Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software ModulePatrick.Wessarwasp_pairs.wasp
Title produced by softwareKendall tau Correlation Matrix
Date of computationSat, 20 Mar 2010 04:44:59 -0600
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2010/Mar/20/t1269082145cohzyxdggx7crjb.htm/, Retrieved Tue, 18 Jan 2022 13:22:26 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=74559, Retrieved Tue, 18 Jan 2022 13:22:26 +0000
QR Codes:

Original text written by user:T. Allison, D. V. Cicchetti (1976), Sleep in Mammals: Ecological and Constitutional Correlates, Science, vol. 194
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact227
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Kendall tau Correlation Matrix] [Sleep in Mammals ...] [2010-03-20 10:44:59] [d76b387543b13b5e3afd8ff9e5fdc89f] [Current]
- RMPD    [Multiple Regression] [] [2010-03-25 10:28:38] [b98453cac15ba1066b407e146608df68]
- RMPD      [Decomposition by Loess] [] [2010-03-25 14:32:43] [b98453cac15ba1066b407e146608df68]
-   PD    [Kendall tau Correlation Matrix] [Review of Sleep A...] [2010-05-01 13:16:27] [b98453cac15ba1066b407e146608df68]
- RMP       [Kendall tau Correlation Matrix] [] [2010-12-17 14:19:04] [94f495cfd7e7946e5228cbd267a6841d]
- RMPD      [Recursive Partitioning (Regression Trees)] [] [2010-12-17 14:38:35] [94f495cfd7e7946e5228cbd267a6841d]
- RMPD    [Partial Least Squares - Path Modeling] [Review of Sleep A...] [2010-05-01 17:45:35] [b98453cac15ba1066b407e146608df68]
- RMP       [Partial Least Squares - Path Modeling] [] [2010-12-16 09:56:46] [b98453cac15ba1066b407e146608df68]
Feedback Forum

Post a new message
Dataseries X:
6.3	0.30102999566398	0.65321251377534	0	0.81954393554187	1.6232492903979	3	1	3
2.1	0.25527250510331	1.83884909073726	3.40602894496362	3.66304097489397	2.79518458968242	3	5	4
9.1	-0.15490195998574	1.43136376415899	1.02325245963371	2.25406445291434	2.25527250510331	4	4	4
15.8	0.5910646070265	1.27875360095283	-1.69897000433602	-0.52287874528034	1.54406804435028	1	1	1
5.2	0	1.48287358360875	2.20411998265592	2.22788670461367	2.59328606702046	4	5	4
10.9	0.55630250076729	1.44715803134222	0.51851393987789	1.40823996531185	1.79934054945358	1	2	1
8.3	0.14612803567824	1.69897000433602	1.71733758272386	2.64345267648619	2.36172783601759	1	1	1
11	0.17609125905568	0.84509804001426	-0.36653154442041	0.80617997398389	2.04921802267018	5	4	4
3.2	-0.15490195998574	1.47712125471966	2.66745295288995	2.62634036737504	2.44870631990508	5	5	5
6.3	0.32221929473392	0.54406804435028	-1.09691001300806	0.079181246047625	1.6232492903979	1	1	1
6.6	0.61278385671974	0.77815125038364	-0.10237290870956	0.54406804435028	1.6232492903979	2	2	2
9.5	0.079181246047625	1.01703333929878	-0.69897000433602	0.69897000433602	2.07918124604762	2	2	2
