821.13645220942 & -507.254819567404 & -97.7704819566235 & 1.30156754623098 \tabularnewline
74 & 2960 & 3014.56677358597 & -715.918445419863 & -5.49983862440481 & -0.205555629802037 \tabularnewline
75 & 6280 & 5550.67914263095 & 1614.91213524894 & 153.960230409822 & 2.33709467727434 \tabularnewline
76 & 6320 & 6573.77484861876 & 1189.61708114343 & -149.515912942718 & -0.423881319348371 \tabularnewline
77 & 7160 & 7128.88606497767 & 734.210409477291 & 143.119926958058 & -0.455081821794779 \tabularnewline
78 & 8160 & 8185.38437154437 & 965.654358788179 & -82.392253711623 & 0.231485039240996 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300379&T=1

[TABLE]
[ROW][C]Structural Time Series Model -- Interpolation[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Level[/C][C]Slope[/C][C]Seasonal[/C][C]Stand. Residuals[/C][/ROW]
[ROW][C]1[/C][C]1880[/C][C]1880[/C][C]0[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]3600[/C][C]3097.56205892772[/C][C]1171.23803204617[/C][C]28.8424716418154[/C][C]1.4055070328187[/C][/ROW]
[ROW][C]3[/C][C]4600[/C][C]4530.24497530183[/C][C]1361.97959906502[/C][C]20.4927593438775[/C][C]0.192967152634757[/C][/ROW]
[ROW][C]4[/C][C]6560[/C][C]6435.26683545874[/C][C]1753.28795277865[/C][C]23.3288072513489[/C][C]0.398359292780398[/C][/ROW]
[ROW][C]5[/C][C]7840[/C][C]7878.0540311917[/C][C]1527.72990057718[/C][C]19.2225208400936[/C][C]-0.226328985849614[/C][/ROW]
[ROW][C]6[/C][C]8560[/C][C]8675.52132914512[/C][C]996.505569878577[/C][C]18.6586786041259[/C][C]-0.531381560037337[/C][/ROW]
[ROW][C]7[/C][C]10120[/C][C]10029.6881266118[/C][C]1256.75247400926[/C][C]24.594923128024[/C][C]0.260300699833032[/C][/ROW]
[ROW][C]8[/C][C]9240[/C][C]9546.98074711048[/C][C]-8.97399921603369[/C][C]12.63656583472[/C][C]-1.26598527379522[/C][/ROW]
[ROW][C]9[/C][C]9320[/C][C]9334.31378448745[/C][C]-157.184965580403[/C][C]23.1114155422187[/C][C]-0.148239715682723[/C][/ROW]
[ROW][C]10[/C][C]7000[/C][C]7327.03995389979[/C][C]-1503.30175205792[/C][C]12.8710381981701[/C][C]-1.34637559550441[/C][/ROW]
[ROW][C]11[/C][C]3960[/C][C]4235.34114526674[/C][C]-2659.00183430518[/C][C]16.4872655151028[/C][C]-1.15592226091667[/C][/ROW]
[ROW][C]12[/C][C]4680[/C][C]4167.40570184841[/C][C]-773.770511695396[/C][C]36.550327206676[/C][C]1.88559373806938[/C][/ROW]
[ROW][C]13[/C][C]3920[/C][C]3921.14929803175[/C][C]-399.556142969269[/C][C]-95.6422069152869[/C][C]0.419876118984964[/C][/ROW]
[ROW][C]14[/C][C]1560[/C][C]1800.90678944649[/C][C]-1493.69981033166[/C][C]-28.0032627275953[/C][C]-1.00981525239274[/C][/ROW]
[ROW][C]15[/C][C]4800[/C][C]4102.18516793084[/C][C]1262.73291927409[/C][C]6.37903028085606[/C][C]2.7535105530263[/C][/ROW]
[ROW][C]16[/C][C]5240[/C][C]5288.43897460432[/C][C]1207.22585336704[/C][C]-34.7103785532093[/C][C]-0.0549362991003821[/C][/ROW]
[ROW][C]17[/C][C]8000[/C][C]7781.59345532728[/C][C]2138.39488139976[/C][C]-14.7550807334872[/C][C]0.929778730661267[/C][/ROW]
[ROW][C]18[/C][C]9760[/C][C]9819.9257691933[/C][C]2065.82728949197[/C][C]-41.7016752110627[/C][C]-0.0725809761854845[/C][/ROW]
