Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationMon, 23 Jan 2017 10:48:50 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2017/Jan/23/t1485164957cbq1ew5o8o97l82.htm/, Retrieved Fri, 01 Nov 2024 01:01:57 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=304660, Retrieved Fri, 01 Nov 2024 01:01:57 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact107
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [] [2017-01-23 09:48:50] [84a79156fb687334cf7dc390d7b82d5a] [Current]
Feedback Forum

Post a new message
Dataseries X:
4 2 4 3 5 4 14
5 3 3 4 5 4 19
4 4 5 4 5 4 17
3 4 3 3 4 4 17
4 4 5 4 5 4 15
3 4 4 4 5 5 20
3 4 4 3 3 4 15
3 4 5 4 4 4 19
4 5 4 4 5 5 15
4 5 5 4 5 5 15
4 4 2 4 5 4 19
4 4 5 3 5 4 NA
4 4 4 3 4 5 20
3 3 5 4 4 5 18
4 4 5 4 2 5 15
3 4 5 4 4 5 14
3 4 5 4 4 5 20
NA NA 5 NA 5 5 NA
5 5 4 3 4 4 16
4 4 4 4 5 4 16
3 4 5 3 4 5 16
4 4 4 4 5 5 10
4 4 5 4 4 5 19
4 4 5 4 4 4 19
4 4 5 4 4 5 16
3 4 4 4 4 4 15
3 4 4 3 5 5 18
4 4 4 4 4 4 17
2 4 5 4 5 5 19
5 4 4 4 4 4 17
4 3 5 4 4 4 NA
4 5 5 4 5 5 19
5 4 5 4 4 5 20
4 3 5 4 NA 5 5
2 3 5 4 5 4 19
4 5 2 4 4 4 16
3 4 5 4 4 4 15
4 3 5 3 4 5 16
4 3 3 4 4 4 18
4 4 5 4 4 4 16
5 4 4 4 4 4 15
4 5 5 4 5 5 17
3 3 4 4 4 4 NA
5 5 5 3 5 5 20
5 4 5 3 4 4 19
4 4 4 3 4 5 7
4 4 4 4 4 4 13
3 5 5 3 3 4 16
4 4 4 4 5 4 16
2 3 4 2 NA 4 NA
4 5 5 4 4 4 18
5 5 2 4 5 4 18
5 5 5 4 4 4 16
4 3 5 4 5 5 17
4 3 4 3 4 5 19
4 4 5 4 4 4 16
3 4 4 3 3 4 19
3 4 4 4 4 3 13
4 4 4 3 5 4 16
4 4 4 4 5 4 13
5 5 3 4 5 5 12
2 4 4 4 5 5 17
4 4 4 4 5 5 17
3 4 4 4 2 4 17
4 4 5 4 5 5 16
4 2 4 4 4 4 16
4 4 4 3 5 3 14
4 4 4 3 5 4 16
5 4 5 3 3 5 13
3 4 4 3 5 5 16
3 4 4 3 4 5 14
4 5 5 5 5 4 20
4 4 3 4 NA 4 12
4 4 4 4 4 4 13
4 4 4 5 5 4 18
3 4 3 4 4 4 14
4 4 4 4 5 4 19
3 4 5 3 5 5 18
3 3 5 4 4 5 14
4 3 5 4 4 4 18
4 4 5 4 4 5 19
3 3 3 4 4 4 15
4 4 4 4 5 4 14
4 4 3 4 5 5 17
4 4 4 4 5 5 19
5 4 4 4 4 4 13
5 4 3 5 4 5 19
4 4 5 4 5 5 18
3 4 5 4 4 5 20
3 NA 4 4 4 4 15
4 2 3 3 4 4 15
4 4 5 4 4 3 15
4 4 5 4 4 5 20
4 4 4 4 5 4 15
4 5 4 4 5 3 19
3 4 4 3 5 5 18
4 4 5 4 4 5 18
5 4 3 4 4 5 15
5 4 5 5 4 5 20
4 5 4 4 5 5 17
3 4 5 4 4 5 12
5 3 4 4 5 5 18
4 4 5 4 4 5 19
5 4 4 4 4 5 20
3 4 4 3 NA 4 NA
5 4 4 5 5 5 17
4 4 5 3 NA 5 15
4 4 3 3 4 3 16
4 4 5 4 4 4 18
4 4 5 4 4 4 18
3 4 5 4 5 3 14
4 4 4 4 4 4 15
4 4 4 3 4 5 12
3 3 4 3 5 5 17
4 4 4 3 4 4 14
3 4 5 4 4 4 18
4 4 5 4 3 4 17
5 4 5 1 5 5 17
5 4 5 4 5 5 20
4 4 4 4 4 3 16
4 4 5 3 4 4 14
3 4 4 3 4 5 15
4 4 4 4 4 4 18
4 4 4 4 5 4 20
4 5 3 4 4 4 17
3 4 4 4 4 4 17
4 4 4 3 4 4 17
4 4 4 4 4 5 17
3 4 3 3 4 4 15
4 4 4 3 4 3 17
3 2 4 2 4 4 18
4 4 4 3 5 4 17
5 4 4 3 5 4 20
2 4 4 3 3 5 15
3 3 4 4 4 4 16
4 4 4 3 4 4 15
5 5 4 4 5 4 18
NA NA 2 NA NA NA 11
4 5 5 4 4 4 15
5 5 5 5 5 4 18
4 5 5 4 5 5 20
4 4 4 3 4 5 19
3 4 5 4 5 4 14
4 4 5 4 4 4 16
4 4 2 4 4 4 15
4 4 3 4 5 5 17
4 4 4 4 5 5 18
5 4 5 3 5 4 20
4 3 5 4 4 4 17
4 4 5 4 4 4 18
3 3 2 3 4 4 15
4 5 5 4 4 3 16
4 4 4 3 4 4 11
4 4 4 4 4 5 15
3 4 5 3 5 5 18
4 4 5 4 4 5 17
5 4 5 4 5 4 16
4 4 5 4 3 4 12
2 3 5 4 4 4 19
4 4 4 4 4 5 18
4 3 4 3 5 5 15
4 4 4 4 4 3 17
4 5 5 5 4 4 19
5 4 3 4 4 4 18
5 4 4 3 4 4 19
3 3 1 4 5 5 16
4 4 4 4 4 5 16
4 4 4 4 5 4 16
2 3 4 5 5 4 14




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time10 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time10 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=304660&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]10 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=304660&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=304660&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time10 seconds
R ServerBig Analytics Cloud Computing Center







Multiple Linear Regression - Estimated Regression Equation
ITHSUM[t] = + 8.19045 + 0.307354SKEOU1[t] -0.0366025SKEOU2[t] + 0.435165SKEOU3[t] + 0.438674SKEOU4[t] + 0.498882SKEOU5[t] + 0.396089SKEOU6[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
ITHSUM[t] =  +  8.19045 +  0.307354SKEOU1[t] -0.0366025SKEOU2[t] +  0.435165SKEOU3[t] +  0.438674SKEOU4[t] +  0.498882SKEOU5[t] +  0.396089SKEOU6[t]  + e[t] \tabularnewline
 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=304660&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]ITHSUM[t] =  +  8.19045 +  0.307354SKEOU1[t] -0.0366025SKEOU2[t] +  0.435165SKEOU3[t] +  0.438674SKEOU4[t] +  0.498882SKEOU5[t] +  0.396089SKEOU6[t]  + e[t][/C][/ROW]
[ROW][C][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=304660&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=304660&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
ITHSUM[t] = + 8.19045 + 0.307354SKEOU1[t] -0.0366025SKEOU2[t] + 0.435165SKEOU3[t] + 0.438674SKEOU4[t] + 0.498882SKEOU5[t] + 0.396089SKEOU6[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+8.19 2.421+3.3820e+00 0.000915 0.0004575
SKEOU1+0.3074 0.2545+1.2080e+00 0.2291 0.1146
SKEOU2-0.0366 0.3159-1.1590e-01 0.9079 0.454
SKEOU3+0.4352 0.2293+1.8970e+00 0.05968 0.02984
SKEOU4+0.4387 0.3124+1.4040e+00 0.1623 0.08113
SKEOU5+0.4989 0.2942+1.6960e+00 0.09198 0.04599
SKEOU6+0.3961 0.3038+1.3040e+00 0.1943 0.09716

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & +8.19 &  2.421 & +3.3820e+00 &  0.000915 &  0.0004575 \tabularnewline
SKEOU1 & +0.3074 &  0.2545 & +1.2080e+00 &  0.2291 &  0.1146 \tabularnewline
SKEOU2 & -0.0366 &  0.3159 & -1.1590e-01 &  0.9079 &  0.454 \tabularnewline
SKEOU3 & +0.4352 &  0.2293 & +1.8970e+00 &  0.05968 &  0.02984 \tabularnewline
SKEOU4 & +0.4387 &  0.3124 & +1.4040e+00 &  0.1623 &  0.08113 \tabularnewline
SKEOU5 & +0.4989 &  0.2942 & +1.6960e+00 &  0.09198 &  0.04599 \tabularnewline
SKEOU6 & +0.3961 &  0.3038 & +1.3040e+00 &  0.1943 &  0.09716 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=304660&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]+8.19[/C][C] 2.421[/C][C]+3.3820e+00[/C][C] 0.000915[/C][C] 0.0004575[/C][/ROW]
[ROW][C]SKEOU1[/C][C]+0.3074[/C][C] 0.2545[/C][C]+1.2080e+00[/C][C] 0.2291[/C][C] 0.1146[/C][/ROW]
[ROW][C]SKEOU2[/C][C]-0.0366[/C][C] 0.3159[/C][C]-1.1590e-01[/C][C] 0.9079[/C][C] 0.454[/C][/ROW]
[ROW][C]SKEOU3[/C][C]+0.4352[/C][C] 0.2293[/C][C]+1.8970e+00[/C][C] 0.05968[/C][C] 0.02984[/C][/ROW]
[ROW][C]SKEOU4[/C][C]+0.4387[/C][C] 0.3124[/C][C]+1.4040e+00[/C][C] 0.1623[/C][C] 0.08113[/C][/ROW]
[ROW][C]SKEOU5[/C][C]+0.4989[/C][C] 0.2942[/C][C]+1.6960e+00[/C][C] 0.09198[/C][C] 0.04599[/C][/ROW]
[ROW][C]SKEOU6[/C][C]+0.3961[/C][C] 0.3038[/C][C]+1.3040e+00[/C][C] 0.1943[/C][C] 0.09716[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=304660&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=304660&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+8.19 2.421+3.3820e+00 0.000915 0.0004575
SKEOU1+0.3074 0.2545+1.2080e+00 0.2291 0.1146
SKEOU2-0.0366 0.3159-1.1590e-01 0.9079 0.454
SKEOU3+0.4352 0.2293+1.8970e+00 0.05968 0.02984
SKEOU4+0.4387 0.3124+1.4040e+00 0.1623 0.08113
SKEOU5+0.4989 0.2942+1.6960e+00 0.09198 0.04599
SKEOU6+0.3961 0.3038+1.3040e+00 0.1943 0.09716







Multiple Linear Regression - Regression Statistics
Multiple R 0.2897
R-squared 0.08395
Adjusted R-squared 0.04755
F-TEST (value) 2.306
F-TEST (DF numerator)6
F-TEST (DF denominator)151
p-value 0.03692
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 2.236
Sum Squared Residuals 754.7

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R &  0.2897 \tabularnewline
R-squared &  0.08395 \tabularnewline
Adjusted R-squared &  0.04755 \tabularnewline
F-TEST (value) &  2.306 \tabularnewline
F-TEST (DF numerator) & 6 \tabularnewline
F-TEST (DF denominator) & 151 \tabularnewline
p-value &  0.03692 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation &  2.236 \tabularnewline
Sum Squared Residuals &  754.7 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=304660&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C] 0.2897[/C][/ROW]
[ROW][C]R-squared[/C][C] 0.08395[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C] 0.04755[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C] 2.306[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]6[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]151[/C][/ROW]
[ROW][C]p-value[/C][C] 0.03692[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C] 2.236[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C] 754.7[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=304660&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=304660&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R 0.2897
R-squared 0.08395
Adjusted R-squared 0.04755
F-TEST (value) 2.306
F-TEST (DF numerator)6
F-TEST (DF denominator)151
p-value 0.03692
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 2.236
Sum Squared Residuals 754.7