3.3	-0.30102999566398	1.30102999566398	1.44185217577329	2.06069784035361	2.17026171539496	5	5	5
11	0.53147891704226	0.5910646070265	-0.92081875395238	0	1.20411998265592	3	1	2
4.7	0.17609125905568	1.61278385671974	1.92941892571429	2.51188336097887	2.49136169383427	1	3	1
10.4	0.53147891704226	0.95424250943932	-1	0.60205999132796	1.44715803134222	5	1	3
7.4	-0.096910013008056	0.88081359228079	0.01703333929878	0.74036268949424	1.83250891270624	5	3	4
2.1	-0.096910013008056	1.66275783168157	2.71683772329952	2.81624129999178	2.52633927738984	5	5	5
17.9	0.30102999566398	1.38021124171161	-2	-0.60205999132796	1.69897000433602	1	1	1
6.1	0.27875360095283	2	1.79239168949825	3.12057393120585	2.42651126136458	1	1	1
11.9	0.11394335230684	0.50514997831991	-1.69897000433602	-0.39794000867204	1.27875360095283	4	1	3
13.8	0.7481880270062	0.69897000433602	0.23044892137827	0.79934054945358	1.07918124604762	2	1	1
14.3	0.49136169383427	0.81291335664286	0.54406804435028	1.03342375548695	2.07918124604762	2	1	1
15.2	0.25527250510331	1.07918124604762	-0.31875876262441	1.19033169817029	2.14612803567824	2	2	2
10	-0.045757490560675	1.30535136944662	1	2.06069784035361	2.23044892137827	4	4	4
11.9	0.25527250510331	1.11394335230684	0.20951501454263	1.05690485133647	1.23044892137827	2	1	2
6.5	0.27875360095283	1.43136376415899	2.28330122870355	2.25527250510331	2.06069784035361	4	4	4
7.5	-0.045757490560675	1.25527250510331	0.39794000867204	1.08278537031645	1.49136169383427	5	5	5
10.6	0.41497334797082	0.67209785793572	-0.55284196865778	0.27875360095283	1.32221929473392	3	1	3
7.4	0.38021124171161	0.99122607569249	0.62736585659273	1.70243053644553	1.7160033436348	1	1	1
8.4	0.079181246047625	1.46239799789896	0.83250891270624	2.25285303097989	2.2148438480477	2	3	2
5.7	-0.045757490560675	0.84509804001426	-0.1249387366083	1.0899051114394	2.35218251811136	2	2	2
4.9	-0.30102999566398	0.77815125038364	0.55630250076729	1.32221929473392	2.35218251811136	3	2	3
3.2	-0.22184874961636	1.30102999566398	1.74429298312268	2.24303804868629	2.17897694729317	5	5	5
11	0.36172783601759	0.65321251377534	-0.045757490560675	0.41497334797082	1.77815125038364	2	1	2
4.9	-0.30102999566398	0.8750612633917	0.30102999566398	1.0899051114394	2.30102999566398	3	1	3
13.2	0.41497334797082	0.36172783601759	-1	0.39794000867204	1.66275783168157	3	2	2
9.7	-0.22184874961636	1.38021124171161	0.6222140229663	1.76342799356294	2.32221929473392	4	3	4
12.8	0.81954393554187	0.47712125471966	0.54406804435028	0.5910646070265	1.14612803567824	2	1	1




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 1 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=74559&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]1 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=74559&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=74559&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