[ROW][C]19[/C][C]9800[/C][C]10150.5654585586[/C][C]806.646725025798[/C][C]-34.3199065452722[/C][C]-1.25941382012339[/C][/ROW]
[ROW][C]20[/C][C]9280[/C][C]9580.57294578986[/C][C]-192.390010218977[/C][C]-49.6638064961809[/C][C]-0.999221355728538[/C][/ROW]
[ROW][C]21[/C][C]7680[/C][C]7967.79501020679[/C][C]-1223.11650633083[/C][C]-28.9244917786772[/C][C]-1.03092373355862[/C][/ROW]
[ROW][C]22[/C][C]7760[/C][C]7613.99323861405[/C][C]-592.306956450901[/C][C]-12.4235044330048[/C][C]0.630930844593246[/C][/ROW]
[ROW][C]23[/C][C]5680[/C][C]5939.35304731978[/C][C]-1377.68188685812[/C][C]-62.1030822661012[/C][C]-0.785525913645241[/C][/ROW]
[ROW][C]24[/C][C]4560[/C][C]4570.58901490986[/C][C]-1371.21158674036[/C][C]-12.2140540652225[/C][C]0.00647156861864807[/C][/ROW]
[ROW][C]25[/C][C]1560[/C][C]1719.47479383607[/C][C]-2431.22183031062[/C][C]107.023098733926[/C][C]-1.13035230924717[/C][/ROW]
[ROW][C]26[/C][C]3680[/C][C]3107.56041135965[/C][C]104.860199428382[/C][C]29.3260699633232[/C][C]2.41861367058804[/C][/ROW]
[ROW][C]27[/C][C]4200[/C][C]3979.3720157272[/C][C]659.88530438336[/C][C]81.8706393271273[/C][C]0.555320761948135[/C][/ROW]
[ROW][C]28[/C][C]7400[/C][C]6945.24091685436[/C][C]2329.37641603943[/C][C]42.0075531302392[/C][C]1.65744642077317[/C][/ROW]
[ROW][C]29[/C][C]7040[/C][C]7370.96327948214[/C][C]953.567804430086[/C][C]12.0810473297371[/C][C]-1.37433358618646[/C][/ROW]
[ROW][C]30[/C][C]8480[/C][C]8415.51193773191[/C][C]1019.39269587809[/C][C]48.0393023807702[/C][C]0.0658370837006124[/C][/ROW]
[ROW][C]31[/C][C]9720[/C][C]9636.04400500659[/C][C]1164.98483049854[/C][C]47.5722433174172[/C][C]0.145619384363436[/C][/ROW]
[ROW][C]32[/C][C]9760[/C][C]9900.22252984221[/C][C]512.924328020511[/C][C]22.7281509294376[/C][C]-0.652182089704185[/C][/ROW]
[ROW][C]33[/C][C]9440[/C][C]9574.1641304689[/C][C]-94.3600162903542[/C][C]17.5980456135188[/C][C]-0.607400677917602[/C][/ROW]
[ROW][C]34[/C][C]7240[/C][C]7546.48761871428[/C][C]-1493.72890562773[/C][C]43.2193578694599[/C][C]-1.39963810044027[/C][/ROW]
[ROW][C]35[/C][C]5080[/C][C]5226.99378080404[/C][C]-2091.42489771294[/C][C]2.37245499077616[/C][C]-0.597810922640953[/C][/ROW]
[ROW][C]36[/C][C]4080[/C][C]3862.42959677842[/C][C]-1565.44181046517[/C][C]86.1260897989627[/C][C]0.526095955715066[/C][/ROW]
[ROW][C]37[/C][C]5120[/C][C]4829.99378648439[/C][C]253.519880324114[/C][C]-165.453862503629[/C][C]1.89940003166625[/C][/ROW]
[ROW][C]38[/C][C]4400[/C][C]4501.46694648205[/C][C]-141.445022162301[/C][C]-13.1346969090761[/C][C]-0.382234265746469[/C][/ROW]
[ROW][C]39[/C][C]5160[/C][C]5023.63076375442[/C][C]337.336135549339[/C][C]17.0997209347614[/C][C]0.479490708684022[/C][/ROW]
[ROW][C]40[/C][C]6680[/C][C]6429.8029991857[/C][C]1109.42094718306[/C][C]59.703462320999[/C][C]0.767753304301759[/C][/ROW]
[ROW][C]41[/C][C]8240[/C][C]8146.8034594166[/C][C]1547.65587822335[/C][C]-15.6246981275744[/C][C]0.437849580331804[/C][/ROW]
[ROW][C]42[/C][C]8960[/C][C]9077.13062783013[/C][C]1102.0059918677[/C][C]-6.26425478343919[/C][C]-0.445732232624723[/C][/ROW]
[ROW][C]43[/C][C]9280[/C][C]9406.8332343574[/C][C]544.263456239307[/C][C]11.9268002189376[/C][C]-0.55784748645159[/C][/ROW]