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 14 16.48-2.482
2 19 16.76 2.244
3 17 17.28-0.2827
4 17 15.17 1.833
5 15 17.28-2.283
6 20 16.94 3.064
7 15 15.1-0.1038
8 19 16.48 2.523
9 15 17.21-2.207
10 15 17.64-2.642
11 19 15.98 3.023
12 20 16.31 3.694
13 18 16.91 1.091
14 15 16.18-1.182
15 14 16.87-2.873
16 20 16.87 3.127
17 16 16.18-0.1808
18 16 16.85-0.8476
19 16 16.43-0.4339
20 10 17.24-7.244
21 19 17.18 1.82
22 19 16.78 2.216
23 16 17.18-1.18
24 15 16.04-1.041
25 18 16.5 1.502
26 17 16.35 0.6513
27 19 17.06 1.936
28 17 16.66 0.344
29 19 17.64 1.358
30 20 17.49 2.513
31 19 16.7 2.295
32 16 15.44 0.5582
33 15 16.48-1.476
34 16 16.78-0.7779
35 18 15.95 2.05
36 16 16.78-0.7839
37 15 16.66-1.656
38 17 17.64-0.6422
39 20 17.51 2.489
40 19 16.65 2.347
41 7 16.31-9.306
42 13 16.35-3.349
43 16 15.5 0.4977
44 16 16.85-0.8476
45 18 16.75 1.253
46 18 16.25 1.752
47 16 17.05-1.055
48 17 17.72-0.7154
49 19 16.34 2.657
50 16 16.78-0.7839
51 19 15.1 3.896
52 13 15.65-2.645
53 16 16.41-0.4089
54 13 16.85-3.848
55 12 17.08-5.079
56 17 16.63 0.371
57 17 17.24-0.2437
58 17 15.04 1.956
59 16 17.68-1.679
60 16 16.42-0.4219
61 14 16.01-2.013
62 16 16.41-0.4089
63 13 16.55-3.55
64 16 16.5-0.4976
65 14 16-1.999
66 20 17.68 2.315
67 13 16.35-3.349
68 18 17.29 0.7138
69 14 15.61-1.606
70 19 16.85 2.152
71 18 16.93 1.067
72 14 16.91-2.909
73 18 16.82 1.18
74 19 17.18 1.82
75 15 15.64-0.6428
76 14 16.85-2.848
77 17 16.81 0.1915
78 19 17.24 1.756
79 13 16.66-3.656
80 19 17.06 1.944
81 18 17.68 0.3212
82 20 16.87 3.127
83 15 15.55-0.5481
84 15 16.39-1.388
85 20 17.18 2.82
86 15 16.85-1.848
87 19 16.41 2.585
88 18 16.5 1.502
89 18 17.18 0.8201
90 15 16.62-1.617
91 20 17.93 2.074
92 17 17.21-0.2071
93 12 16.87-4.873
94 18 17.59 0.4124
95 19 17.18 1.82
96 20 17.05 2.948
97 17 17.99-0.9897
98 16 15.08 0.9212
99 18 16.78 1.216
100 18 16.78 1.216
101 14 16.58-2.579
102 15 16.35-1.349
103 12 16.31-4.306
104 17 16.53 0.4658
105 14 15.91-1.91
106 18 16.48 1.524
107 17 16.29 0.715
108 17 16.67 0.3298
109 20 17.99 2.014
110 16 15.95 0.0474
111 14 16.35-2.345
112 15 16-0.9988
113 18 16.35 1.651
114 20 16.85 3.152
115 17 15.88 1.123
116 17 16.04 0.9587
117 17 15.91 1.09
118 17 16.74 0.2552
119 15 15.17-0.1675
120 17 15.51 1.486
121 18 15.24 2.763
122 17 16.41 0.5911
123 20 16.72 3.284
124 15 15.19-0.1925
125 16 16.08-0.07794
126 15 15.91-0.91
127 18 17.12 0.8817
128 15 16.75-1.747
129 18 17.99 0.007835
130 20 17.64 2.358
131 19 16.31 2.694
132 14 16.98-2.975
133 16 16.78-0.7839
134 15 15.48-0.4784
135 17 16.81 0.1915
136 18 17.24 0.7563
137 20 17.15 2.849
138 17 16.82 0.1795
139 18 16.78 1.216
140 15 14.77 0.2311
141 16 16.35-0.3512
142 11 15.91-4.91
143 15 16.74-1.745
144 18 16.93 1.067
145 17 17.18-0.1799
146 16 17.59-1.59
147 12 16.29-4.285
148 19 16.21 2.794
149 18 16.74 1.255
150 15 16.84-1.842
151 17 15.95 1.047
152 19 17.19 1.814
153 18 16.22 1.779
154 19 16.22 2.783
155 16 15.67 0.3326
156 16 16.74-0.7448
157 16 16.85-0.8476
158 14 16.71-2.708