Correlations for all pairs of data series (pearson)
SWSPSLWbWbrtgPSD
SWS10.582-0.378-0.713-0.679-0.601-0.369-0.58-0.542
PS0.5821-0.346-0.372-0.438-0.646-0.534-0.591-0.684
L-0.378-0.34610.6830.7770.6790.0190.5190.227
Wb-0.713-0.3720.68310.9450.6950.2520.6620.431
Wbr-0.679-0.4380.7770.94510.7770.1920.6240.377
tg-0.601-0.6460.6790.6950.77710.1480.580.353
P-0.369-0.5340.0190.2520.1920.14810.680.93
S-0.58-0.5910.5190.6620.6240.580.6810.819
D-0.542-0.6840.2270.4310.3770.3530.930.8191

\begin{tabular}{lllllllll}
\hline
Correlations for all pairs of data series (pearson) \tabularnewline
  & SWS & PS & L & Wb & Wbr & tg & P & S & D \tabularnewline
SWS & 1 & 0.582 & -0.378 & -0.713 & -0.679 & -0.601 & -0.369 & -0.58 & -0.542 \tabularnewline
PS & 0.582 & 1 & -0.346 & -0.372 & -0.438 & -0.646 & -0.534 & -0.591 & -0.684 \tabularnewline
L & -0.378 & -0.346 & 1 & 0.683 & 0.777 & 0.679 & 0.019 & 0.519 & 0.227 \tabularnewline
Wb & -0.713 & -0.372 & 0.683 & 1 & 0.945 & 0.695 & 0.252 & 0.662 & 0.431 \tabularnewline
Wbr & -0.679 & -0.438 & 0.777 & 0.945 & 1 & 0.777 & 0.192 & 0.624 & 0.377 \tabularnewline
tg & -0.601 & -0.646 & 0.679 & 0.695 & 0.777 & 1 & 0.148 & 0.58 & 0.353 \tabularnewline
P & -0.369 & -0.534 & 0.019 & 0.252 & 0.192 & 0.148 & 1 & 0.68 & 0.93 \tabularnewline
S & -0.58 & -0.591 & 0.519 & 0.662 & 0.624 & 0.58 & 0.68 & 1 & 0.819 \tabularnewline
D & -0.542 & -0.684 & 0.227 & 0.431 & 0.377 & 0.353 & 0.93 & 0.819 & 1 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=74559&T=1

[TABLE]
[ROW][C]Correlations for all pairs of data series (pearson)[/C][/ROW]
[ROW][C] [/C][C]SWS[/C][C]PS[/C][C]L[/C][C]Wb[/C][C]Wbr[/C][C]tg[/C][C]P[/C][C]S[/C][C]D[/C][/ROW]
[ROW][C]SWS[/C][C]1[/C][C]0.582[/C][C]-0.378[/C][C]-0.713[/C][C]-0.679[/C][C]-0.601[/C][C]-0.369[/C][C]-0.58[/C][C]-0.542[/C][/ROW]
[ROW][C]PS[/C][C]0.582[/C][C]1[/C][C]-0.346[/C][C]-0.372[/C][C]-0.438[/C][C]-0.646[/C][C]-0.534[/C][C]-0.591[/C][C]-0.684[/C][/ROW]
[ROW][C]L[/C][C]-0.378[/C][C]-0.346[/C][C]1[/C][C]0.683[/C][C]0.777[/C][C]0.679[/C][C]0.019[/C][C]0.519[/C][C]0.227[/C][/ROW]
[ROW][C]Wb[/C][C]-0.713[/C][C]-0.372[/C][C]0.683[/C][C]1[/C][C]0.945[/C][C]0.695[/C][C]0.252[/C][C]0.662[/C][C]0.431[/C][/ROW]
[ROW][C]Wbr[/C][C]-0.679[/C][C]-0.438[/C][C]0.777[/C][C]0.945[/C][C]1[/C][C]0.777[/C][C]0.192[/C][C]0.624[/C][C]0.377[/C][/ROW]
[ROW][C]tg[/C][C]-0.601[/C][C]-0.646[/C][C]0.679[/C][C]0.695[/C][C]0.777[/C][C]1[/C][C]0.148[/C][C]0.58[/C][C]0.353[/C][/ROW]
[ROW][C]P[/C][C]-0.369[/C][C]-0.534[/C][C]0.019[/C][C]0.252[/C][C]0.192[/C][C]0.148[/C][C]1[/C][C]0.68[/C][C]0.93[/C][/ROW]
[ROW][C]S[/C][C]-0.58[/C][C]-0.591[/C][C]0.519[/C][C]0.662[/C][C]0.624[/C][C]0.58[/C][C]0.68[/C][C]1[/C][C]0.819[/C][/ROW]