[ROW][C]44[/C][C]9880[/C][C]9894.27236883984[/C][C]503.224671255255[/C][C]-4.06241594624216[/C][C]-0.0410464634489105[/C][/ROW]
[ROW][C]45[/C][C]8480[/C][C]8784.59051589436[/C][C]-661.587808299875[/C][C]-14.7974126703989[/C][C]-1.16503572624498[/C][/ROW]
[ROW][C]46[/C][C]7320[/C][C]7419.82327159031[/C][C]-1169.40362704719[/C][C]26.5161521107355[/C][C]-0.507913612782361[/C][/ROW]
[ROW][C]47[/C][C]4880[/C][C]5128.5927054122[/C][C]-1979.53918919666[/C][C]-47.0392198199636[/C][C]-0.810291296252794[/C][/ROW]
[ROW][C]48[/C][C]5280[/C][C]4905.82995703988[/C][C]-711.307721493009[/C][C]58.6501314055602[/C][C]1.26855392427039[/C][/ROW]
[ROW][C]49[/C][C]4080[/C][C]4156.31493379288[/C][C]-738.761048243326[/C][C]-69.4662439155301[/C][C]-0.0283343409184451[/C][/ROW]
[ROW][C]50[/C][C]4720[/C][C]4539.63773587415[/C][C]32.5001488789236[/C][C]3.61714749513179[/C][C]0.752702196125188[/C][/ROW]
[ROW][C]51[/C][C]6360[/C][C]6062.44269143091[/C][C]1104.95460092962[/C][C]31.3002200959306[/C][C]1.07469498038679[/C][/ROW]
[ROW][C]52[/C][C]5760[/C][C]5954.7557333194[/C][C]230.724806313685[/C][C]20.4342133122117[/C][C]-0.870207471857483[/C][/ROW]
[ROW][C]53[/C][C]9000[/C][C]8525.86196498667[/C][C]1915.67053111266[/C][C]57.2815741343891[/C][C]1.68362676704303[/C][/ROW]
[ROW][C]54[/C][C]9160[/C][C]9371.36882992226[/C][C]1144.65445225376[/C][C]-20.3027885619532[/C][C]-0.771157474875553[/C][/ROW]
[ROW][C]55[/C][C]10480[/C][C]10472.68805138[/C][C]1113.42195091794[/C][C]15.0521437077734[/C][C]-0.0312384003570143[/C][/ROW]
[ROW][C]56[/C][C]10160[/C][C]10371.2727048332[/C][C]237.836740516928[/C][C]5.71838105173138[/C][C]-0.875749170963591[/C][/ROW]
[ROW][C]57[/C][C]9120[/C][C]9357.81605556188[/C][C]-664.001564479293[/C][C]-14.3174551865386[/C][C]-0.902011204602079[/C][/ROW]
[ROW][C]58[/C][C]7880[/C][C]7951.96810524213[/C][C]-1198.66263137545[/C][C]60.5348097797965[/C][C]-0.534764208328084[/C][/ROW]
[ROW][C]59[/C][C]5080[/C][C]5413.46054065695[/C][C]-2164.28078253961[/C][C]-94.1554150699055[/C][C]-0.965803449649896[/C][/ROW]
[ROW][C]60[/C][C]4360[/C][C]4109.20508359474[/C][C]-1544.73524902416[/C][C]97.2576516802646[/C][C]0.619741268485947[/C][/ROW]
[ROW][C]61[/C][C]4480[/C][C]4240.16162171052[/C][C]-340.876996484165[/C][C]-59.476253966684[/C][C]1.23317197309451[/C][/ROW]
[ROW][C]62[/C][C]6000[/C][C]5713.0701378649[/C][C]916.286303393313[/C][C]-5.62924749588382[/C][C]1.23366032697586[/C][/ROW]
[ROW][C]63[/C][C]6120[/C][C]6150.46284439855[/C][C]572.41746499097[/C][C]54.6485231466021[/C][C]-0.344718147112348[/C][/ROW]
[ROW][C]64[/C][C]6200[/C][C]6319.5334534505[/C][C]282.13279182144[/C][C]-48.2370385303681[/C][C]-0.289157612435492[/C][/ROW]
[ROW][C]65[/C][C]8960[/C][C]8495.22603861869[/C][C]1643.14816365043[/C][C]129.132827151026[/C][C]1.36001525652355[/C][/ROW]
[ROW][C]66[/C][C]8680[/C][C]8957.89558866314[/C][C]794.135992383838[/C][C]-68.1946050550758[/C][C]-0.849165858839654[/C][/ROW]
[ROW][C]67[/C][C]10240[/C][C]10124.2383765567[/C][C]1061.9200843313[/C][C]49.616379622393[/C][C]0.267834843996501[/C][/ROW]
