Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_autocorrelation.wasp
Title produced by software(Partial) Autocorrelation Function
Date of computationFri, 16 Dec 2016 15:01:20 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/16/t14818969148qunaw36hmagp5r.htm/, Retrieved Fri, 01 Nov 2024 03:38:53 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=300278, Retrieved Fri, 01 Nov 2024 03:38:53 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact97
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [ARIMA Backward Selection] [] [2016-12-16 13:36:55] [683f400e1b95307fc738e729f07c4fce]
- RM D    [(Partial) Autocorrelation Function] [] [2016-12-16 14:01:20] [404ac5ee4f7301873f6a96ef36861981] [Current]
Feedback Forum

Post a new message
Dataseries X:
4838
5531
5367.5
5013.5
5959.5
6334
5919
6248.5
5701
6530.5
7145.5
6819
7037
7809
6300
7143.5
7234.5
6567.5
6090
5654
6608
7566
6352.5
8592
6631.5
6852
7538
8407
7541
9904.5
9371
8091.5
8303.5
8617.5
10453.5
9990.5
8337
8336.5
10345.5
11060.5
9384.5
8357
8366
8404.5
8068
6518.5
9355
7298.5
8012
7189
6992
10277
7146.5
7102
7257
7088.5
9070.5
9606.5
6280
6248
6311.5
6434
7096.5
6601.5
5905
7006.5
6113.5
6911.5
6450.5
6504
7710
7045
6302.5
6810
7567
7051
7820
8514
8180
8140
8349.5
8474
7880
8130.5
8020.5
8232.5
8457
7468.5
6763
7877.5
7438
7131
7270
7203.5
7010
6564.5
6734.5
7571.5
6491
6489.5
6883.5
6958.5
5731.5
7157.5
6336
6862.5
7175.5
7408.5
7052
6685.5
7098.5
7048
7017
7099
7310
7868




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300278&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=300278&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300278&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Autocorrelation Function
Time lag kACF(k)T-STATP-value
1-0.367216-3.9387.1e-05
2-0.157078-1.68450.047401
30.0496280.53220.297807
4-0.089596-0.96080.169332
50.2125682.27950.01224
60.0285610.30630.379971
7-0.196149-2.10350.018803
80.1215951.3040.097426
9-0.003376-0.03620.485592
10-0.084249-0.90350.184081
110.0844690.90580.18346
12-0.034544-0.37040.355867
13-0.006099-0.06540.473984
140.1321351.4170.079595
15-0.27379-2.93610.002008
160.0573170.61470.269998
170.1592081.70730.045231
18-0.11083-1.18850.118539
190.1650141.76960.039724
20-0.215813-2.31430.011212

\begin{tabular}{lllllllll}
\hline
Autocorrelation Function \tabularnewline
Time lag k & ACF(k) & T-STAT & P-value \tabularnewline
1 & -0.367216 & -3.938 & 7.1e-05 \tabularnewline
2 & -0.157078 & -1.6845 & 0.047401 \tabularnewline
3 & 0.049628 & 0.5322 & 0.297807 \tabularnewline
4 & -0.089596 & -0.9608 & 0.169332 \tabularnewline
5 & 0.212568 & 2.2795 & 0.01224 \tabularnewline
6 & 0.028561 & 0.3063 & 0.379971 \tabularnewline
7 & -0.196149 & -2.1035 & 0.018803 \tabularnewline
8 & 0.121595 & 1.304 & 0.097426 \tabularnewline
9 & -0.003376 & -0.0362 & 0.485592 \tabularnewline
10 & -0.084249 & -0.9035 & 0.184081 \tabularnewline
11 & 0.084469 & 0.9058 & 0.18346 \tabularnewline
12 & -0.034544 & -0.3704 & 0.355867 \tabularnewline
13 & -0.006099 & -0.0654 & 0.473984 \tabularnewline
14 & 0.132135 & 1.417 & 0.079595 \tabularnewline
15 & -0.27379 & -2.9361 & 0.002008 \tabularnewline
16 & 0.057317 & 0.6147 & 0.269998 \tabularnewline
17 & 0.159208 & 1.7073 & 0.045231 \tabularnewline
18 & -0.11083 & -1.1885 & 0.118539 \tabularnewline
19 & 0.165014 & 1.7696 & 0.039724 \tabularnewline
20 & -0.215813 & -2.3143 & 0.011212 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300278&T=1