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 &  14 &  16.48 & -2.482 \tabularnewline
2 &  19 &  16.76 &  2.244 \tabularnewline
3 &  17 &  17.28 & -0.2827 \tabularnewline
4 &  17 &  15.17 &  1.833 \tabularnewline
5 &  15 &  17.28 & -2.283 \tabularnewline
6 &  20 &  16.94 &  3.064 \tabularnewline
7 &  15 &  15.1 & -0.1038 \tabularnewline
8 &  19 &  16.48 &  2.523 \tabularnewline
9 &  15 &  17.21 & -2.207 \tabularnewline
10 &  15 &  17.64 & -2.642 \tabularnewline
11 &  19 &  15.98 &  3.023 \tabularnewline
12 &  20 &  16.31 &  3.694 \tabularnewline
13 &  18 &  16.91 &  1.091 \tabularnewline
14 &  15 &  16.18 & -1.182 \tabularnewline
15 &  14 &  16.87 & -2.873 \tabularnewline
16 &  20 &  16.87 &  3.127 \tabularnewline
17 &  16 &  16.18 & -0.1808 \tabularnewline
18 &  16 &  16.85 & -0.8476 \tabularnewline
19 &  16 &  16.43 & -0.4339 \tabularnewline
20 &  10 &  17.24 & -7.244 \tabularnewline
21 &  19 &  17.18 &  1.82 \tabularnewline
22 &  19 &  16.78 &  2.216 \tabularnewline
23 &  16 &  17.18 & -1.18 \tabularnewline
24 &  15 &  16.04 & -1.041 \tabularnewline
25 &  18 &  16.5 &  1.502 \tabularnewline
26 &  17 &  16.35 &  0.6513 \tabularnewline
27 &  19 &  17.06 &  1.936 \tabularnewline
28 &  17 &  16.66 &  0.344 \tabularnewline
29 &  19 &  17.64 &  1.358 \tabularnewline
30 &  20 &  17.49 &  2.513 \tabularnewline
31 &  19 &  16.7 &  2.295 \tabularnewline
32 &  16 &  15.44 &  0.5582 \tabularnewline
33 &  15 &  16.48 & -1.476 \tabularnewline
34 &  16 &  16.78 & -0.7779 \tabularnewline
35 &  18 &  15.95 &  2.05 \tabularnewline
36 &  16 &  16.78 & -0.7839 \tabularnewline
37 &  15 &  16.66 & -1.656 \tabularnewline
38 &  17 &  17.64 & -0.6422 \tabularnewline
39 &  20 &  17.51 &  2.489 \tabularnewline
40 &  19 &  16.65 &  2.347 \tabularnewline
41 &  7 &  16.31 & -9.306 \tabularnewline
42 &  13 &  16.35 & -3.349 \tabularnewline
43 &  16 &  15.5 &  0.4977 \tabularnewline
44 &  16 &  16.85 & -0.8476 \tabularnewline
45 &  18 &  16.75 &  1.253 \tabularnewline
46 &  18 &  16.25 &  1.752 \tabularnewline
47 &  16 &  17.05 & -1.055 \tabularnewline
48 &  17 &  17.72 & -0.7154 \tabularnewline
49 &  19 &  16.34 &  2.657 \tabularnewline
50 &  16 &  16.78 & -0.7839 \tabularnewline
51 &  19 &  15.1 &  3.896 \tabularnewline
52 &  13 &  15.65 & -2.645 \tabularnewline
53 &  16 &  16.41 & -0.4089 \tabularnewline
54 &  13 &  16.85 & -3.848 \tabularnewline
55 &  12 &  17.08 & -5.079 \tabularnewline
56 &  17 &  16.63 &  0.371 \tabularnewline
57 &  17 &  17.24 & -0.2437 \tabularnewline
58 &  17 &  15.04 &  1.956 \tabularnewline
59 &  16 &  17.68 & -1.679 \tabularnewline
60 &  16 &  16.42 & -0.4219 \tabularnewline
61 &  14 &  16.01 & -2.013 \tabularnewline
62 &  16 &  16.41 & -0.4089 \tabularnewline
63 &  13 &  16.55 & -3.55 \tabularnewline
64 &  16 &  16.5 & -0.4976 \tabularnewline
65 &  14 &  16 & -1.999 \tabularnewline
66 &  20 &  17.68 &  2.315 \tabularnewline
67 &  13 &  16.35 & -3.349 \tabularnewline
68 &  18 &  17.29 &  0.7138 \tabularnewline
69 &  14 &  15.61 & -1.606 \tabularnewline
70 &  19 &  16.85 &  2.152 \tabularnewline
71 &  18 &  16.93 &  1.067 \tabularnewline
72 &  14 &  16.91 & -2.909 \tabularnewline
73 &  18 &  16.82 &  1.18 \tabularnewline
74 &  19 &  17.18 &  1.82 \tabularnewline
75 &  15 &  15.64 & -0.6428 \tabularnewline
76 &  14 &  16.85 & -2.848 \tabularnewline
77 &  17 &  16.81 &  0.1915 \tabularnewline
78 &  19 &  17.24 &  1.756 \tabularnewline
79 &  13 &  16.66 & -3.656 \tabularnewline
80 &  19 &  17.06 &  1.944 \tabularnewline
81 &  18 &  17.68 &  0.3212 \tabularnewline
82 &  20 &  16.87 &  3.127 \tabularnewline
83 &  15 &  15.55 & -0.5481 \tabularnewline
84 &  15 &  16.39 & -1.388 \tabularnewline
85 &  20 &  17.18 &  2.82 \tabularnewline
86 &  15 &  16.85 & -1.848 \tabularnewline
87 &  19 &  16.41 &  2.585 \tabularnewline
88 &  18 &  16.5 &  1.502 \tabularnewline
89 &  18 &  17.18 &  0.8201 \tabularnewline
90 &  15 &  16.62 & -1.617 \tabularnewline
91 &  20 &  17.93 &  2.074 \tabularnewline
92 &  17 &  17.21 & -0.2071 \tabularnewline
93 &  12 &  16.87 & -4.873 \tabularnewline
94 &  18 &  17.59 &  0.4124 \tabularnewline
95 &  19 &  17.18 &  1.82 \tabularnewline
96 &  20 &  17.05 &  2.948 \tabularnewline
97 &  17 &  17.99 & -0.9897 \tabularnewline
98 &  16 &  15.08 &  0.9212 \tabularnewline
99 &  18 &  16.78 &  1.216 \tabularnewline
100 &  18 &  16.78 &  1.216 \tabularnewline
101 &  14 &  16.58 & -2.579 \tabularnewline
102 &  15 &  16.35 & -1.349 \tabularnewline
103 &  12 &  16.31 & -4.306 \tabularnewline
104 &  17 &  16.53 &  0.4658 \tabularnewline
105 &  14 &  15.91 & -1.91 \tabularnewline
106 &  18 &  16.48 &  1.524 \tabularnewline
107 &  17 &  16.29 &  0.715 \tabularnewline
108 &  17 &  16.67 &  0.3298 \tabularnewline
109 &  20 &  17.99 &  2.014 \tabularnewline
110 &  16 &  15.95 &  0.0474 \tabularnewline
111 &  14 &  16.35 & -2.345 \tabularnewline
112 &  15 &  16 & -0.9988 \tabularnewline
113 &  18 &  16.35 &  1.651 \tabularnewline
114 &  20 &  16.85 &  3.152 \tabularnewline
115 &  17 &  15.88 &  1.123 \tabularnewline
116 &  17 &  16.04 &  0.9587 \tabularnewline
117 &  17 &  15.91 &  1.09 \tabularnewline
118 &  17 &  16.74 &  0.2552 \tabularnewline
119 &  15 &  15.17 & -0.1675 \tabularnewline
120 &  17 &  15.51 &  1.486 \tabularnewline
121 &  18 &  15.24 &  2.763 \tabularnewline
122 &  17 &  16.41 &  0.5911 \tabularnewline
123 &  20 &  16.72 &  3.284 \tabularnewline
124 &  15 &  15.19 & -0.1925 \tabularnewline
125 &  16 &  16.08 & -0.07794 \tabularnewline
126 &  15 &  15.91 & -0.91 \tabularnewline
127 &  18 &  17.12 &  0.8817 \tabularnewline
128 &  15 &  16.75 & -1.747 \tabularnewline
129 &  18 &  17.99 &  0.007835 \tabularnewline
130 &  20 &  17.64 &  2.358 \tabularnewline
131 &  19 &  16.31 &  2.694 \tabularnewline
132 &  14 &  16.98 & -2.975 \tabularnewline
133 &  16 &  16.78 & -0.7839 \tabularnewline
134 &  15 &  15.48 & -0.4784 \tabularnewline
135 &  17 &  16.81 &  0.1915 \tabularnewline
136 &  18 &  17.24 &  0.7563 \tabularnewline
137 &  20 &  17.15 &  2.849 \tabularnewline
138 &  17 &  16.82 &  0.1795 \tabularnewline
139 &  18 &  16.78 &  1.216 \tabularnewline
140 &  15 &  14.77 &  0.2311 \tabularnewline
141 &  16 &  16.35 & -0.3512 \tabularnewline
142 &  11 &  15.91 & -4.91 \tabularnewline
143 &  15 &  16.74 & -1.745 \tabularnewline
144 &  18 &  16.93 &  1.067 \tabularnewline
145 &  17 &  17.18 & -0.1799 \tabularnewline
146 &  16 &  17.59 & -1.59 \tabularnewline
147 &  12 &  16.29 & -4.285 \tabularnewline
148 &  19 &  16.21 &  2.794 \tabularnewline
149 &  18 &  16.74 &  1.255 \tabularnewline
150 &  15 &  16.84 & -1.842 \tabularnewline
151 &  17 &  15.95 &  1.047 \tabularnewline
152 &  19 &  17.19 &  1.814 \tabularnewline
153 &  18 &  16.22 &  1.779 \tabularnewline
154 &  19 &  16.22 &  2.783 \tabularnewline
155 &  16 &  15.67 &  0.3326 \tabularnewline
156 &  16 &  16.74 & -0.7448 \tabularnewline
157 &  16 &  16.85 & -0.8476 \tabularnewline
158 &  14 &  16.71 & -2.708 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=304660&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C] 14[/C][C] 16.48[/C][C]-2.482[/C][/ROW]
[ROW][C]2[/C][C] 19[/C][C] 16.76[/C][C] 2.244[/C][/ROW]
[ROW][C]3[/C][C] 17[/C][C] 17.28[/C][C]-0.2827[/C][/ROW]
[ROW][C]4[/C][C] 17[/C][C] 15.17[/C][C] 1.833[/C][/ROW]
[ROW][C]5[/C][C] 15[/C][C] 17.28[/C][C]-2.283[/C][/ROW]
[ROW][C]6[/C][C] 20[/C][C] 16.94[/C][C] 3.064[/C][/ROW]
[ROW][C]7[/C][C] 15[/C][C] 15.1[/C][C]-0.1038[/C][/ROW]
[ROW][C]8[/C][C] 19[/C][C] 16.48[/C][C] 2.523[/C][/ROW]
[ROW][C]9[/C][C] 15[/C][C] 17.21[/C][C]-2.207[/C][/ROW]
[ROW][C]10[/C][C] 15[/C][C] 17.64[/C][C]-2.642[/C][/ROW]
[ROW][C]11[/C][C] 19[/C][C] 15.98[/C][C] 3.023[/C][/ROW]
[ROW][C]12[/C][C] 20[/C][C] 16.31[/C][C] 3.694[/C][/ROW]
[ROW][C]13[/C][C] 18[/C][C] 16.91[/C][C] 1.091[/C][/ROW]
[ROW][C]14[/C][C] 15[/C][C] 16.18[/C][C]-1.182[/C][/ROW]
[ROW][C]15[/C][C] 14[/C][C] 16.87[/C][C]-2.873[/C][/ROW]
[ROW][C]16[/C][C] 20[/C][C] 16.87[/C][C] 3.127[/C][/ROW]
[ROW][C]17[/C][C] 16[/C][C] 16.18[/C][C]-0.1808[/C][/ROW]
[ROW][C]18[/C][C] 16[/C][C] 16.85[/C][C]-0.8476[/C][/ROW]
[ROW][C]19[/C][C] 16[/C][C] 16.43[/C][C]-0.4339[/C][/ROW]
[ROW][C]20[/C][C] 10[/C][C] 17.24[/C][C]-7.244[/C][/ROW]
[ROW][C]21[/C][C] 19[/C][C] 17.18[/C][C] 1.82[/C][/ROW]
[ROW][C]22[/C][C] 19[/C][C] 16.78[/C][C] 2.216[/C][/ROW]
[ROW][C]23[/C][C] 16[/C][C] 17.18[/C][C]-1.18[/C][/ROW]
[ROW][C]24[/C][C] 15[/C][C] 16.04[/C][C]-1.041[/C][/ROW]
[ROW][C]25[/C][C] 18[/C][C] 16.5[/C][C] 1.502[/C][/ROW]
[ROW][C]26[/C][C] 17[/C][C] 16.35[/C][C] 0.6513[/C][/ROW]
[ROW][C]27[/C][C] 19[/C][C] 17.06[/C][C] 1.936[/C][/ROW]
[ROW][C]28[/C][C] 17[/C][C] 16.66[/C][C] 0.344[/C][/ROW]
[ROW][C]29[/C][C] 19[/C][C] 17.64[/C][C] 1.358[/C][/ROW]
[ROW][C]30[/C][C] 20[/C][C] 17.49[/C][C] 2.513[/C][/ROW]
[ROW][C]31[/C][C] 19[/C][C] 16.7[/C][C] 2.295[/C][/ROW]
[ROW][C]32[/C][C] 16[/C][C] 15.44[/C][C] 0.5582[/C][/ROW]
[ROW][C]33[/C][C] 15[/C][C] 16.48[/C][C]-1.476[/C][/ROW]
[ROW][C]34[/C][C] 16[/C][C] 16.78[/C][C]-0.7779[/C][/ROW]
[ROW][C]35[/C][C] 18[/C][C] 15.95[/C][C] 2.05[/C][/ROW]
[ROW][C]36[/C][C] 16[/C][C] 16.78[/C][C]-0.7839[/C][/ROW]
[ROW][C]37[/C][C] 15[/C][C] 16.66[/C][C]-1.656[/C][/ROW]
[ROW][C]38[/C][C] 17[/C][C] 17.64[/C][C]-0.6422[/C][/ROW]
[ROW][C]39[/C][C] 20[/C][C] 17.51[/C][C] 2.489[/C][/ROW]
[ROW][C]40[/C][C] 19[/C][C] 16.65[/C][C] 2.347[/C][/ROW]
[ROW][C]41[/C][C] 7[/C][C] 16.31[/C][C]-9.306[/C][/ROW]
[ROW][C]42[/C][C] 13[/C][C] 16.35[/C][C]-3.349[/C][/ROW]
[ROW][C]43[/C][C] 16[/C][C] 15.5[/C][C] 0.4977[/C][/ROW]
[ROW][C]44[/C][C] 16[/C][C] 16.85[/C][C]-0.8476[/C][/ROW]
[ROW][C]45[/C][C] 18[/C][C] 16.75[/C][C] 1.253[/C][/ROW]