[ROW][C]68[/C][C]10920[/C][C]10943.2266986437[/C][C]887.136466301478[/C][C]19.9463251889256[/C][C]-0.174816323956222[/C][/ROW]
[ROW][C]69[/C][C]8440[/C][C]9009.18376816451[/C][C]-1142.59411076142[/C][C]-67.8201611561324[/C][C]-2.03011984291498[/C][/ROW]
[ROW][C]70[/C][C]7760[/C][C]7675.94417840013[/C][C]-1279.75492931211[/C][C]117.93597868186[/C][C]-0.137187342855147[/C][/ROW]
[ROW][C]71[/C][C]5320[/C][C]5579.05390223833[/C][C]-1867.61785316091[/C][C]-113.845899546384[/C][C]-0.587975334552351[/C][/ROW]
[ROW][C]72[/C][C]3920[/C][C]3826.89518141503[/C][C]-1784.59616249651[/C][C]72.5978789860352[/C][C]0.0830545581626438[/C][/ROW]
[ROW][C]73[/C][C]4040[/C][C]3821.13645220942[/C][C]-507.254819567404[/C][C]-97.7704819566235[/C][C]1.30156754623098[/C][/ROW]
[ROW][C]74[/C][C]2960[/C][C]3014.56677358597[/C][C]-715.918445419863[/C][C]-5.49983862440481[/C][C]-0.205555629802037[/C][/ROW]
[ROW][C]75[/C][C]6280[/C][C]5550.67914263095[/C][C]1614.91213524894[/C][C]153.960230409822[/C][C]2.33709467727434[/C][/ROW]
[ROW][C]76[/C][C]6320[/C][C]6573.77484861876[/C][C]1189.61708114343[/C][C]-149.515912942718[/C][C]-0.423881319348371[/C][/ROW]
[ROW][C]77[/C][C]7160[/C][C]7128.88606497767[/C][C]734.210409477291[/C][C]143.119926958058[/C][C]-0.455081821794779[/C][/ROW]
[ROW][C]78[/C][C]8160[/C][C]8185.38437154437[/C][C]965.654358788179[/C][C]-82.392253711623[/C][C]0.231485039240996[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300379&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300379&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Structural Time Series Model -- Interpolation
tObservedLevelSlopeSeasonalStand. Residuals
118801880000
236003097.562058927721171.2380320461728.84247164181541.4055070328187
346004530.244975301831361.9795990650220.49275934387750.192967152634757
465606435.266835458741753.2879527786523.32880725134890.398359292780398
578407878.05403119171527.7299005771819.2225208400936-0.226328985849614
685608675.52132914512996.50556987857718.6586786041259-0.531381560037337
71012010029.68812661181256.7524740092624.5949231280240.260300699833032
892409546.98074711048-8.9739992160336912.63656583472-1.26598527379522
993209334.31378448745-157.18496558040323.1114155422187-0.148239715682723
1070007327.03995389979-1503.3017520579212.8710381981701-1.34637559550441
1139604235.34114526674-2659.0018343051816.4872655151028-1.15592226091667
1246804167.40570184841-773.77051169539636.5503272066761.88559373806938
1339203921.14929803175-399.556142969269-95.64220691528690.419876118984964
1415601800.90678944649-1493.69981033166-28.0032627275953-1.00981525239274
1548004102.185167930841262.732919274096.379030280856062.7535105530263
1652405288.438974604321207.22585336704-34.7103785532093-0.0549362991003821
1780007781.593455327282138.39488139976-14.75508073348720.929778730661267
1897609819.92576919332065.82728949197-41.7016752110627-0.0725809761854845
19980010150.5654585586806.646725025798-34.3199065452722-1.25941382012339
2092809580.57294578986-192.390010218977-49.6638064961809-0.999221355728538
2176807967.79501020679-1223.11650633083-28.9244917786772-1.03092373355862
