Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_decompose.wasp
Title produced by softwareClassical Decomposition
Date of computationMon, 23 Jan 2017 10:14:06 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2017/Jan/23/t1485162855yo40bqf9knok9sd.htm/, Retrieved Fri, 01 Nov 2024 00:17:42 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=304237, Retrieved Fri, 01 Nov 2024 00:17:42 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact104
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Classical Decomposition] [] [2017-01-23 09:14:06] [2a4cd29e98d45e730e96e92769c461dd] [Current]
Feedback Forum

Post a new message
Dataseries X:
3035
2552
2704
2554
2014
1655
1721
1524
1596
2074
2199
2512
2933
2889
2938
2497
1870
1726
1607
1545
1396
1787
2076
2837
2787
3891
3179
2011
1636
1580
1489
1300
1356
1653
2013
2823
3102
2294
2385
2444
1748
1554
1498
1361
1346
1564
1640
2293
2815
3137
2679
1969
1870
1633
1529
1366
1357
1570
1535
2491
3084
2605
2573
2143
1693
1504
1461
1354
1333
1492
1781
1915




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=304237&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=304237&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=304237&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
13035NANA873.751NA
22552NANA896.335NA
32704NANA687.543NA
42554NANA156.585NA
52014NANA-284.482NA
61655NANA-440.024NA
717211654.662174.08-519.42466.3403
8152415142183.88-669.8749.99861
915961529.442207.67-678.22466.5569
1020741860.732215.04-354.307213.265
1121992021.462206.67-185.207177.54
1225122720.952203.62517.326-208.951
1329333075.582201.83873.751-142.585
1428893094.292197.96896.335-205.293
1529382878.042190.5687.54359.9569
1624972326.792170.21156.585170.207
1718701868.642153.12-284.4821.35694
1817261721.522161.54-440.0244.48194
1916071649.582169-519.424-42.5764
2015451534.792204.67-669.87410.2069
2113961578.232256.46-678.224-182.235
2217871891.942246.25-354.307-104.943
2320762031.042216.25-185.20744.9569
2428372717.742200.42517.326119.257
2527873063.172189.42873.751-276.168
2638913070.632174.29896.335820.374
2731792849.962162.42687.543329.04
2820112311.752155.17156.585-300.751
2916361862.482146.96-284.482-226.476
3015801703.732143.75-440.024-123.726
3114891636.872156.29-519.424-147.868
32130014332102.87-669.874-133.001
3313561325.032003.25-678.22430.9736
3416531633.91988.21-354.30719.0986
3520131825.712010.92-185.207187.29
3628232531.832014.5517.326291.174
3731022887.542013.79873.751214.457
3822942913.042016.71896.335-619.043
3923852706.382018.83687.543-321.376
4024442171.292014.71156.585272.707
4117481710.981995.46-284.48237.0236
4215541517.811957.83-440.02436.1903
4314981404.371923.79-519.42493.6319
4413611277.081946.96-669.87483.9153
4513461316.111994.33-678.22429.8903
4615641632.481986.79-354.307-68.4847
4716401786.881972.08-185.207-146.876
4822932497.781980.46517.326-204.785
4928152858.791985.04873.751-43.7931
5031372882.881986.54896.335254.124
5126792674.751987.21687.5434.24861
5219692144.51987.92156.585-175.501
5318701699.311983.79-284.482170.69