[ROW][C]D[/C][C]-0.542[/C][C]-0.684[/C][C]0.227[/C][C]0.431[/C][C]0.377[/C][C]0.353[/C][C]0.93[/C][C]0.819[/C][C]1[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=74559&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=74559&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Correlations for all pairs of data series (pearson)
SWSPSLWbWbrtgPSD
SWS10.582-0.378-0.713-0.679-0.601-0.369-0.58-0.542
PS0.5821-0.346-0.372-0.438-0.646-0.534-0.591-0.684
L-0.378-0.34610.6830.7770.6790.0190.5190.227
Wb-0.713-0.3720.68310.9450.6950.2520.6620.431
Wbr-0.679-0.4380.7770.94510.7770.1920.6240.377
tg-0.601-0.6460.6790.6950.77710.1480.580.353
P-0.369-0.5340.0190.2520.1920.14810.680.93
S-0.58-0.5910.5190.6620.6240.580.6810.819
D-0.542-0.6840.2270.4310.3770.3530.930.8191







Correlations for all pairs of data series (pearson) with p-values
paircorrelationp-value
SWS;PS0.5815634938491980.000103252151233857
SWS;L-0.3777219928852380.0177545084357533
SWS;Wb-0.712866130052773.54923045606134e-07
SWS;Wbr-0.6790304427486352.01362972177026e-06
SWS;tg-0.6014137877420415.1382993746378e-05
SWS;P-0.3689496089612220.0208141736127139
SWS;S-0.5795034067694970.000110722215450374
SWS;D-0.5421962454556250.000363289130540521
PS;L-0.3459100476642870.03100524274591
PS;Wb-0.3718611272076240.0197532625264531
PS;Wbr-0.4378061516859010.00531371563692489
PS;tg-0.64552781279529.1088485477806e-06
PS;P-0.5340844598770530.000461987078841542
PS;S-0.591406530417067.3467983257923e-05
PS;D-0.6844360732031511.54964330050719e-06
L;Wb0.6832131861431521.64502798183364e-06
L;Wbr0.7765720037415696.2228990849178e-09
L;tg0.6792171709351351.99567529146627e-06
L;P0.01945511125604770.906420132614751
L;S0.5186927509127130.000717159341685036
L;D0.2274447105436820.163768917342188
Wb;Wbr0.9447682560329650
Wb;tg0.6950446255296869.11776663059527e-07
Wb;P0.2518052792552270.122008562949184
Wb;S0.6618359813177264.47277474568963e-06
Wb;D0.431181493422950.00613478487402674
Wbr;tg0.7774574842553665.82955417272046e-09
Wbr;P0.1916741775954920.242429121343032
Wbr;S0.6235842574293652.22621641732257e-05
Wbr;D0.3768139761290320.0180525640134435
tg;P0.1481024455975900.368235429224129
tg;S0.5802095378879880.000108108443851451
tg;D0.3534167874882360.0273106335495648
P;S0.6800112914891821.92095098006106e-06
P;D0.930257961264370
S;D0.8191848445121261.83140169696117e-10

\begin{tabular}{lllllllll}
\hline
Correlations for all pairs of data series (pearson) with p-values \tabularnewline
pair & correlation & p-value \tabularnewline
SWS;PS & 0.581563493849198 & 0.000103252151233857 \tabularnewline
SWS;L & -0.377721992885238 & 0.0177545084357533 \tabularnewline
SWS;Wb & -0.71286613005277 & 3.54923045606134e-07 \tabularnewline
SWS;Wbr & -0.679030442748635 & 2.01362972177026e-06 \tabularnewline
SWS;tg & -0.601413787742041 & 5.1382993746378e-05 \tabularnewline
SWS;P & -0.368949608961222 & 0.0208141736127139 \tabularnewline