2277607613.99323861405-592.306956450901-12.42350443300480.630930844593246
2356805939.35304731978-1377.68188685812-62.1030822661012-0.785525913645241
2445604570.58901490986-1371.21158674036-12.21405406522250.00647156861864807
2515601719.47479383607-2431.22183031062107.023098733926-1.13035230924717
2636803107.56041135965104.86019942838229.32606996332322.41861367058804
2742003979.3720157272659.8853043833681.87063932712730.555320761948135
2874006945.240916854362329.3764160394342.00755313023921.65744642077317
2970407370.96327948214953.56780443008612.0810473297371-1.37433358618646
3084808415.511937731911019.3926958780948.03930238077020.0658370837006124
3197209636.044005006591164.9848304985447.57224331741720.145619384363436
3297609900.22252984221512.92432802051122.7281509294376-0.652182089704185
3394409574.1641304689-94.360016290354217.5980456135188-0.607400677917602
3472407546.48761871428-1493.7289056277343.2193578694599-1.39963810044027
3550805226.99378080404-2091.424897712942.37245499077616-0.597810922640953
3640803862.42959677842-1565.4418104651786.12608979896270.526095955715066
3751204829.99378648439253.519880324114-165.4538625036291.89940003166625
3844004501.46694648205-141.445022162301-13.1346969090761-0.382234265746469
3951605023.63076375442337.33613554933917.09972093476140.479490708684022
4066806429.80299918571109.4209471830659.7034623209990.767753304301759
4182408146.80345941661547.65587822335-15.62469812757440.437849580331804
4289609077.130627830131102.0059918677-6.26425478343919-0.445732232624723
4392809406.8332343574544.26345623930711.9268002189376-0.55784748645159
4498809894.27236883984503.224671255255-4.06241594624216-0.0410464634489105
4584808784.59051589436-661.587808299875-14.7974126703989-1.16503572624498
4673207419.82327159031-1169.4036270471926.5161521107355-0.507913612782361
4748805128.5927054122-1979.53918919666-47.0392198199636-0.810291296252794
4852804905.82995703988-711.30772149300958.65013140556021.26855392427039
4940804156.31493379288-738.761048243326-69.4662439155301-0.0283343409184451
5047204539.6377358741532.50014887892363.617147495131790.752702196125188
5163606062.442691430911104.9546009296231.30022009593061.07469498038679
5257605954.7557333194230.72480631368520.4342133122117-0.870207471857483
5390008525.861964986671915.6705311126657.28157413438911.68362676704303
5491609371.368829922261144.65445225376-20.3027885619532-0.771157474875553
551048010472.688051381113.4219509179415.0521437077734-0.0312384003570143
561016010371.2727048332237.8367405169285.71838105173138-0.875749170963591
5791209357.81605556188-664.001564479293-14.3174551865386-0.902011204602079
5878807951.96810524213-1198.6626313754560.5348097797965-0.534764208328084
5950805413.46054065695-2164.28078253961-94.1554150699055-0.965803449649896
6043604109.20508359474-1544.7352490241697.25765168026460.619741268485947
6144804240.16162171052-340.876996484165-59.4762539666841.23317197309451
6260005713.0701378649916.286303393313-5.629247495883821.23366032697586
6361206150.46284439855572.4174649909754.6485231466021-0.344718147112348