5416331547.641987.67-440.02485.3569
5515291487.72007.12-519.42441.2986
5613661326.291996.17-669.87439.7069
5713571291.361969.58-678.22465.6403
5815701618.111972.42-354.307-48.1097
5915351787.081972.29-185.207-252.085
6024912476.871959.54517.32614.1319
6130842825.081951.33873.751258.915
6226052844.331948896.335-239.335
6325732634.041946.5687.543-61.0431
6421432098.831942.25156.58544.1653
6516931664.771949.25-284.48228.2319
6615041495.481935.5-440.0248.52361
671461NANA-519.424NA
681354NANA-669.874NA
691333NANA-678.224NA
701492NANA-354.307NA
711781NANA-185.207NA
721915NANA517.326NA

\begin{tabular}{lllllllll}
\hline
Classical Decomposition by Moving Averages \tabularnewline
t & Observations & Fit & Trend & Seasonal & Random \tabularnewline
1 & 3035 & NA & NA & 873.751 & NA \tabularnewline
2 & 2552 & NA & NA & 896.335 & NA \tabularnewline
3 & 2704 & NA & NA & 687.543 & NA \tabularnewline
4 & 2554 & NA & NA & 156.585 & NA \tabularnewline
5 & 2014 & NA & NA & -284.482 & NA \tabularnewline
6 & 1655 & NA & NA & -440.024 & NA \tabularnewline
7 & 1721 & 1654.66 & 2174.08 & -519.424 & 66.3403 \tabularnewline
8 & 1524 & 1514 & 2183.88 & -669.874 & 9.99861 \tabularnewline
9 & 1596 & 1529.44 & 2207.67 & -678.224 & 66.5569 \tabularnewline
10 & 2074 & 1860.73 & 2215.04 & -354.307 & 213.265 \tabularnewline
11 & 2199 & 2021.46 & 2206.67 & -185.207 & 177.54 \tabularnewline
12 & 2512 & 2720.95 & 2203.62 & 517.326 & -208.951 \tabularnewline
13 & 2933 & 3075.58 & 2201.83 & 873.751 & -142.585 \tabularnewline
14 & 2889 & 3094.29 & 2197.96 & 896.335 & -205.293 \tabularnewline
15 & 2938 & 2878.04 & 2190.5 & 687.543 & 59.9569 \tabularnewline
16 & 2497 & 2326.79 & 2170.21 & 156.585 & 170.207 \tabularnewline
17 & 1870 & 1868.64 & 2153.12 & -284.482 & 1.35694 \tabularnewline
18 & 1726 & 1721.52 & 2161.54 & -440.024 & 4.48194 \tabularnewline
19 & 1607 & 1649.58 & 2169 & -519.424 & -42.5764 \tabularnewline
20 & 1545 & 1534.79 & 2204.67 & -669.874 & 10.2069 \tabularnewline
21 & 1396 & 1578.23 & 2256.46 & -678.224 & -182.235 \tabularnewline
22 & 1787 & 1891.94 & 2246.25 & -354.307 & -104.943 \tabularnewline
23 & 2076 & 2031.04 & 2216.25 & -185.207 & 44.9569 \tabularnewline
24 & 2837 & 2717.74 & 2200.42 & 517.326 & 119.257 \tabularnewline
25 & 2787 & 3063.17 & 2189.42 & 873.751 & -276.168 \tabularnewline
26 & 3891 & 3070.63 & 2174.29 & 896.335 & 820.374 \tabularnewline
27 & 3179 & 2849.96 & 2162.42 & 687.543 & 329.04 \tabularnewline
28 & 2011 & 2311.75 & 2155.17 & 156.585 & -300.751 \tabularnewline
29 & 1636 & 1862.48 & 2146.96 & -284.482 & -226.476 \tabularnewline
30 & 1580 & 1703.73 & 2143.75 & -440.024 & -123.726 \tabularnewline
31 & 1489 & 1636.87 & 2156.29 & -519.424 & -147.868 \tabularnewline
32 & 1300 & 1433 & 2102.87 & -669.874 & -133.001 \tabularnewline
33 & 1356 & 1325.03 & 2003.25 & -678.224 & 30.9736 \tabularnewline
34 & 1653 & 1633.9 & 1988.21 & -354.307 & 19.0986 \tabularnewline
35 & 2013 & 1825.71 & 2010.92 & -185.207 & 187.29 \tabularnewline
36 & 2823 & 2531.83 & 2014.5 & 517.326 & 291.174 \tabularnewline