[ROW][C]46[/C][C] 18[/C][C] 16.25[/C][C] 1.752[/C][/ROW]
[ROW][C]47[/C][C] 16[/C][C] 17.05[/C][C]-1.055[/C][/ROW]
[ROW][C]48[/C][C] 17[/C][C] 17.72[/C][C]-0.7154[/C][/ROW]
[ROW][C]49[/C][C] 19[/C][C] 16.34[/C][C] 2.657[/C][/ROW]
[ROW][C]50[/C][C] 16[/C][C] 16.78[/C][C]-0.7839[/C][/ROW]
[ROW][C]51[/C][C] 19[/C][C] 15.1[/C][C] 3.896[/C][/ROW]
[ROW][C]52[/C][C] 13[/C][C] 15.65[/C][C]-2.645[/C][/ROW]
[ROW][C]53[/C][C] 16[/C][C] 16.41[/C][C]-0.4089[/C][/ROW]
[ROW][C]54[/C][C] 13[/C][C] 16.85[/C][C]-3.848[/C][/ROW]
[ROW][C]55[/C][C] 12[/C][C] 17.08[/C][C]-5.079[/C][/ROW]
[ROW][C]56[/C][C] 17[/C][C] 16.63[/C][C] 0.371[/C][/ROW]
[ROW][C]57[/C][C] 17[/C][C] 17.24[/C][C]-0.2437[/C][/ROW]
[ROW][C]58[/C][C] 17[/C][C] 15.04[/C][C] 1.956[/C][/ROW]
[ROW][C]59[/C][C] 16[/C][C] 17.68[/C][C]-1.679[/C][/ROW]
[ROW][C]60[/C][C] 16[/C][C] 16.42[/C][C]-0.4219[/C][/ROW]
[ROW][C]61[/C][C] 14[/C][C] 16.01[/C][C]-2.013[/C][/ROW]
[ROW][C]62[/C][C] 16[/C][C] 16.41[/C][C]-0.4089[/C][/ROW]
[ROW][C]63[/C][C] 13[/C][C] 16.55[/C][C]-3.55[/C][/ROW]
[ROW][C]64[/C][C] 16[/C][C] 16.5[/C][C]-0.4976[/C][/ROW]
[ROW][C]65[/C][C] 14[/C][C] 16[/C][C]-1.999[/C][/ROW]
[ROW][C]66[/C][C] 20[/C][C] 17.68[/C][C] 2.315[/C][/ROW]
[ROW][C]67[/C][C] 13[/C][C] 16.35[/C][C]-3.349[/C][/ROW]
[ROW][C]68[/C][C] 18[/C][C] 17.29[/C][C] 0.7138[/C][/ROW]
[ROW][C]69[/C][C] 14[/C][C] 15.61[/C][C]-1.606[/C][/ROW]
[ROW][C]70[/C][C] 19[/C][C] 16.85[/C][C] 2.152[/C][/ROW]
[ROW][C]71[/C][C] 18[/C][C] 16.93[/C][C] 1.067[/C][/ROW]
[ROW][C]72[/C][C] 14[/C][C] 16.91[/C][C]-2.909[/C][/ROW]
[ROW][C]73[/C][C] 18[/C][C] 16.82[/C][C] 1.18[/C][/ROW]
[ROW][C]74[/C][C] 19[/C][C] 17.18[/C][C] 1.82[/C][/ROW]
[ROW][C]75[/C][C] 15[/C][C] 15.64[/C][C]-0.6428[/C][/ROW]
[ROW][C]76[/C][C] 14[/C][C] 16.85[/C][C]-2.848[/C][/ROW]
[ROW][C]77[/C][C] 17[/C][C] 16.81[/C][C] 0.1915[/C][/ROW]
[ROW][C]78[/C][C] 19[/C][C] 17.24[/C][C] 1.756[/C][/ROW]
[ROW][C]79[/C][C] 13[/C][C] 16.66[/C][C]-3.656[/C][/ROW]
[ROW][C]80[/C][C] 19[/C][C] 17.06[/C][C] 1.944[/C][/ROW]
[ROW][C]81[/C][C] 18[/C][C] 17.68[/C][C] 0.3212[/C][/ROW]
[ROW][C]82[/C][C] 20[/C][C] 16.87[/C][C] 3.127[/C][/ROW]
[ROW][C]83[/C][C] 15[/C][C] 15.55[/C][C]-0.5481[/C][/ROW]
[ROW][C]84[/C][C] 15[/C][C] 16.39[/C][C]-1.388[/C][/ROW]
[ROW][C]85[/C][C] 20[/C][C] 17.18[/C][C] 2.82[/C][/ROW]
[ROW][C]86[/C][C] 15[/C][C] 16.85[/C][C]-1.848[/C][/ROW]
[ROW][C]87[/C][C] 19[/C][C] 16.41[/C][C] 2.585[/C][/ROW]
[ROW][C]88[/C][C] 18[/C][C] 16.5[/C][C] 1.502[/C][/ROW]
[ROW][C]89[/C][C] 18[/C][C] 17.18[/C][C] 0.8201[/C][/ROW]
[ROW][C]90[/C][C] 15[/C][C] 16.62[/C][C]-1.617[/C][/ROW]
[ROW][C]91[/C][C] 20[/C][C] 17.93[/C][C] 2.074[/C][/ROW]
[ROW][C]92[/C][C] 17[/C][C] 17.21[/C][C]-0.2071[/C][/ROW]
[ROW][C]93[/C][C] 12[/C][C] 16.87[/C][C]-4.873[/C][/ROW]
[ROW][C]94[/C][C] 18[/C][C] 17.59[/C][C] 0.4124[/C][/ROW]
[ROW][C]95[/C][C] 19[/C][C] 17.18[/C][C] 1.82[/C][/ROW]
[ROW][C]96[/C][C] 20[/C][C] 17.05[/C][C] 2.948[/C][/ROW]
[ROW][C]97[/C][C] 17[/C][C] 17.99[/C][C]-0.9897[/C][/ROW]
[ROW][C]98[/C][C] 16[/C][C] 15.08[/C][C] 0.9212[/C][/ROW]
[ROW][C]99[/C][C] 18[/C][C] 16.78[/C][C] 1.216[/C][/ROW]
[ROW][C]100[/C][C] 18[/C][C] 16.78[/C][C] 1.216[/C][/ROW]
[ROW][C]101[/C][C] 14[/C][C] 16.58[/C][C]-2.579[/C][/ROW]
[ROW][C]102[/C][C] 15[/C][C] 16.35[/C][C]-1.349[/C][/ROW]
[ROW][C]103[/C][C] 12[/C][C] 16.31[/C][C]-4.306[/C][/ROW]
[ROW][C]104[/C][C] 17[/C][C] 16.53[/C][C] 0.4658[/C][/ROW]
[ROW][C]105[/C][C] 14[/C][C] 15.91[/C][C]-1.91[/C][/ROW]
[ROW][C]106[/C][C] 18[/C][C] 16.48[/C][C] 1.524[/C][/ROW]
[ROW][C]107[/C][C] 17[/C][C] 16.29[/C][C] 0.715[/C][/ROW]
[ROW][C]108[/C][C] 17[/C][C] 16.67[/C][C] 0.3298[/C][/ROW]
[ROW][C]109[/C][C] 20[/C][C] 17.99[/C][C] 2.014[/C][/ROW]
[ROW][C]110[/C][C] 16[/C][C] 15.95[/C][C] 0.0474[/C][/ROW]
[ROW][C]111[/C][C] 14[/C][C] 16.35[/C][C]-2.345[/C][/ROW]
[ROW][C]112[/C][C] 15[/C][C] 16[/C][C]-0.9988[/C][/ROW]
[ROW][C]113[/C][C] 18[/C][C] 16.35[/C][C] 1.651[/C][/ROW]
[ROW][C]114[/C][C] 20[/C][C] 16.85[/C][C] 3.152[/C][/ROW]
[ROW][C]115[/C][C] 17[/C][C] 15.88[/C][C] 1.123[/C][/ROW]
[ROW][C]116[/C][C] 17[/C][C] 16.04[/C][C] 0.9587[/C][/ROW]
[ROW][C]117[/C][C] 17[/C][C] 15.91[/C][C] 1.09[/C][/ROW]
[ROW][C]118[/C][C] 17[/C][C] 16.74[/C][C] 0.2552[/C][/ROW]
[ROW][C]119[/C][C] 15[/C][C] 15.17[/C][C]-0.1675[/C][/ROW]
[ROW][C]120[/C][C] 17[/C][C] 15.51[/C][C] 1.486[/C][/ROW]
[ROW][C]121[/C][C] 18[/C][C] 15.24[/C][C] 2.763[/C][/ROW]
[ROW][C]122[/C][C] 17[/C][C] 16.41[/C][C] 0.5911[/C][/ROW]
[ROW][C]123[/C][C] 20[/C][C] 16.72[/C][C] 3.284[/C][/ROW]
[ROW][C]124[/C][C] 15[/C][C] 15.19[/C][C]-0.1925[/C][/ROW]
[ROW][C]125[/C][C] 16[/C][C] 16.08[/C][C]-0.07794[/C][/ROW]
[ROW][C]126[/C][C] 15[/C][C] 15.91[/C][C]-0.91[/C][/ROW]
[ROW][C]127[/C][C] 18[/C][C] 17.12[/C][C] 0.8817[/C][/ROW]
[ROW][C]128[/C][C] 15[/C][C] 16.75[/C][C]-1.747[/C][/ROW]
[ROW][C]129[/C][C] 18[/C][C] 17.99[/C][C] 0.007835[/C][/ROW]
[ROW][C]130[/C][C] 20[/C][C] 17.64[/C][C] 2.358[/C][/ROW]
[ROW][C]131[/C][C] 19[/C][C] 16.31[/C][C] 2.694[/C][/ROW]
[ROW][C]132[/C][C] 14[/C][C] 16.98[/C][C]-2.975[/C][/ROW]
[ROW][C]133[/C][C] 16[/C][C] 16.78[/C][C]-0.7839[/C][/ROW]
[ROW][C]134[/C][C] 15[/C][C] 15.48[/C][C]-0.4784[/C][/ROW]
[ROW][C]135[/C][C] 17[/C][C] 16.81[/C][C] 0.1915[/C][/ROW]
[ROW][C]136[/C][C] 18[/C][C] 17.24[/C][C] 0.7563[/C][/ROW]
[ROW][C]137[/C][C] 20[/C][C] 17.15[/C][C] 2.849[/C][/ROW]
[ROW][C]138[/C][C] 17[/C][C] 16.82[/C][C] 0.1795[/C][/ROW]
[ROW][C]139[/C][C] 18[/C][C] 16.78[/C][C] 1.216[/C][/ROW]
[ROW][C]140[/C][C] 15[/C][C] 14.77[/C][C] 0.2311[/C][/ROW]
[ROW][C]141[/C][C] 16[/C][C] 16.35[/C][C]-0.3512[/C][/ROW]
[ROW][C]142[/C][C] 11[/C][C] 15.91[/C][C]-4.91[/C][/ROW]
[ROW][C]143[/C][C] 15[/C][C] 16.74[/C][C]-1.745[/C][/ROW]
[ROW][C]144[/C][C] 18[/C][C] 16.93[/C][C] 1.067[/C][/ROW]
[ROW][C]145[/C][C] 17[/C][C] 17.18[/C][C]-0.1799[/C][/ROW]
[ROW][C]146[/C][C] 16[/C][C] 17.59[/C][C]-1.59[/C][/ROW]
[ROW][C]147[/C][C] 12[/C][C] 16.29[/C][C]-4.285[/C][/ROW]
[ROW][C]148[/C][C] 19[/C][C] 16.21[/C][C] 2.794[/C][/ROW]
[ROW][C]149[/C][C] 18[/C][C] 16.74[/C][C] 1.255[/C][/ROW]
[ROW][C]150[/C][C] 15[/C][C] 16.84[/C][C]-1.842[/C][/ROW]
[ROW][C]151[/C][C] 17[/C][C] 15.95[/C][C] 1.047[/C][/ROW]
[ROW][C]152[/C][C] 19[/C][C] 17.19[/C][C] 1.814[/C][/ROW]
[ROW][C]153[/C][C] 18[/C][C] 16.22[/C][C] 1.779[/C][/ROW]
[ROW][C]154[/C][C] 19[/C][C] 16.22[/C][C] 2.783[/C][/ROW]
[ROW][C]155[/C][C] 16[/C][C] 15.67[/C][C] 0.3326[/C][/ROW]
[ROW][C]156[/C][C] 16[/C][C] 16.74[/C][C]-0.7448[/C][/ROW]
[ROW][C]157[/C][C] 16[/C][C] 16.85[/C][C]-0.8476[/C][/ROW]
[ROW][C]158[/C][C] 14[/C][C] 16.71[/C][C]-2.708[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=304660&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=304660&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 14 16.48-2.482
2 19 16.76 2.244
3 17 17.28-0.2827
4 17 15.17 1.833
5 15 17.28-2.283
6 20 16.94 3.064
7 15 15.1-0.1038
8 19 16.48 2.523
9 15 17.21-2.207
10 15 17.64-2.642
11 19 15.98 3.023
12 20 16.31 3.694
13 18 16.91 1.091
14 15 16.18-1.182
15 14 16.87-2.873
16 20 16.87 3.127
17 16 16.18-0.1808
18 16 16.85-0.8476
19 16 16.43-0.4339
20 10 17.24-7.244
21 19 17.18 1.82
22 19 16.78 2.216
23 16 17.18-1.18
24 15 16.04-1.041
25 18 16.5 1.502
26 17 16.35 0.6513
27 19 17.06 1.936
28 17 16.66 0.344
29 19 17.64 1.358
30 20 17.49 2.513
31 19 16.7 2.295
32 16 15.44 0.5582
33 15 16.48-1.476
34 16 16.78-0.7779
35 18 15.95 2.05
36 16 16.78-0.7839
37 15 16.66-1.656
38 17 17.64-0.6422
39 20 17.51 2.489
40 19 16.65 2.347
41 7 16.31-9.306
42 13 16.35-3.349
43 16 15.5 0.4977
44 16 16.85-0.8476
45 18 16.75 1.253
46 18 16.25 1.752
47 16 17.05-1.055
48 17 17.72-0.7154
49 19 16.34 2.657
50 16 16.78-0.7839
51 19 15.1 3.896
52 13 15.65-2.645
53 16 16.41-0.4089
54 13 16.85-3.848
55 12 17.08-5.079
56 17 16.63 0.371
57 17 17.24-0.2437
58 17 15.04 1.956
59 16 17.68-1.679
60 16 16.42-0.4219
61 14 16.01-2.013
62 16 16.41-0.4089
63 13 16.55-3.55
64 16 16.5-0.4976
65 14 16-1.999
66 20 17.68 2.315
67 13 16.35-3.349
68 18 17.29 0.7138
69 14 15.61-1.606
70 19 16.85 2.152
71 18 16.93 1.067
72 14 16.91-2.909
73 18 16.82 1.18
74 19 17.18 1.82
75 15 15.64-0.6428
76 14 16.85-2.848
77 17 16.81 0.1915
78 19 17.24 1.756
79 13 16.66-3.656
80 19 17.06 1.944
81 18 17.68 0.3212
82 20 16.87 3.127
83 15 15.55-0.5481
84 15 16.39-1.388
85 20 17.18 2.82
86 15 16.85-1.848
87 19 16.41 2.585
88 18 16.5 1.502
89 18 17.18 0.8201
90 15 16.62-1.617
91 20 17.93 2.074
92 17 17.21-0.2071
93 12 16.87-4.873
94 18 17.59 0.4124
95 19 17.18 1.82
96 20 17.05 2.948
97 17 17.99-0.9897
98 16 15.08 0.9212
99 18 16.78 1.216
100 18 16.78 1.216
101 14 16.58-2.579
102 15 16.35-1.349
103 12 16.31-4.306
104 17 16.53 0.4658
105 14 15.91-1.91
106 18 16.48 1.524
107 17 16.29 0.715
108 17 16.67 0.3298
109 20 17.99 2.014
110 16 15.95 0.0474
111 14 16.35-2.345
112 15 16-0.9988
113 18 16.35 1.651
114 20 16.85 3.152
115 17 15.88 1.123
116 17 16.04 0.9587
117 17 15.91 1.09
118 17 16.74 0.2552
119 15 15.17-0.1675
120 17 15.51 1.486
121 18 15.24 2.763
122 17 16.41 0.5911
123 20 16.72 3.284
124 15 15.19-0.1925
125 16 16.08-0.07794
126 15 15.91-0.91
127 18 17.12 0.8817
128 15 16.75-1.747
129 18 17.99 0.007835
130 20 17.64 2.358
131 19 16.31 2.694
132 14 16.98-2.975
133 16 16.78-0.7839
134 15 15.48-0.4784
135 17 16.81 0.1915
136 18 17.24 0.7563
137 20 17.15 2.849
138 17 16.82 0.1795
139 18 16.78 1.216
140 15 14.77 0.2311
141 16 16.35-0.3512
142 11 15.91-4.91
143 15 16.74-1.745
144 18 16.93 1.067
145 17 17.18-0.1799
146 16 17.59-1.59
147 12 16.29-4.285
148 19 16.21 2.794
149 18 16.74 1.255
150 15 16.84-1.842
151 17 15.95 1.047
152 19 17.19 1.814
153 18 16.22 1.779
154 19 16.22 2.783
155 16 15.67 0.3326
156 16 16.74-0.7448
157 16 16.85-0.8476
158 14 16.71-2.708