[TABLE]
[ROW][C]Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]ACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]-0.367216[/C][C]-3.938[/C][C]7.1e-05[/C][/ROW]
[ROW][C]2[/C][C]-0.157078[/C][C]-1.6845[/C][C]0.047401[/C][/ROW]
[ROW][C]3[/C][C]0.049628[/C][C]0.5322[/C][C]0.297807[/C][/ROW]
[ROW][C]4[/C][C]-0.089596[/C][C]-0.9608[/C][C]0.169332[/C][/ROW]
[ROW][C]5[/C][C]0.212568[/C][C]2.2795[/C][C]0.01224[/C][/ROW]
[ROW][C]6[/C][C]0.028561[/C][C]0.3063[/C][C]0.379971[/C][/ROW]
[ROW][C]7[/C][C]-0.196149[/C][C]-2.1035[/C][C]0.018803[/C][/ROW]
[ROW][C]8[/C][C]0.121595[/C][C]1.304[/C][C]0.097426[/C][/ROW]
[ROW][C]9[/C][C]-0.003376[/C][C]-0.0362[/C][C]0.485592[/C][/ROW]
[ROW][C]10[/C][C]-0.084249[/C][C]-0.9035[/C][C]0.184081[/C][/ROW]
[ROW][C]11[/C][C]0.084469[/C][C]0.9058[/C][C]0.18346[/C][/ROW]
[ROW][C]12[/C][C]-0.034544[/C][C]-0.3704[/C][C]0.355867[/C][/ROW]
[ROW][C]13[/C][C]-0.006099[/C][C]-0.0654[/C][C]0.473984[/C][/ROW]
[ROW][C]14[/C][C]0.132135[/C][C]1.417[/C][C]0.079595[/C][/ROW]
[ROW][C]15[/C][C]-0.27379[/C][C]-2.9361[/C][C]0.002008[/C][/ROW]
[ROW][C]16[/C][C]0.057317[/C][C]0.6147[/C][C]0.269998[/C][/ROW]
[ROW][C]17[/C][C]0.159208[/C][C]1.7073[/C][C]0.045231[/C][/ROW]
[ROW][C]18[/C][C]-0.11083[/C][C]-1.1885[/C][C]0.118539[/C][/ROW]
[ROW][C]19[/C][C]0.165014[/C][C]1.7696[/C][C]0.039724[/C][/ROW]
[ROW][C]20[/C][C]-0.215813[/C][C]-2.3143[/C][C]0.011212[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300278&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300278&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Autocorrelation Function
Time lag kACF(k)T-STATP-value
1-0.367216-3.9387.1e-05
2-0.157078-1.68450.047401
30.0496280.53220.297807
4-0.089596-0.96080.169332
50.2125682.27950.01224
60.0285610.30630.379971
7-0.196149-2.10350.018803
80.1215951.3040.097426
9-0.003376-0.03620.485592
10-0.084249-0.90350.184081
110.0844690.90580.18346
12-0.034544-0.37040.355867
13-0.006099-0.06540.473984
140.1321351.4170.079595
15-0.27379-2.93610.002008
160.0573170.61470.269998
170.1592081.70730.045231
18-0.11083-1.18850.118539
190.1650141.76960.039724
20-0.215813-2.31430.011212







Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
1-0.367216-3.9387.1e-05
2-0.337427-3.61850.000221
3-0.197517-2.11810.018159
4-0.275112-2.95020.001924
50.0426760.45770.324033
60.148141.58860.057446
7-0.02047-0.21950.41332
80.1046921.12270.131953
90.0913960.98010.164543
10-0.06355-0.68150.248465
11-0.038868-0.41680.338797
12-0.01685-0.18070.42846
13-0.035505-0.38080.352045
140.1225221.31390.095748
15-0.161707-1.73410.042789
16-0.145044-1.55540.061297
17-0.005865-0.06290.474979
18-0.060924-0.65330.257421
190.1625671.74330.041973
20-0.02112-0.22650.410612

\begin{tabular}{lllllllll}
\hline
Partial Autocorrelation Function \tabularnewline
Time lag k & PACF(k) & T-STAT & P-value \tabularnewline
1 & -0.367216 & -3.938 & 7.1e-05 \tabularnewline
2 & -0.337427 & -3.6185 & 0.000221 \tabularnewline
3 & -0.197517 & -2.1181 & 0.018159 \tabularnewline
4 & -0.275112 & -2.9502 & 0.001924 \tabularnewline
5 & 0.042676 & 0.4577 & 0.324033 \tabularnewline
6 & 0.14814 & 1.5886 & 0.057446 \tabularnewline
7 & -0.02047 & -0.2195 & 0.41332 \tabularnewline
8 & 0.104692 & 1.1227 & 0.131953 \tabularnewline
9 & 0.091396 & 0.9801 & 0.164543 \tabularnewline
10 & -0.06355 & -0.6815 & 0.248465 \tabularnewline
11 & -0.038868 & -0.4168 & 0.338797 \tabularnewline
12 & -0.01685 & -0.1807 & 0.42846 \tabularnewline
13 & -0.035505 & -0.3808 & 0.352045 \tabularnewline
14 & 0.122522 & 1.3139 & 0.095748 \tabularnewline
15 & -0.161707 & -1.7341 & 0.042789 \tabularnewline
16 & -0.145044 & -1.5554 & 0.061297 \tabularnewline
17 & -0.005865 & -0.0629 & 0.474979 \tabularnewline
18 & -0.060924 & -0.6533 & 0.257421 \tabularnewline
19 & 0.162567 & 1.7433 & 0.041973 \tabularnewline
20 & -0.02112 & -0.2265 & 0.410612 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300278&T=2

[TABLE]
[ROW][C]Partial Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]PACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]-0.367216[/C][C]-3.938[/C][C]7.1e-05[/C][/ROW]
[ROW][C]2[/C][C]-0.337427[/C][C]-3.6185[/C][C]0.000221[/C][/ROW]
[ROW][C]3[/C][C]-0.197517[/C][C]-2.1181[/C][C]0.018159[/C][/ROW]
[ROW][C]4[/C][C]-0.275112[/C][C]-2.9502[/C][C]0.001924[/C][/ROW]
[ROW][C]5[/C][C]0.042676[/C][C]0.4577[/C][C]0.324033[/C][/ROW]
[ROW][C]6[/C][C]0.14814[/C][C]1.5886[/C][C]0.057446[/C][/ROW]
[ROW][C]7[/C][C]-0.02047[/C][C]-0.2195[/C][C]0.41332[/C][/ROW]
[ROW][C]8[/C][C]0.104692[/C][C]1.1227[/C][C]0.131953[/C][/ROW]
[ROW][C]9[/C][C]0.091396[/C][C]0.9801[/C][C]0.164543[/C][/ROW]
[ROW][C]10[/C][C]-0.06355[/C][C]-0.6815[/C][C]0.248465[/C][/ROW]
[ROW][C]11[/C][C]-0.038868[/C][C]-0.4168[/C][C]0.338797[/C][/ROW]
[ROW][C]12[/C][C]-0.01685[/C][C]-0.1807[/C][C]0.42846[/C][/ROW]
[ROW][C]13[/C][C]-0.035505[/C][C]-0.3808[/C][C]0.352045[/C][/ROW]
[ROW][C]14[/C][C]0.122522[/C][C]1.3139[/C][C]0.095748[/C][/ROW]
[ROW][C]15[/C][C]-0.161707[/C][C]-1.7341[/C][C]0.042789[/C][/ROW]
[ROW][C]16[/C][C]-0.145044[/C][C]-1.5554[/C][C]0.061297[/C][/ROW]
[ROW][C]17[/C][C]-0.005865[/C][C]-0.0629[/C][C]0.474979[/C][/ROW]
[ROW][C]18[/C][C]-0.060924[/C][C]-0.6533[/C][C]0.257421[/C][/ROW]
[ROW][C]19[/C][C]0.162567[/C][C]1.7433[/C][C]0.041973[/C][/ROW]
[ROW][C]20[/C][C]-0.02112[/C][C]-0.2265[/C][C]0.410612[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300278&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300278&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
1-0.367216-3.9387.1e-05
2-0.337427-3.61850.000221
3-0.197517-2.11810.018159
4-0.275112-2.95020.001924
50.0426760.45770.324033
60.148141.58860.057446
7-0.02047-0.21950.41332
80.1046921.12270.131953
90.0913960.98010.164543
10-0.06355-0.68150.248465
11-0.038868-0.41680.338797
12-0.01685-0.18070.42846
13-0.035505-0.38080.352045
140.1225221.31390.095748
15-0.161707-1.73410.042789
16-0.145044-1.55540.061297
17-0.005865-0.06290.474979
18-0.060924-0.65330.257421
190.1625671.74330.041973
20-0.02112-0.22650.410612