6462006319.5334534505282.13279182144-48.2370385303681-0.289157612435492
6589608495.226038618691643.14816365043129.1328271510261.36001525652355
6686808957.89558866314794.135992383838-68.1946050550758-0.849165858839654
671024010124.23837655671061.920084331349.6163796223930.267834843996501
681092010943.2266986437887.13646630147819.9463251889256-0.174816323956222
6984409009.18376816451-1142.59411076142-67.8201611561324-2.03011984291498
7077607675.94417840013-1279.75492931211117.93597868186-0.137187342855147
7153205579.05390223833-1867.61785316091-113.845899546384-0.587975334552351
7239203826.89518141503-1784.5961624965172.59787898603520.0830545581626438
7340403821.13645220942-507.254819567404-97.77048195662351.30156754623098
7429603014.56677358597-715.918445419863-5.49983862440481-0.205555629802037
7562805550.679142630951614.91213524894153.9602304098222.33709467727434
7663206573.774848618761189.61708114343-149.515912942718-0.423881319348371
7771607128.88606497767734.210409477291143.119926958058-0.455081821794779
7881608185.38437154437965.654358788179-82.3922537116230.231485039240996







Structural Time Series Model -- Extrapolation
tObservedLevelSeasonal
18752.840510719745711.621812600793041.21869811895
28412.091335174825459.604028702842952.48730647198
37025.618815405915207.586244804891818.03257060102
45526.742605978994955.56846090694571.174145072045
52802.114259945644703.55067700899-1901.43641706335
62065.04176520934451.53289311104-2386.49112790174
71207.320942490974199.51510921309-2992.19416672212
81161.976877615183947.49732531514-2785.52044769996
92380.239034370643695.47954141719-1315.24050704655
103044.982080365823443.46175751924-398.479677153424
114499.07390050673191.443973621291307.62992688541
125028.245886161092939.426189723342088.81969643774

\begin{tabular}{lllllllll}
\hline
Structural Time Series Model -- Extrapolation \tabularnewline
t & Observed & Level & Seasonal \tabularnewline
1 & 8752.84051071974 & 5711.62181260079 & 3041.21869811895 \tabularnewline
2 & 8412.09133517482 & 5459.60402870284 & 2952.48730647198 \tabularnewline
3 & 7025.61881540591 & 5207.58624480489 & 1818.03257060102 \tabularnewline
4 & 5526.74260597899 & 4955.56846090694 & 571.174145072045 \tabularnewline
5 & 2802.11425994564 & 4703.55067700899 & -1901.43641706335 \tabularnewline
6 & 2065.0417652093 & 4451.53289311104 & -2386.49112790174 \tabularnewline
7 & 1207.32094249097 & 4199.51510921309 & -2992.19416672212 \tabularnewline
8 & 1161.97687761518 & 3947.49732531514 & -2785.52044769996 \tabularnewline
9 & 2380.23903437064 & 3695.47954141719 & -1315.24050704655 \tabularnewline
10 & 3044.98208036582 & 3443.46175751924 & -398.479677153424 \tabularnewline
11 & 4499.0739005067 & 3191.44397362129 & 1307.62992688541 \tabularnewline
12 & 5028.24588616109 & 2939.42618972334 & 2088.81969643774 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300379&T=2

[TABLE]
[ROW][C]Structural Time Series Model -- Extrapolation[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Level[/C][C]Seasonal[/C][/ROW]
[ROW][C]1[/C][C]8752.84051071974[/C][C]5711.62181260079[/C][C]3041.21869811895[/C][/ROW]