SWS;S & -0.579503406769497 & 0.000110722215450374 \tabularnewline
SWS;D & -0.542196245455625 & 0.000363289130540521 \tabularnewline
PS;L & -0.345910047664287 & 0.03100524274591 \tabularnewline
PS;Wb & -0.371861127207624 & 0.0197532625264531 \tabularnewline
PS;Wbr & -0.437806151685901 & 0.00531371563692489 \tabularnewline
PS;tg & -0.6455278127952 & 9.1088485477806e-06 \tabularnewline
PS;P & -0.534084459877053 & 0.000461987078841542 \tabularnewline
PS;S & -0.59140653041706 & 7.3467983257923e-05 \tabularnewline
PS;D & -0.684436073203151 & 1.54964330050719e-06 \tabularnewline
L;Wb & 0.683213186143152 & 1.64502798183364e-06 \tabularnewline
L;Wbr & 0.776572003741569 & 6.2228990849178e-09 \tabularnewline
L;tg & 0.679217170935135 & 1.99567529146627e-06 \tabularnewline
L;P & 0.0194551112560477 & 0.906420132614751 \tabularnewline
L;S & 0.518692750912713 & 0.000717159341685036 \tabularnewline
L;D & 0.227444710543682 & 0.163768917342188 \tabularnewline
Wb;Wbr & 0.944768256032965 & 0 \tabularnewline
Wb;tg & 0.695044625529686 & 9.11776663059527e-07 \tabularnewline
Wb;P & 0.251805279255227 & 0.122008562949184 \tabularnewline
Wb;S & 0.661835981317726 & 4.47277474568963e-06 \tabularnewline
Wb;D & 0.43118149342295 & 0.00613478487402674 \tabularnewline
Wbr;tg & 0.777457484255366 & 5.82955417272046e-09 \tabularnewline
Wbr;P & 0.191674177595492 & 0.242429121343032 \tabularnewline
Wbr;S & 0.623584257429365 & 2.22621641732257e-05 \tabularnewline
Wbr;D & 0.376813976129032 & 0.0180525640134435 \tabularnewline
tg;P & 0.148102445597590 & 0.368235429224129 \tabularnewline
tg;S & 0.580209537887988 & 0.000108108443851451 \tabularnewline
tg;D & 0.353416787488236 & 0.0273106335495648 \tabularnewline
P;S & 0.680011291489182 & 1.92095098006106e-06 \tabularnewline
P;D & 0.93025796126437 & 0 \tabularnewline
S;D & 0.819184844512126 & 1.83140169696117e-10 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=74559&T=2

[TABLE]
[ROW][C]Correlations for all pairs of data series (pearson) with p-values[/C][/ROW]
[ROW][C]pair[/C][C]correlation[/C][C]p-value[/C][/ROW]
[ROW][C]SWS;PS[/C][C]0.581563493849198[/C][C]0.000103252151233857[/C][/ROW]
[ROW][C]SWS;L[/C][C]-0.377721992885238[/C][C]0.0177545084357533[/C][/ROW]
[ROW][C]SWS;Wb[/C][C]-0.71286613005277[/C][C]3.54923045606134e-07[/C][/ROW]
[ROW][C]SWS;Wbr[/C][C]-0.679030442748635[/C][C]2.01362972177026e-06[/C][/ROW]
[ROW][C]SWS;tg[/C][C]-0.601413787742041[/C][C]5.1382993746378e-05[/C][/ROW]
[ROW][C]SWS;P[/C][C]-0.368949608961222[/C][C]0.0208141736127139[/C][/ROW]
[ROW][C]SWS;S[/C][C]-0.579503406769497[/C][C]0.000110722215450374[/C][/ROW]
[ROW][C]SWS;D[/C][C]-0.542196245455625[/C][C]0.000363289130540521[/C][/ROW]
[ROW][C]PS;L[/C][C]-0.345910047664287[/C][C]0.03100524274591[/C][/ROW]
[ROW][C]PS;Wb[/C][C]-0.371861127207624[/C][C]0.0197532625264531[/C][/ROW]