Parameters (Session):
par1 = FALSE ; par2 = 1 ; par3 = 2 ; par4 = 0 ; par5 = 1 ; par6 = 3 ; par7 = 1 ; par8 = 2 ; par9 = 0 ;
Parameters (R input):
par1 = Default ; par2 = 1 ; par3 = 1 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ; par8 = ;
R code (references can be found in the software module):
par8 <- ''
par7 <- '0.95'
par6 <- 'White Noise'
par5 <- '12'
par4 <- '0'
par3 <- '0'
par2 <- '1'
par1 <- 'Default'
if (par1 == 'Default') {
par1 = 10*log10(length(x))
} else {
par1 <- as.numeric(par1)
}
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
par4 <- as.numeric(par4)
par5 <- as.numeric(par5)
if (par6 == 'White Noise') par6 <- 'white' else par6 <- 'ma'
par7 <- as.numeric(par7)
if (par8 != '') par8 <- as.numeric(par8)
x <- na.omit(x)
ox <- x
if (par8 == '') {
if (par2 == 0) {
x <- log(x)
} else {
x <- (x ^ par2 - 1) / par2
}
} else {
x <- log(x,base=par8)
}
if (par3 > 0) x <- diff(x,lag=1,difference=par3)
if (par4 > 0) x <- diff(x,lag=par5,difference=par4)
bitmap(file='picts.png')
op <- par(mfrow=c(2,1))
plot(ox,type='l',main='Original Time Series',xlab='time',ylab='value')
if (par8=='') {
mytitle <- paste('Working Time Series (lambda=',par2,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(lambda=',par2,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
} else {
mytitle <- paste('Working Time Series (base=',par8,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(base=',par8,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
}
plot(x,type='l', main=mytitle,xlab='time',ylab='value')
par(op)
dev.off()
bitmap(file='pic1.png')
racf <- acf(x, par1, main='Autocorrelation', xlab='time lag', ylab='ACF', ci.type=par6, ci=par7, sub=mysub)
dev.off()
bitmap(file='pic2.png')
rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF',sub=mysub)
dev.off()
(myacf <- c(racf$acf))
(mypacf <- c(rpacf$acf))
lengthx <- length(x)
sqrtn <- sqrt(lengthx)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'ACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 2:(par1+1)) {
a<-table.row.start(a)
a<-table.element(a,i-1,header=TRUE)
a<-table.element(a,round(myacf[i],6))
mytstat <- myacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Partial Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'PACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:par1) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,round(mypacf[i],6))
mytstat <- mypacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')