[ROW][C]2[/C][C]8412.09133517482[/C][C]5459.60402870284[/C][C]2952.48730647198[/C][/ROW]
[ROW][C]3[/C][C]7025.61881540591[/C][C]5207.58624480489[/C][C]1818.03257060102[/C][/ROW]
[ROW][C]4[/C][C]5526.74260597899[/C][C]4955.56846090694[/C][C]571.174145072045[/C][/ROW]
[ROW][C]5[/C][C]2802.11425994564[/C][C]4703.55067700899[/C][C]-1901.43641706335[/C][/ROW]
[ROW][C]6[/C][C]2065.0417652093[/C][C]4451.53289311104[/C][C]-2386.49112790174[/C][/ROW]
[ROW][C]7[/C][C]1207.32094249097[/C][C]4199.51510921309[/C][C]-2992.19416672212[/C][/ROW]
[ROW][C]8[/C][C]1161.97687761518[/C][C]3947.49732531514[/C][C]-2785.52044769996[/C][/ROW]
[ROW][C]9[/C][C]2380.23903437064[/C][C]3695.47954141719[/C][C]-1315.24050704655[/C][/ROW]
[ROW][C]10[/C][C]3044.98208036582[/C][C]3443.46175751924[/C][C]-398.479677153424[/C][/ROW]
[ROW][C]11[/C][C]4499.0739005067[/C][C]3191.44397362129[/C][C]1307.62992688541[/C][/ROW]
[ROW][C]12[/C][C]5028.24588616109[/C][C]2939.42618972334[/C][C]2088.81969643774[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300379&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300379&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Structural Time Series Model -- Extrapolation
tObservedLevelSeasonal
18752.840510719745711.621812600793041.21869811895
28412.091335174825459.604028702842952.48730647198
37025.618815405915207.586244804891818.03257060102
45526.742605978994955.56846090694571.174145072045
52802.114259945644703.55067700899-1901.43641706335
62065.04176520934451.53289311104-2386.49112790174
71207.320942490974199.51510921309-2992.19416672212
81161.976877615183947.49732531514-2785.52044769996
92380.239034370643695.47954141719-1315.24050704655
103044.982080365823443.46175751924-398.479677153424
114499.07390050673191.443973621291307.62992688541
125028.245886161092939.426189723342088.81969643774



Parameters (Session):
par1 = FALSE ; par2 = 1 ; par3 = 2 ; par4 = 0 ; par5 = 1 ; par6 = 3 ; par7 = 1 ; par8 = 2 ; par9 = 0 ;
Parameters (R input):
par1 = 12 ; par2 = 12 ; par3 = BFGS ;
R code (references can be found in the software module):
require('stsm')
require('stsm.class')
require('KFKSDS')
par1 <- as.numeric(par1)
par2 <- as.numeric(par2)
nx <- length(x)
x <- ts(x,frequency=par1)
m <- StructTS(x,type='BSM')
print(m$coef)
print(m$fitted)
print(m$resid)
mylevel <- as.numeric(m$fitted[,'level'])
myslope <- as.numeric(m$fitted[,'slope'])
myseas <- as.numeric(m$fitted[,'sea'])
myresid <- as.numeric(m$resid)
myfit <- mylevel+myseas
mm <- stsm.model(model = 'BSM', y = x, transPars = 'StructTS')
fit2 <- stsmFit(mm, stsm.method = 'maxlik.td.optim', method = par3, KF.args = list(P0cov = TRUE))
(fit2.comps <- tsSmooth(fit2, P0cov = FALSE)$states)
m2 <- set.pars(mm, pmax(fit2$par, .Machine$double.eps))
(ss <- char2numeric(m2))
(pred <- predict(ss, x, n.ahead = par2))
mylagmax <- nx/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(mylevel,na.action=na.pass,lag.max = mylagmax,main='Level')
acf(myseas,na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(myresid,na.action=na.pass,lag.max = mylagmax,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(mylevel,main='Level')