[ROW][C]PS;Wbr[/C][C]-0.437806151685901[/C][C]0.00531371563692489[/C][/ROW]
[ROW][C]PS;tg[/C][C]-0.6455278127952[/C][C]9.1088485477806e-06[/C][/ROW]
[ROW][C]PS;P[/C][C]-0.534084459877053[/C][C]0.000461987078841542[/C][/ROW]
[ROW][C]PS;S[/C][C]-0.59140653041706[/C][C]7.3467983257923e-05[/C][/ROW]
[ROW][C]PS;D[/C][C]-0.684436073203151[/C][C]1.54964330050719e-06[/C][/ROW]
[ROW][C]L;Wb[/C][C]0.683213186143152[/C][C]1.64502798183364e-06[/C][/ROW]
[ROW][C]L;Wbr[/C][C]0.776572003741569[/C][C]6.2228990849178e-09[/C][/ROW]
[ROW][C]L;tg[/C][C]0.679217170935135[/C][C]1.99567529146627e-06[/C][/ROW]
[ROW][C]L;P[/C][C]0.0194551112560477[/C][C]0.906420132614751[/C][/ROW]
[ROW][C]L;S[/C][C]0.518692750912713[/C][C]0.000717159341685036[/C][/ROW]
[ROW][C]L;D[/C][C]0.227444710543682[/C][C]0.163768917342188[/C][/ROW]
[ROW][C]Wb;Wbr[/C][C]0.944768256032965[/C][C]0[/C][/ROW]
[ROW][C]Wb;tg[/C][C]0.695044625529686[/C][C]9.11776663059527e-07[/C][/ROW]
[ROW][C]Wb;P[/C][C]0.251805279255227[/C][C]0.122008562949184[/C][/ROW]
[ROW][C]Wb;S[/C][C]0.661835981317726[/C][C]4.47277474568963e-06[/C][/ROW]
[ROW][C]Wb;D[/C][C]0.43118149342295[/C][C]0.00613478487402674[/C][/ROW]
[ROW][C]Wbr;tg[/C][C]0.777457484255366[/C][C]5.82955417272046e-09[/C][/ROW]
[ROW][C]Wbr;P[/C][C]0.191674177595492[/C][C]0.242429121343032[/C][/ROW]
[ROW][C]Wbr;S[/C][C]0.623584257429365[/C][C]2.22621641732257e-05[/C][/ROW]
[ROW][C]Wbr;D[/C][C]0.376813976129032[/C][C]0.0180525640134435[/C][/ROW]
[ROW][C]tg;P[/C][C]0.148102445597590[/C][C]0.368235429224129[/C][/ROW]
[ROW][C]tg;S[/C][C]0.580209537887988[/C][C]0.000108108443851451[/C][/ROW]
[ROW][C]tg;D[/C][C]0.353416787488236[/C][C]0.0273106335495648[/C][/ROW]
[ROW][C]P;S[/C][C]0.680011291489182[/C][C]1.92095098006106e-06[/C][/ROW]
[ROW][C]P;D[/C][C]0.93025796126437[/C][C]0[/C][/ROW]
[ROW][C]S;D[/C][C]0.819184844512126[/C][C]1.83140169696117e-10[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=74559&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=74559&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Correlations for all pairs of data series (pearson) with p-values
paircorrelationp-value
SWS;PS0.5815634938491980.000103252151233857
SWS;L-0.3777219928852380.0177545084357533
SWS;Wb-0.712866130052773.54923045606134e-07
SWS;Wbr-0.6790304427486352.01362972177026e-06
SWS;tg-0.6014137877420415.1382993746378e-05
SWS;P-0.3689496089612220.0208141736127139
SWS;S-0.5795034067694970.000110722215450374
SWS;D-0.5421962454556250.000363289130540521
PS;L-0.3459100476642870.03100524274591
PS;Wb-0.3718611272076240.0197532625264531
PS;Wbr-0.4378061516859010.00531371563692489
PS;tg-0.64552781279529.1088485477806e-06
PS;P-0.5340844598770530.000461987078841542
PS;S-0.591406530417067.3467983257923e-05
PS;D-0.6844360732031511.54964330050719e-06
L;Wb0.6832131861431521.64502798183364e-06
L;Wbr0.7765720037415696.2228990849178e-09