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
10 0.1618 0.3236 0.8382
11 0.1508 0.3016 0.8492
12 0.6534 0.6932 0.3466
13 0.6674 0.6653 0.3326
14 0.6879 0.6241 0.3121
15 0.7552 0.4896 0.2448
16 0.787 0.426 0.213
17 0.7409 0.5182 0.2591
18 0.6769 0.6463 0.3231
19 0.5952 0.8096 0.4048
20 0.9589 0.08216 0.04108
21 0.9635 0.07304 0.03652
22 0.9612 0.07754 0.03877
23 0.9447 0.1105 0.05525
24 0.9453 0.1095 0.05473
25 0.933 0.134 0.06698
26 0.9086 0.1827 0.09135
27 0.892 0.2159 0.108
28 0.8619 0.2761 0.1381
29 0.8602 0.2796 0.1398
30 0.888 0.2241 0.112
31 0.8741 0.2517 0.1259
32 0.8437 0.3126 0.1563
33 0.8296 0.3408 0.1704
34 0.7936 0.4128 0.2064
35 0.7627 0.4746 0.2373
36 0.7191 0.5618 0.2809
37 0.6902 0.6196 0.3098
38 0.6392 0.7215 0.3608
39 0.6857 0.6285 0.3143
40 0.686 0.628 0.314
41 0.9935 0.01302 0.006512
42 0.9958 0.008468 0.004234
43 0.9939 0.0123 0.006149
44 0.9917 0.0166 0.0083
45 0.9891 0.02178 0.01089
46 0.9871 0.02582 0.01291
47 0.9832 0.03356 0.01678
48 0.9775 0.04492 0.02246
49 0.9799 0.04019 0.0201
50 0.9738 0.05237 0.02619
51 0.9821 0.03589 0.01794
52 0.9854 0.0292 0.0146
53 0.9805 0.039 0.0195
54 0.9883 0.0235 0.01175
55 0.9965 0.007023 0.003511
56 0.995 0.009978 0.004989
57 0.993 0.01391 0.006956
58 0.9927 0.01465 0.007323
59 0.9914 0.0171 0.008551
60 0.9884 0.02325 0.01163
61 0.9879 0.02412 0.01206
62 0.984 0.03208 0.01604
63 0.9891 0.0217 0.01085
64 0.9856 0.02888 0.01444
65 0.9849 0.03011 0.01506
66 0.9854 0.02929 0.01464
67 0.9899 0.02012 0.01006
68 0.9867 0.02667 0.01334
69 0.9848 0.03038 0.01519
70 0.9844 0.03121 0.01561
71 0.9804 0.03915 0.01958
72 0.9837 0.03261 0.01631
73 0.9799 0.04019 0.0201
74 0.9781 0.04381 0.0219
75 0.9718 0.05649 0.02825
76 0.9767 0.04667 0.02334
77 0.9698 0.06043 0.03021
78 0.9665 0.06708 0.03354
79 0.9799 0.04026 0.02013
80 0.9781 0.04374 0.02187
81 0.9714 0.05717 0.02858
82 0.9792 0.04166 0.02083
83 0.9734 0.05318 0.02659
84 0.9689 0.06222 0.03111
85 0.9743 0.0514 0.0257
86 0.9734 0.05319 0.0266
87 0.9755 0.0491 0.02455
88 0.9726 0.05483 0.02741
89 0.9655 0.0689 0.03445
90 0.9645 0.07094 0.03547
91 0.9616 0.07686 0.03843
92 0.9502 0.09952 0.04976
93 0.981 0.03802 0.01901
94 0.9755 0.04908 0.02454
95 0.973 0.05393 0.02697
96 0.9769 0.04611 0.02305
97 0.9729 0.05425 0.02713
98 0.9654 0.0691 0.03455
99 0.9582 0.08358 0.04179
100 0.9499 0.1001 0.05005
101 0.9564 0.08721 0.0436
102 0.9492 0.1016 0.05082
103 0.9787 0.04251 0.02125
104 0.9714 0.05713 0.02856
105 0.9715 0.05706 0.02853
106 0.9688 0.0625 0.03125
107 0.9608 0.07838 0.03919
108 0.955 0.08995 0.04498
109 0.9489 0.1021 0.05106
110 0.9332 0.1337 0.06683
111 0.9425 0.115 0.05748
112 0.9306 0.1388 0.06942
113 0.9227 0.1547 0.07734
114 0.9384 0.1233 0.06163
115 0.9246 0.1509 0.07543
116 0.9116 0.1769 0.08843
117 0.8894 0.2212 0.1106
118 0.8603 0.2794 0.1397
119 0.8263 0.3473 0.1737
120 0.7977 0.4046 0.2023
121 0.8058 0.3884 0.1942
122 0.7627 0.4745 0.2373
123 0.7841 0.4319 0.2159
124 0.7367 0.5267 0.2633
125 0.6886 0.6228 0.3114
126 0.6423 0.7155 0.3577
127 0.5833 0.8335 0.4167
128 0.5646 0.8707 0.4354
129 0.5 0.9999 0.5
130 0.4781 0.9562 0.5219
131 0.4971 0.9942 0.5029
132 0.5386 0.9227 0.4614
133 0.4728 0.9456 0.5272
134 0.4035 0.8071 0.5965
135 0.3336 0.6671 0.6664
136 0.2721 0.5442 0.7279
137 0.2912 0.5823 0.7088
138 0.2376 0.4751 0.7624
139 0.2064 0.4127 0.7936
140 0.1522 0.3043 0.8478
141 0.1113 0.2226 0.8887
142 0.4792 0.9584 0.5208
143 0.4197 0.8395 0.5803
144 0.3788 0.7576 0.6212
145 0.285 0.5699 0.715
146 0.2022 0.4044 0.7978
147 0.8194 0.3612 0.1806
148 0.8516 0.2967 0.1484