spectrum(myseas,main='Seasonal')
spectrum(myresid,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(mylevel,main='Level')
cpgram(myseas,main='Seasonal')
cpgram(myresid,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test1.png')
plot(as.numeric(m$resid),main='Standardized Residuals',ylab='Residuals',xlab='time',type='b')
grid()
dev.off()
bitmap(file='test5.png')
op <- par(mfrow = c(2,2))
hist(m$resid,main='Residual Histogram')
plot(density(m$resid),main='Residual Kernel Density')
qqnorm(m$resid,main='Residual Normal QQ Plot')
qqline(m$resid)
plot(m$resid^2, myfit^2,main='Sq.Resid vs. Sq.Fit',xlab='Squared residuals',ylab='Squared Fit')
par(op)
dev.off()
bitmap(file='test6.png')
par(mfrow = c(3,1), mar = c(3,3,3,3))
plot(cbind(x, pred$pred), type = 'n', plot.type = 'single', ylab = '')
lines(x)
polygon(c(time(pred$pred), rev(time(pred$pred))), c(pred$pred + 2 * pred$se, rev(pred$pred)), col = 'gray85', border = NA)
polygon(c(time(pred$pred), rev(time(pred$pred))), c(pred$pred - 2 * pred$se, rev(pred$pred)), col = ' gray85', border = NA)
lines(pred$pred, col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the observed series', side = 3, adj = 0)
plot(cbind(x, pred$a[,1]), type = 'n', plot.type = 'single', ylab = '')
lines(x)
polygon(c(time(pred$a[,1]), rev(time(pred$a[,1]))), c(pred$a[,1] + 2 * sqrt(pred$P[,1]), rev(pred$a[,1])), col = 'gray85', border = NA)
polygon(c(time(pred$a[,1]), rev(time(pred$a[,1]))), c(pred$a[,1] - 2 * sqrt(pred$P[,1]), rev(pred$a[,1])), col = ' gray85', border = NA)
lines(pred$a[,1], col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the level component', side = 3, adj = 0)
plot(cbind(fit2.comps[,3], pred$a[,3]), type = 'n', plot.type = 'single', ylab = '')
lines(fit2.comps[,3])
polygon(c(time(pred$a[,3]), rev(time(pred$a[,3]))), c(pred$a[,3] + 2 * sqrt(pred$P[,3]), rev(pred$a[,3])), col = 'gray85', border = NA)
polygon(c(time(pred$a[,3]), rev(time(pred$a[,3]))), c(pred$a[,3] - 2 * sqrt(pred$P[,3]), rev(pred$a[,3])), col = ' gray85', border = NA)
lines(pred$a[,3], col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the seasonal component', side = 3, adj = 0)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Structural Time Series Model -- Interpolation',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Level',header=TRUE)
a<-table.element(a,'Slope',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Stand. Residuals',header=TRUE)
a<-table.row.end(a)
for (i in 1:nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,mylevel[i])
a<-table.element(a,myslope[i])
a<-table.element(a,myseas[i])
a<-table.element(a,myresid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Structural Time Series Model -- Extrapolation',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Level',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.row.end(a)
for (i in 1:par2) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,pred$pred[i])
a<-table.element(a,pred$a[i,1])
a<-table.element(a,pred$a[i,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')