L;tg0.6792171709351351.99567529146627e-06
L;P0.01945511125604770.906420132614751
L;S0.5186927509127130.000717159341685036
L;D0.2274447105436820.163768917342188
Wb;Wbr0.9447682560329650
Wb;tg0.6950446255296869.11776663059527e-07
Wb;P0.2518052792552270.122008562949184
Wb;S0.6618359813177264.47277474568963e-06
Wb;D0.431181493422950.00613478487402674
Wbr;tg0.7774574842553665.82955417272046e-09
Wbr;P0.1916741775954920.242429121343032
Wbr;S0.6235842574293652.22621641732257e-05
Wbr;D0.3768139761290320.0180525640134435
tg;P0.1481024455975900.368235429224129
tg;S0.5802095378879880.000108108443851451
tg;D0.3534167874882360.0273106335495648
P;S0.6800112914891821.92095098006106e-06
P;D0.930257961264370
S;D0.8191848445121261.83140169696117e-10



Parameters (Session):
par1 = pearson ;
Parameters (R input):
par1 = pearson ;
R code (references can be found in the software module):
panel.tau <- function(x, y, digits=2, prefix='', cex.cor)
{
usr <- par('usr'); on.exit(par(usr))
par(usr = c(0, 1, 0, 1))
rr <- cor.test(x, y, method=par1)
r <- round(rr$p.value,2)
txt <- format(c(r, 0.123456789), digits=digits)[1]
txt <- paste(prefix, txt, sep='')
if(missing(cex.cor)) cex <- 0.5/strwidth(txt)
text(0.5, 0.5, txt, cex = cex)
}
panel.hist <- function(x, ...)
{
usr <- par('usr'); on.exit(par(usr))
par(usr = c(usr[1:2], 0, 1.5) )
h <- hist(x, plot = FALSE)
breaks <- h$breaks; nB <- length(breaks)
y <- h$counts; y <- y/max(y)
rect(breaks[-nB], 0, breaks[-1], y, col='grey', ...)
}
bitmap(file='test1.png')
pairs(t(y),diag.panel=panel.hist, upper.panel=panel.smooth, lower.panel=panel.tau, main=main)
dev.off()
load(file='createtable')
n <- length(y[,1])
n
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,paste('Correlations for all pairs of data series (',par1,')',sep=''),n+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,' ',header=TRUE)
for (i in 1:n) {
a<-table.element(a,dimnames(t(x))[[2]][i],header=TRUE)
}
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,dimnames(t(x))[[2]][i],header=TRUE)
for (j in 1:n) {
r <- cor.test(y[i,],y[j,],method=par1)
a<-table.element(a,round(r$estimate,3))
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,paste('Correlations for all pairs of data series (',par1,') with p-values',sep=''),3,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'pair',1,TRUE)
a<-table.element(a,'correlation',1,TRUE)
a<-table.element(a,'p-value',1,TRUE)
a<-table.row.end(a)
cor.test(y[1,],y[2,],method=par1)
for (i in 1:(n-1))
{
for (j in (i+1):n)
{
a<-table.row.start(a)
dum <- paste(dimnames(t(x))[[2]][i],';',dimnames(t(x))[[2]][j],sep='')
a<-table.element(a,dum,header=TRUE)
r <- cor.test(y[i,],y[j,],method=par1)
a<-table.element(a,r$estimate)
a<-table.element(a,r$p.value)
a<-table.row.end(a)
}
}
a<-table.end(a)
table.save(a,file='mytable1.tab')