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
10 &  0.1618 &  0.3236 &  0.8382 \tabularnewline
11 &  0.1508 &  0.3016 &  0.8492 \tabularnewline
12 &  0.6534 &  0.6932 &  0.3466 \tabularnewline
13 &  0.6674 &  0.6653 &  0.3326 \tabularnewline
14 &  0.6879 &  0.6241 &  0.3121 \tabularnewline
15 &  0.7552 &  0.4896 &  0.2448 \tabularnewline
16 &  0.787 &  0.426 &  0.213 \tabularnewline
17 &  0.7409 &  0.5182 &  0.2591 \tabularnewline
18 &  0.6769 &  0.6463 &  0.3231 \tabularnewline
19 &  0.5952 &  0.8096 &  0.4048 \tabularnewline
20 &  0.9589 &  0.08216 &  0.04108 \tabularnewline
21 &  0.9635 &  0.07304 &  0.03652 \tabularnewline
22 &  0.9612 &  0.07754 &  0.03877 \tabularnewline
23 &  0.9447 &  0.1105 &  0.05525 \tabularnewline
24 &  0.9453 &  0.1095 &  0.05473 \tabularnewline
25 &  0.933 &  0.134 &  0.06698 \tabularnewline
26 &  0.9086 &  0.1827 &  0.09135 \tabularnewline
27 &  0.892 &  0.2159 &  0.108 \tabularnewline
28 &  0.8619 &  0.2761 &  0.1381 \tabularnewline
29 &  0.8602 &  0.2796 &  0.1398 \tabularnewline
30 &  0.888 &  0.2241 &  0.112 \tabularnewline
31 &  0.8741 &  0.2517 &  0.1259 \tabularnewline
32 &  0.8437 &  0.3126 &  0.1563 \tabularnewline
33 &  0.8296 &  0.3408 &  0.1704 \tabularnewline
34 &  0.7936 &  0.4128 &  0.2064 \tabularnewline
35 &  0.7627 &  0.4746 &  0.2373 \tabularnewline
36 &  0.7191 &  0.5618 &  0.2809 \tabularnewline
37 &  0.6902 &  0.6196 &  0.3098 \tabularnewline
38 &  0.6392 &  0.7215 &  0.3608 \tabularnewline
39 &  0.6857 &  0.6285 &  0.3143 \tabularnewline
40 &  0.686 &  0.628 &  0.314 \tabularnewline
41 &  0.9935 &  0.01302 &  0.006512 \tabularnewline
42 &  0.9958 &  0.008468 &  0.004234 \tabularnewline
43 &  0.9939 &  0.0123 &  0.006149 \tabularnewline
44 &  0.9917 &  0.0166 &  0.0083 \tabularnewline
45 &  0.9891 &  0.02178 &  0.01089 \tabularnewline
46 &  0.9871 &  0.02582 &  0.01291 \tabularnewline
47 &  0.9832 &  0.03356 &  0.01678 \tabularnewline
48 &  0.9775 &  0.04492 &  0.02246 \tabularnewline
49 &  0.9799 &  0.04019 &  0.0201 \tabularnewline
50 &  0.9738 &  0.05237 &  0.02619 \tabularnewline
51 &  0.9821 &  0.03589 &  0.01794 \tabularnewline
52 &  0.9854 &  0.0292 &  0.0146 \tabularnewline
53 &  0.9805 &  0.039 &  0.0195 \tabularnewline
54 &  0.9883 &  0.0235 &  0.01175 \tabularnewline
55 &  0.9965 &  0.007023 &  0.003511 \tabularnewline
56 &  0.995 &  0.009978 &  0.004989 \tabularnewline
57 &  0.993 &  0.01391 &  0.006956 \tabularnewline
58 &  0.9927 &  0.01465 &  0.007323 \tabularnewline
59 &  0.9914 &  0.0171 &  0.008551 \tabularnewline
60 &  0.9884 &  0.02325 &  0.01163 \tabularnewline
61 &  0.9879 &  0.02412 &  0.01206 \tabularnewline
62 &  0.984 &  0.03208 &  0.01604 \tabularnewline
63 &  0.9891 &  0.0217 &  0.01085 \tabularnewline
64 &  0.9856 &  0.02888 &  0.01444 \tabularnewline
65 &  0.9849 &  0.03011 &  0.01506 \tabularnewline
66 &  0.9854 &  0.02929 &  0.01464 \tabularnewline
67 &  0.9899 &  0.02012 &  0.01006 \tabularnewline
68 &  0.9867 &  0.02667 &  0.01334 \tabularnewline
69 &  0.9848 &  0.03038 &  0.01519 \tabularnewline
70 &  0.9844 &  0.03121 &  0.01561 \tabularnewline
71 &  0.9804 &  0.03915 &  0.01958 \tabularnewline
72 &  0.9837 &  0.03261 &  0.01631 \tabularnewline
73 &  0.9799 &  0.04019 &  0.0201 \tabularnewline
74 &  0.9781 &  0.04381 &  0.0219 \tabularnewline
75 &  0.9718 &  0.05649 &  0.02825 \tabularnewline
76 &  0.9767 &  0.04667 &  0.02334 \tabularnewline
77 &  0.9698 &  0.06043 &  0.03021 \tabularnewline
78 &  0.9665 &  0.06708 &  0.03354 \tabularnewline
79 &  0.9799 &  0.04026 &  0.02013 \tabularnewline
80 &  0.9781 &  0.04374 &  0.02187 \tabularnewline
81 &  0.9714 &  0.05717 &  0.02858 \tabularnewline
82 &  0.9792 &  0.04166 &  0.02083 \tabularnewline
83 &  0.9734 &  0.05318 &  0.02659 \tabularnewline
84 &  0.9689 &  0.06222 &  0.03111 \tabularnewline
85 &  0.9743 &  0.0514 &  0.0257 \tabularnewline
86 &  0.9734 &  0.05319 &  0.0266 \tabularnewline
87 &  0.9755 &  0.0491 &  0.02455 \tabularnewline
88 &  0.9726 &  0.05483 &  0.02741 \tabularnewline
89 &  0.9655 &  0.0689 &  0.03445 \tabularnewline
90 &  0.9645 &  0.07094 &  0.03547 \tabularnewline
91 &  0.9616 &  0.07686 &  0.03843 \tabularnewline
92 &  0.9502 &  0.09952 &  0.04976 \tabularnewline
93 &  0.981 &  0.03802 &  0.01901 \tabularnewline
94 &  0.9755 &  0.04908 &  0.02454 \tabularnewline
95 &  0.973 &  0.05393 &  0.02697 \tabularnewline
96 &  0.9769 &  0.04611 &  0.02305 \tabularnewline
97 &  0.9729 &  0.05425 &  0.02713 \tabularnewline
98 &  0.9654 &  0.0691 &  0.03455 \tabularnewline
99 &  0.9582 &  0.08358 &  0.04179 \tabularnewline
100 &  0.9499 &  0.1001 &  0.05005 \tabularnewline
101 &  0.9564 &  0.08721 &  0.0436 \tabularnewline
102 &  0.9492 &  0.1016 &  0.05082 \tabularnewline
103 &  0.9787 &  0.04251 &  0.02125 \tabularnewline
104 &  0.9714 &  0.05713 &  0.02856 \tabularnewline
105 &  0.9715 &  0.05706 &  0.02853 \tabularnewline
106 &  0.9688 &  0.0625 &  0.03125 \tabularnewline
107 &  0.9608 &  0.07838 &  0.03919 \tabularnewline
108 &  0.955 &  0.08995 &  0.04498 \tabularnewline
109 &  0.9489 &  0.1021 &  0.05106 \tabularnewline
110 &  0.9332 &  0.1337 &  0.06683 \tabularnewline
111 &  0.9425 &  0.115 &  0.05748 \tabularnewline
112 &  0.9306 &  0.1388 &  0.06942 \tabularnewline
113 &  0.9227 &  0.1547 &  0.07734 \tabularnewline
114 &  0.9384 &  0.1233 &  0.06163 \tabularnewline
115 &  0.9246 &  0.1509 &  0.07543 \tabularnewline
116 &  0.9116 &  0.1769 &  0.08843 \tabularnewline
117 &  0.8894 &  0.2212 &  0.1106 \tabularnewline
118 &  0.8603 &  0.2794 &  0.1397 \tabularnewline
119 &  0.8263 &  0.3473 &  0.1737 \tabularnewline
120 &  0.7977 &  0.4046 &  0.2023 \tabularnewline
121 &  0.8058 &  0.3884 &  0.1942 \tabularnewline
122 &  0.7627 &  0.4745 &  0.2373 \tabularnewline
123 &  0.7841 &  0.4319 &  0.2159 \tabularnewline
124 &  0.7367 &  0.5267 &  0.2633 \tabularnewline
125 &  0.6886 &  0.6228 &  0.3114 \tabularnewline
126 &  0.6423 &  0.7155 &  0.3577 \tabularnewline
127 &  0.5833 &  0.8335 &  0.4167 \tabularnewline
128 &  0.5646 &  0.8707 &  0.4354 \tabularnewline
129 &  0.5 &  0.9999 &  0.5 \tabularnewline
130 &  0.4781 &  0.9562 &  0.5219 \tabularnewline
131 &  0.4971 &  0.9942 &  0.5029 \tabularnewline
132 &  0.5386 &  0.9227 &  0.4614 \tabularnewline
133 &  0.4728 &  0.9456 &  0.5272 \tabularnewline
134 &  0.4035 &  0.8071 &  0.5965 \tabularnewline
135 &  0.3336 &  0.6671 &  0.6664 \tabularnewline
136 &  0.2721 &  0.5442 &  0.7279 \tabularnewline
137 &  0.2912 &  0.5823 &  0.7088 \tabularnewline
138 &  0.2376 &  0.4751 &  0.7624 \tabularnewline
139 &  0.2064 &  0.4127 &  0.7936 \tabularnewline
140 &  0.1522 &  0.3043 &  0.8478 \tabularnewline
141 &  0.1113 &  0.2226 &  0.8887 \tabularnewline
142 &  0.4792 &  0.9584 &  0.5208 \tabularnewline
143 &  0.4197 &  0.8395 &  0.5803 \tabularnewline
144 &  0.3788 &  0.7576 &  0.6212 \tabularnewline
145 &  0.285 &  0.5699 &  0.715 \tabularnewline
146 &  0.2022 &  0.4044 &  0.7978 \tabularnewline
147 &  0.8194 &  0.3612 &  0.1806 \tabularnewline
148 &  0.8516 &  0.2967 &  0.1484 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=304660&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]10[/C][C] 0.1618[/C][C] 0.3236[/C][C] 0.8382[/C][/ROW]
[ROW][C]11[/C][C] 0.1508[/C][C] 0.3016[/C][C] 0.8492[/C][/ROW]
[ROW][C]12[/C][C] 0.6534[/C][C] 0.6932[/C][C] 0.3466[/C][/ROW]
[ROW][C]13[/C][C] 0.6674[/C][C] 0.6653[/C][C] 0.3326[/C][/ROW]
[ROW][C]14[/C][C] 0.6879[/C][C] 0.6241[/C][C] 0.3121[/C][/ROW]
[ROW][C]15[/C][C] 0.7552[/C][C] 0.4896[/C][C] 0.2448[/C][/ROW]
[ROW][C]16[/C][C] 0.787[/C][C] 0.426[/C][C] 0.213[/C][/ROW]
[ROW][C]17[/C][C] 0.7409[/C][C] 0.5182[/C][C] 0.2591[/C][/ROW]
[ROW][C]18[/C][C] 0.6769[/C][C] 0.6463[/C][C] 0.3231[/C][/ROW]
[ROW][C]19[/C][C] 0.5952[/C][C] 0.8096[/C][C] 0.4048[/C][/ROW]
[ROW][C]20[/C][C] 0.9589[/C][C] 0.08216[/C][C] 0.04108[/C][/ROW]
[ROW][C]21[/C][C] 0.9635[/C][C] 0.07304[/C][C] 0.03652[/C][/ROW]
[ROW][C]22[/C][C] 0.9612[/C][C] 0.07754[/C][C] 0.03877[/C][/ROW]
[ROW][C]23[/C][C] 0.9447[/C][C] 0.1105[/C][C] 0.05525[/C][/ROW]
[ROW][C]24[/C][C] 0.9453[/C][C] 0.1095[/C][C] 0.05473[/C][/ROW]
[ROW][C]25[/C][C] 0.933[/C][C] 0.134[/C][C] 0.06698[/C][/ROW]
[ROW][C]26[/C][C] 0.9086[/C][C] 0.1827[/C][C] 0.09135[/C][/ROW]
[ROW][C]27[/C][C] 0.892[/C][C] 0.2159[/C][C] 0.108[/C][/ROW]
[ROW][C]28[/C][C] 0.8619[/C][C] 0.2761[/C][C] 0.1381[/C][/ROW]
[ROW][C]29[/C][C] 0.8602[/C][C] 0.2796[/C][C] 0.1398[/C][/ROW]
[ROW][C]30[/C][C] 0.888[/C][C] 0.2241[/C][C] 0.112[/C][/ROW]
[ROW][C]31[/C][C] 0.8741[/C][C] 0.2517[/C][C] 0.1259[/C][/ROW]
[ROW][C]32[/C][C] 0.8437[/C][C] 0.3126[/C][C] 0.1563[/C][/ROW]
[ROW][C]33[/C][C] 0.8296[/C][C] 0.3408[/C][C] 0.1704[/C][/ROW]
[ROW][C]34[/C][C] 0.7936[/C][C] 0.4128[/C][C] 0.2064[/C][/ROW]
[ROW][C]35[/C][C] 0.7627[/C][C] 0.4746[/C][C] 0.2373[/C][/ROW]
[ROW][C]36[/C][C] 0.7191[/C][C] 0.5618[/C][C] 0.2809[/C][/ROW]
[ROW][C]37[/C][C] 0.6902[/C][C] 0.6196[/C][C] 0.3098[/C][/ROW]
[ROW][C]38[/C][C] 0.6392[/C][C] 0.7215[/C][C] 0.3608[/C][/ROW]
[ROW][C]39[/C][C] 0.6857[/C][C] 0.6285[/C][C] 0.3143[/C][/ROW]
[ROW][C]40[/C][C] 0.686[/C][C] 0.628[/C][C] 0.314[/C][/ROW]
[ROW][C]41[/C][C] 0.9935[/C][C] 0.01302[/C][C] 0.006512[/C][/ROW]
[ROW][C]42[/C][C] 0.9958[/C][C] 0.008468[/C][C] 0.004234[/C][/ROW]
[ROW][C]43[/C][C] 0.9939[/C][C] 0.0123[/C][C] 0.006149[/C][/ROW]
[ROW][C]44[/C][C] 0.9917[/C][C] 0.0166[/C][C] 0.0083[/C][/ROW]
[ROW][C]45[/C][C] 0.9891[/C][C] 0.02178[/C][C] 0.01089[/C][/ROW]
[ROW][C]46[/C][C] 0.9871[/C][C] 0.02582[/C][C] 0.01291[/C][/ROW]
[ROW][C]47[/C][C] 0.9832[/C][C] 0.03356[/C][C] 0.01678[/C][/ROW]
[ROW][C]48[/C][C] 0.9775[/C][C] 0.04492[/C][C] 0.02246[/C][/ROW]
[ROW][C]49[/C][C] 0.9799[/C][C] 0.04019[/C][C] 0.0201[/C][/ROW]
[ROW][C]50[/C][C] 0.9738[/C][C] 0.05237[/C][C] 0.02619[/C][/ROW]
[ROW][C]51[/C][C] 0.9821[/C][C] 0.03589[/C][C] 0.01794[/C][/ROW]
[ROW][C]52[/C][C] 0.9854[/C][C] 0.0292[/C][C] 0.0146[/C][/ROW]
[ROW][C]53[/C][C] 0.9805[/C][C] 0.039[/C][C] 0.0195[/C][/ROW]
[ROW][C]54[/C][C] 0.9883[/C][C] 0.0235[/C][C] 0.01175[/C][/ROW]
[ROW][C]55[/C][C] 0.9965[/C][C] 0.007023[/C][C] 0.003511[/C][/ROW]
[ROW][C]56[/C][C] 0.995[/C][C] 0.009978[/C][C] 0.004989[/C][/ROW]
[ROW][C]57[/C][C] 0.993[/C][C] 0.01391[/C][C] 0.006956[/C][/ROW]
[ROW][C]58[/C][C] 0.9927[/C][C] 0.01465[/C][C] 0.007323[/C][/ROW]
[ROW][C]59[/C][C] 0.9914[/C][C] 0.0171[/C][C] 0.008551[/C][/ROW]
[ROW][C]60[/C][C] 0.9884[/C][C] 0.02325[/C][C] 0.01163[/C][/ROW]
[ROW][C]61[/C][C] 0.9879[/C][C] 0.02412[/C][C] 0.01206[/C][/ROW]
[ROW][C]62[/C][C] 0.984[/C][C] 0.03208[/C][C] 0.01604[/C][/ROW]
[ROW][C]63[/C][C] 0.9891[/C][C] 0.0217[/C][C] 0.01085[/C][/ROW]
[ROW][C]64[/C][C] 0.9856[/C][C] 0.02888[/C][C] 0.01444[/C][/ROW]
[ROW][C]65[/C][C] 0.9849[/C][C] 0.03011[/C][C] 0.01506[/C][/ROW]
[ROW][C]66[/C][C] 0.9854[/C][C] 0.02929[/C][C] 0.01464[/C][/ROW]
[ROW][C]67[/C][C] 0.9899[/C][C] 0.02012[/C][C] 0.01006[/C][/ROW]
[ROW][C]68[/C][C] 0.9867[/C][C] 0.02667[/C][C] 0.01334[/C][/ROW]
[ROW][C]69[/C][C] 0.9848[/C][C] 0.03038[/C][C] 0.01519[/C][/ROW]
[ROW][C]70[/C][C] 0.9844[/C][C] 0.03121[/C][C] 0.01561[/C][/ROW]
[ROW][C]71[/C][C] 0.9804[/C][C] 0.03915[/C][C] 0.01958[/C][/ROW]
[ROW][C]72[/C][C] 0.9837[/C][C] 0.03261[/C][C] 0.01631[/C][/ROW]
[ROW][C]73[/C][C] 0.9799[/C][C] 0.04019[/C][C] 0.0201[/C][/ROW]
[ROW][C]74[/C][C] 0.9781[/C][C] 0.04381[/C][C] 0.0219[/C][/ROW]
[ROW][C]75[/C][C] 0.9718[/C][C] 0.05649[/C][C] 0.02825[/C][/ROW]
[ROW][C]76[/C][C] 0.9767[/C][C] 0.04667[/C][C] 0.02334[/C][/ROW]
[ROW][C]77[/C][C] 0.9698[/C][C] 0.06043[/C][C] 0.03021[/C][/ROW]
[ROW][C]78[/C][C] 0.9665[/C][C] 0.06708[/C][C] 0.03354[/C][/ROW]
[ROW][C]79[/C][C] 0.9799[/C][C] 0.04026[/C][C] 0.02013[/C][/ROW]
[ROW][C]80[/C][C] 0.9781[/C][C] 0.04374[/C][C] 0.02187[/C][/ROW]
[ROW][C]81[/C][C] 0.9714[/C][C] 0.05717[/C][C] 0.02858[/C][/ROW]
[ROW][C]82[/C][C] 0.9792[/C][C] 0.04166[/C][C] 0.02083[/C][/ROW]
[ROW][C]83[/C][C] 0.9734[/C][C] 0.05318[/C][C] 0.02659[/C][/ROW]
[ROW][C]84[/C][C] 0.9689[/C][C] 0.06222[/C][C] 0.03111[/C][/ROW]
[ROW][C]85[/C][C] 0.9743[/C][C] 0.0514[/C][C] 0.0257[/C][/ROW]
[ROW][C]86[/C][C] 0.9734[/C][C] 0.05319[/C][C] 0.0266[/C][/ROW]
[ROW][C]87[/C][C] 0.9755[/C][C] 0.0491[/C][C] 0.02455[/C][/ROW]
[ROW][C]88[/C][C] 0.9726[/C][C] 0.05483[/C][C] 0.02741[/C][/ROW]
[ROW][C]89[/C][C] 0.9655[/C][C] 0.0689[/C][C] 0.03445[/C][/ROW]
[ROW][C]90[/C][C] 0.9645[/C][C] 0.07094[/C][C] 0.03547[/C][/ROW]
[ROW][C]91[/C][C] 0.9616[/C][C] 0.07686[/C][C] 0.03843[/C][/ROW]
[ROW][C]92[/C][C] 0.9502[/C][C] 0.09952[/C][C] 0.04976[/C][/ROW]
[ROW][C]93[/C][C] 0.981[/C][C] 0.03802[/C][C] 0.01901[/C][/ROW]
[ROW][C]94[/C][C] 0.9755[/C][C] 0.04908[/C][C] 0.02454[/C][/ROW]
[ROW][C]95[/C][C] 0.973[/C][C] 0.05393[/C][C] 0.02697[/C][/ROW]
[ROW][C]96[/C][C] 0.9769[/C][C] 0.04611[/C][C] 0.02305[/C][/ROW]
[ROW][C]97[/C][C] 0.9729[/C][C] 0.05425[/C][C] 0.02713[/C][/ROW]
[ROW][C]98[/C][C] 0.9654[/C][C] 0.0691[/C][C] 0.03455[/C][/ROW]
[ROW][C]99[/C][C] 0.9582[/C][C] 0.08358[/C][C] 0.04179[/C][/ROW]
[ROW][C]100[/C][C] 0.9499[/C][C] 0.1001[/C][C] 0.05005[/C][/ROW]
[ROW][C]101[/C][C] 0.9564[/C][C] 0.08721[/C][C] 0.0436[/C][/ROW]
[ROW][C]102[/C][C] 0.9492[/C][C] 0.1016[/C][C] 0.05082[/C][/ROW]
[ROW][C]103[/C][C] 0.9787[/C][C] 0.04251[/C][C] 0.02125[/C][/ROW]
[ROW][C]104[/C][C] 0.9714[/C][C] 0.05713[/C][C] 0.02856[/C][/ROW]
[ROW][C]105[/C][C] 0.9715[/C][C] 0.05706[/C][C] 0.02853[/C][/ROW]
[ROW][C]106[/C][C] 0.9688[/C][C] 0.0625[/C][C] 0.03125[/C][/ROW]
[ROW][C]107[/C][C] 0.9608[/C][C] 0.07838[/C][C] 0.03919[/C][/ROW]
[ROW][C]108[/C][C] 0.955[/C][C] 0.08995[/C][C] 0.04498[/C][/ROW]
[ROW][C]109[/C][C] 0.9489[/C][C] 0.1021[/C][C] 0.05106[/C][/ROW]
[ROW][C]110[/C][C] 0.9332[/C][C] 0.1337[/C][C] 0.06683[/C][/ROW]
[ROW][C]111[/C][C] 0.9425[/C][C] 0.115[/C][C] 0.05748[/C][/ROW]
[ROW][C]112[/C][C] 0.9306[/C][C] 0.1388[/C][C] 0.06942[/C][/ROW]
[ROW][C]113[/C][C] 0.9227[/C][C] 0.1547[/C][C] 0.07734[/C][/ROW]
[ROW][C]114[/C][C] 0.9384[/C][C] 0.1233[/C][C] 0.06163[/C][/ROW]
[ROW][C]115[/C][C] 0.9246[/C][C] 0.1509[/C][C] 0.07543[/C][/ROW]
[ROW][C]116[/C][C] 0.9116[/C][C] 0.1769[/C][C] 0.08843[/C][/ROW]
[ROW][C]117[/C][C] 0.8894[/C][C] 0.2212[/C][C] 0.1106[/C][/ROW]
[ROW][C]118[/C][C] 0.8603[/C][C] 0.2794[/C][C] 0.1397[/C][/ROW]
[ROW][C]119[/C][C] 0.8263[/C][C] 0.3473[/C][C] 0.1737[/C][/ROW]
[ROW][C]120[/C][C] 0.7977[/C][C] 0.4046[/C][C] 0.2023[/C][/ROW]
[ROW][C]121[/C][C] 0.8058[/C][C] 0.3884[/C][C] 0.1942[/C][/ROW]
[ROW][C]122[/C][C] 0.7627[/C][C] 0.4745[/C][C] 0.2373[/C][/ROW]
[ROW][C]123[/C][C] 0.7841[/C][C] 0.4319[/C][C] 0.2159[/C][/ROW]
[ROW][C]124[/C][C] 0.7367[/C][C] 0.5267[/C][C] 0.2633[/C][/ROW]
[ROW][C]125[/C][C] 0.6886[/C][C] 0.6228[/C][C] 0.3114[/C][/ROW]
[ROW][C]126[/C][C] 0.6423[/C][C] 0.7155[/C][C] 0.3577[/C][/ROW]
[ROW][C]127[/C][C] 0.5833[/C][C] 0.8335[/C][C] 0.4167[/C][/ROW]
[ROW][C]128[/C][C] 0.5646[/C][C] 0.8707[/C][C] 0.4354[/C][/ROW]
[ROW][C]129[/C][C] 0.5[/C][C] 0.9999[/C][C] 0.5[/C][/ROW]
[ROW][C]130[/C][C] 0.4781[/C][C] 0.9562[/C][C] 0.5219[/C][/ROW]
[ROW][C]131[/C][C] 0.4971[/C][C] 0.9942[/C][C] 0.5029[/C][/ROW]
[ROW][C]132[/C][C] 0.5386[/C][C] 0.9227[/C][C] 0.4614[/C][/ROW]
[ROW][C]133[/C][C] 0.4728[/C][C] 0.9456[/C][C] 0.5272[/C][/ROW]
[ROW][C]134[/C][C] 0.4035[/C][C] 0.8071[/C][C] 0.5965[/C][/ROW]
[ROW][C]135[/C][C] 0.3336[/C][C] 0.6671[/C][C] 0.6664[/C][/ROW]
[ROW][C]136[/C][C] 0.2721[/C][C] 0.5442[/C][C] 0.7279[/C][/ROW]
[ROW][C]137[/C][C] 0.2912[/C][C] 0.5823[/C][C] 0.7088[/C][/ROW]
[ROW][C]138[/C][C] 0.2376[/C][C] 0.4751[/C][C] 0.7624[/C][/ROW]
[ROW][C]139[/C][C] 0.2064[/C][C] 0.4127[/C][C] 0.7936[/C][/ROW]
[ROW][C]140[/C][C] 0.1522[/C][C] 0.3043[/C][C] 0.8478[/C][/ROW]
[ROW][C]141[/C][C] 0.1113[/C][C] 0.2226[/C][C] 0.8887[/C][/ROW]
[ROW][C]142[/C][C] 0.4792[/C][C] 0.9584[/C][C] 0.5208[/C][/ROW]
[ROW][C]143[/C][C] 0.4197[/C][C] 0.8395[/C][C] 0.5803[/C][/ROW]
[ROW][C]144[/C][C] 0.3788[/C][C] 0.7576[/C][C] 0.6212[/C][/ROW]
[ROW][C]145[/C][C] 0.285[/C][C] 0.5699[/C][C] 0.715[/C][/ROW]
[ROW][C]146[/C][C] 0.2022[/C][C] 0.4044[/C][C] 0.7978[/C][/ROW]
[ROW][C]147[/C][C] 0.8194[/C][C] 0.3612[/C][C] 0.1806[/C][/ROW]
[ROW][C]148[/C][C] 0.8516[/C][C] 0.2967[/C][C] 0.1484[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=304660&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=304660&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
10 0.1618 0.3236 0.8382
11 0.1508 0.3016 0.8492
12 0.6534 0.6932 0.3466
13 0.6674 0.6653 0.3326
14 0.6879 0.6241 0.3121
15 0.7552 0.4896 0.2448
16 0.787 0.426 0.213
17 0.7409 0.5182 0.2591
18 0.6769 0.6463 0.3231
19 0.5952 0.8096 0.4048
20 0.9589 0.08216 0.04108
21 0.9635 0.07304 0.03652
22 0.9612 0.07754 0.03877
23 0.9447 0.1105 0.05525
24 0.9453 0.1095 0.05473
25 0.933 0.134 0.06698
26 0.9086 0.1827 0.09135
27 0.892 0.2159 0.108
28 0.8619 0.2761 0.1381
29 0.8602 0.2796 0.1398
30 0.888 0.2241 0.112
31 0.8741 0.2517 0.1259
32 0.8437 0.3126 0.1563
33 0.8296 0.3408 0.1704
34 0.7936 0.4128 0.2064
35 0.7627 0.4746 0.2373
36 0.7191 0.5618 0.2809
37 0.6902 0.6196 0.3098
38 0.6392 0.7215 0.3608
39 0.6857 0.6285 0.3143
40 0.686 0.628 0.314
41 0.9935 0.01302 0.006512
42 0.9958 0.008468 0.004234
43 0.9939 0.0123 0.006149
44 0.9917 0.0166 0.0083
45 0.9891 0.02178 0.01089
46 0.9871 0.02582 0.01291
47 0.9832 0.03356 0.01678
48 0.9775 0.04492 0.02246
49 0.9799 0.04019 0.0201
50 0.9738 0.05237 0.02619
51 0.9821 0.03589 0.01794
52 0.9854 0.0292 0.0146
53 0.9805 0.039 0.0195
54 0.9883 0.0235 0.01175
55 0.9965 0.007023 0.003511
56 0.995 0.009978 0.004989
57 0.993 0.01391 0.006956
58 0.9927 0.01465 0.007323
59 0.9914 0.0171 0.008551
60 0.9884 0.02325 0.01163
61 0.9879 0.02412 0.01206
62 0.984 0.03208 0.01604
63 0.9891 0.0217 0.01085
64 0.9856 0.02888 0.01444
65 0.9849 0.03011 0.01506
66 0.9854 0.02929 0.01464
67 0.9899 0.02012 0.01006
68 0.9867 0.02667 0.01334
69 0.9848 0.03038 0.01519
70 0.9844 0.03121 0.01561
71 0.9804 0.03915 0.01958
72 0.9837 0.03261 0.01631
73 0.9799 0.04019 0.0201
74 0.9781 0.04381 0.0219
75 0.9718 0.05649 0.02825
76 0.9767 0.04667 0.02334
77 0.9698 0.06043 0.03021
78 0.9665 0.06708 0.03354
79 0.9799 0.04026 0.02013
80 0.9781 0.04374 0.02187
81 0.9714 0.05717 0.02858
82 0.9792 0.04166 0.02083
83 0.9734 0.05318 0.02659
84 0.9689 0.06222 0.03111
85 0.9743 0.0514 0.0257
86 0.9734 0.05319 0.0266
87 0.9755 0.0491 0.02455
88 0.9726 0.05483 0.02741
89 0.9655 0.0689 0.03445
90 0.9645 0.07094 0.03547
91 0.9616 0.07686 0.03843
92 0.9502 0.09952 0.04976
93 0.981 0.03802 0.01901
94 0.9755 0.04908 0.02454
95 0.973 0.05393 0.02697
96 0.9769 0.04611 0.02305
97 0.9729 0.05425 0.02713
98 0.9654 0.0691 0.03455
99 0.9582 0.08358 0.04179
100 0.9499 0.1001 0.05005
101 0.9564 0.08721 0.0436
102 0.9492 0.1016 0.05082
103 0.9787 0.04251 0.02125
104 0.9714 0.05713 0.02856
105 0.9715 0.05706 0.02853
106 0.9688 0.0625 0.03125
107 0.9608 0.07838 0.03919
108 0.955 0.08995 0.04498
109 0.9489 0.1021 0.05106
110 0.9332 0.1337 0.06683
111 0.9425 0.115 0.05748
112 0.9306 0.1388 0.06942
113 0.9227 0.1547 0.07734
114 0.9384 0.1233 0.06163
115 0.9246 0.1509 0.07543
116 0.9116 0.1769 0.08843
117 0.8894 0.2212 0.1106
118 0.8603 0.2794 0.1397
119 0.8263 0.3473 0.1737
120 0.7977 0.4046 0.2023
121 0.8058 0.3884 0.1942
122 0.7627 0.4745 0.2373
123 0.7841 0.4319 0.2159
124 0.7367 0.5267 0.2633
125 0.6886 0.6228 0.3114
126 0.6423 0.7155 0.3577
127 0.5833 0.8335 0.4167
128 0.5646 0.8707 0.4354
129 0.5 0.9999 0.5
130 0.4781 0.9562 0.5219
131 0.4971 0.9942 0.5029
132 0.5386 0.9227 0.4614
133 0.4728 0.9456 0.5272
134 0.4035 0.8071 0.5965
135 0.3336 0.6671 0.6664
136 0.2721 0.5442 0.7279
137 0.2912 0.5823 0.7088
138 0.2376 0.4751 0.7624
139 0.2064 0.4127 0.7936
140 0.1522 0.3043 0.8478
141 0.1113 0.2226 0.8887
142 0.4792 0.9584 0.5208
143 0.4197 0.8395 0.5803
144 0.3788 0.7576 0.6212
145 0.285 0.5699 0.715
146 0.2022 0.4044 0.7978
147 0.8194 0.3612 0.1806
148 0.8516 0.2967 0.1484







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level3 0.02158NOK
5% type I error level420.302158NOK
10% type I error level690.496403NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 3 &  0.02158 & NOK \tabularnewline
5% type I error level & 42 & 0.302158 & NOK \tabularnewline
10% type I error level & 69 & 0.496403 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=304660&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]3[/C][C] 0.02158[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]42[/C][C]0.302158[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]69[/C][C]0.496403[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=304660&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=304660&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level3 0.02158NOK
5% type I error level420.302158NOK
10% type I error level690.496403NOK







Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 1.8532, df1 = 2, df2 = 149, p-value = 0.1603
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0.64199, df1 = 12, df2 = 139, p-value = 0.8033
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 2.1527, df1 = 2, df2 = 149, p-value = 0.1198

\begin{tabular}{lllllllll}
\hline
Ramsey RESET F-Test for powers (2 and 3) of fitted values \tabularnewline
> reset_test_fitted
	RESET test
data:  mylm
RESET = 1.8532, df1 = 2, df2 = 149, p-value = 0.1603
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of regressors \tabularnewline
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0.64199, df1 = 12, df2 = 139, p-value = 0.8033
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of principal components \tabularnewline
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 2.1527, df1 = 2, df2 = 149, p-value = 0.1198
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=304660&T=7

[TABLE]
[ROW][C]Ramsey RESET F-Test for powers (2 and 3) of fitted values[/C][/ROW]
[ROW][C]
> reset_test_fitted
	RESET test
data:  mylm
RESET = 1.8532, df1 = 2, df2 = 149, p-value = 0.1603
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of regressors[/C][/ROW] [ROW][C]
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0.64199, df1 = 12, df2 = 139, p-value = 0.8033
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of principal components[/C][/ROW] [ROW][C]
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 2.1527, df1 = 2, df2 = 149, p-value = 0.1198
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=304660&T=7

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=304660&T=7

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 1.8532, df1 = 2, df2 = 149, p-value = 0.1603
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0.64199, df1 = 12, df2 = 139, p-value = 0.8033
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 2.1527, df1 = 2, df2 = 149, p-value = 0.1198







Variance Inflation Factors (Multicollinearity)
> vif
  SKEOU1   SKEOU2   SKEOU3   SKEOU4   SKEOU5   SKEOU6 
1.091500 1.135089 1.055911 1.051688 1.048247 1.036994 

\begin{tabular}{lllllllll}
\hline
Variance Inflation Factors (Multicollinearity) \tabularnewline
> vif
  SKEOU1   SKEOU2   SKEOU3   SKEOU4   SKEOU5   SKEOU6 
1.091500 1.135089 1.055911 1.051688 1.048247 1.036994 
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=304660&T=8

[TABLE]
[ROW][C]Variance Inflation Factors (Multicollinearity)[/C][/ROW]
[ROW][C]
> vif
  SKEOU1   SKEOU2   SKEOU3   SKEOU4   SKEOU5   SKEOU6 
1.091500 1.135089 1.055911 1.051688 1.048247 1.036994 
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=304660&T=8

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=304660&T=8

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variance Inflation Factors (Multicollinearity)
> vif
  SKEOU1   SKEOU2   SKEOU3   SKEOU4   SKEOU5   SKEOU6 
1.091500 1.135089 1.055911 1.051688 1.048247 1.036994 



Parameters (Session):
par1 = 7 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
Parameters (R input):
par1 = 7 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = ; par5 = ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
library(car)
library(MASS)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
mywarning <- ''
par1 <- as.numeric(par1)
if(is.na(par1)) {
par1 <- 1
mywarning = 'Warning: you did not specify the column number of the endogenous series! The first column was selected by default.'
}
if (par4=='') par4 <- 0
par4 <- as.numeric(par4)
if (par5=='') par5 <- 0
par5 <- as.numeric(par5)
x <- na.omit(t(y))
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'Seasonal Differences (s=12)'){
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'First and Seasonal Differences (s=12)'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if(par4 > 0) {
x2 <- array(0, dim=c(n-par4,par4), dimnames=list(1:(n-par4), paste(colnames(x)[par1],'(t-',1:par4,')',sep='')))
for (i in 1:(n-par4)) {
for (j in 1:par4) {
x2[i,j] <- x[i+par4-j,par1]
}
}
x <- cbind(x[(par4+1):n,], x2)
n <- n - par4
}
if(par5 > 0) {
x2 <- array(0, dim=c(n-par5*12,par5), dimnames=list(1:(n-par5*12), paste(colnames(x)[par1],'(t-',1:par5,'s)',sep='')))
for (i in 1:(n-par5*12)) {
for (j in 1:par5) {
x2[i,j] <- x[i+par5*12-j*12,par1]
}
}
x <- cbind(x[(par5*12+1):n,], x2)
n <- n - par5*12
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
(k <- length(x[n,]))
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
print(x)
(k <- length(x[n,]))
head(x)
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
sresid <- studres(mylm)
hist(sresid, freq=FALSE, main='Distribution of Studentized Residuals')
xfit<-seq(min(sresid),max(sresid),length=40)
yfit<-dnorm(xfit)
lines(xfit, yfit)
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqPlot(mylm, main='QQ Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
print(z)
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, mywarning)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Multiple Linear Regression - Ordinary Least Squares', 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,formatC(signif(mysum$coefficients[i,1],5),format='g',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,2],5),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,3],4),format='e',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4],4),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4]/2,4),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a,formatC(signif(sqrt(mysum$r.squared),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$adj.r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a,formatC(signif(mysum$fstatistic[1],6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a,formatC(signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a,formatC(signif(mysum$sigma,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a,formatC(signif(sum(myerror*myerror),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
myr <- as.numeric(mysum$resid)
myr
if(n < 200) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,formatC(signif(x[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(x[i]-mysum$resid[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$resid[i],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,1],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,2],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,3],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,formatC(signif(numsignificant1/numgqtests,6),format='g',flag=' '))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
}
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of fitted values',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_fitted <- resettest(mylm,power=2:3,type='fitted')
a<-table.element(a,paste('
',RC.texteval('reset_test_fitted'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of regressors',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_regressors <- resettest(mylm,power=2:3,type='regressor')
a<-table.element(a,paste('
',RC.texteval('reset_test_regressors'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of principal components',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_principal_components <- resettest(mylm,power=2:3,type='princomp')
a<-table.element(a,paste('
',RC.texteval('reset_test_principal_components'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable8.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variance Inflation Factors (Multicollinearity)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
vif <- vif(mylm)
a<-table.element(a,paste('
',RC.texteval('vif'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable9.tab')