37 & 3102 & 2887.54 & 2013.79 & 873.751 & 214.457 \tabularnewline
38 & 2294 & 2913.04 & 2016.71 & 896.335 & -619.043 \tabularnewline
39 & 2385 & 2706.38 & 2018.83 & 687.543 & -321.376 \tabularnewline
40 & 2444 & 2171.29 & 2014.71 & 156.585 & 272.707 \tabularnewline
41 & 1748 & 1710.98 & 1995.46 & -284.482 & 37.0236 \tabularnewline
42 & 1554 & 1517.81 & 1957.83 & -440.024 & 36.1903 \tabularnewline
43 & 1498 & 1404.37 & 1923.79 & -519.424 & 93.6319 \tabularnewline
44 & 1361 & 1277.08 & 1946.96 & -669.874 & 83.9153 \tabularnewline
45 & 1346 & 1316.11 & 1994.33 & -678.224 & 29.8903 \tabularnewline
46 & 1564 & 1632.48 & 1986.79 & -354.307 & -68.4847 \tabularnewline
47 & 1640 & 1786.88 & 1972.08 & -185.207 & -146.876 \tabularnewline
48 & 2293 & 2497.78 & 1980.46 & 517.326 & -204.785 \tabularnewline
49 & 2815 & 2858.79 & 1985.04 & 873.751 & -43.7931 \tabularnewline
50 & 3137 & 2882.88 & 1986.54 & 896.335 & 254.124 \tabularnewline
51 & 2679 & 2674.75 & 1987.21 & 687.543 & 4.24861 \tabularnewline
52 & 1969 & 2144.5 & 1987.92 & 156.585 & -175.501 \tabularnewline
53 & 1870 & 1699.31 & 1983.79 & -284.482 & 170.69 \tabularnewline
54 & 1633 & 1547.64 & 1987.67 & -440.024 & 85.3569 \tabularnewline
55 & 1529 & 1487.7 & 2007.12 & -519.424 & 41.2986 \tabularnewline
56 & 1366 & 1326.29 & 1996.17 & -669.874 & 39.7069 \tabularnewline
57 & 1357 & 1291.36 & 1969.58 & -678.224 & 65.6403 \tabularnewline
58 & 1570 & 1618.11 & 1972.42 & -354.307 & -48.1097 \tabularnewline
59 & 1535 & 1787.08 & 1972.29 & -185.207 & -252.085 \tabularnewline
60 & 2491 & 2476.87 & 1959.54 & 517.326 & 14.1319 \tabularnewline
61 & 3084 & 2825.08 & 1951.33 & 873.751 & 258.915 \tabularnewline
62 & 2605 & 2844.33 & 1948 & 896.335 & -239.335 \tabularnewline
63 & 2573 & 2634.04 & 1946.5 & 687.543 & -61.0431 \tabularnewline
64 & 2143 & 2098.83 & 1942.25 & 156.585 & 44.1653 \tabularnewline
65 & 1693 & 1664.77 & 1949.25 & -284.482 & 28.2319 \tabularnewline
66 & 1504 & 1495.48 & 1935.5 & -440.024 & 8.52361 \tabularnewline
67 & 1461 & NA & NA & -519.424 & NA \tabularnewline
68 & 1354 & NA & NA & -669.874 & NA \tabularnewline
69 & 1333 & NA & NA & -678.224 & NA \tabularnewline
70 & 1492 & NA & NA & -354.307 & NA \tabularnewline
71 & 1781 & NA & NA & -185.207 & NA \tabularnewline
72 & 1915 & NA & NA & 517.326 & NA \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=304237&T=1

[TABLE]
[ROW][C]Classical Decomposition by Moving Averages[/C][/ROW]
[ROW][C]t[/C][C]Observations[/C][C]Fit[/C][C]Trend[/C][C]Seasonal[/C][C]Random[/C][/ROW]
[ROW][C]1[/C][C]3035[/C][C]NA[/C][C]NA[/C][C]873.751[/C][C]NA[/C][/ROW]
[ROW][C]2[/C][C]2552[/C][C]NA[/C][C]NA[/C][C]896.335[/C][C]NA[/C][/ROW]
[ROW][C]3[/C][C]2704[/C][C]NA[/C][C]NA[/C][C]687.543[/C][C]NA[/C][/ROW]
[ROW][C]4[/C][C]2554[/C][C]NA[/C][C]NA[/C][C]156.585[/C][C]NA[/C][/ROW]
[ROW][C]5[/C][C]2014[/C][C]NA[/C][C]NA[/C][C]-284.482[/C][C]NA[/C][/ROW]
[ROW][C]6[/C][C]1655[/C][C]NA[/C][C]NA[/C][C]-440.024[/C][C]NA[/C][/ROW]
[ROW][C]7[/C][C]1721[/C][C]1654.66[/C][C]2174.08[/C][C]-519.424[/C][C]66.3403[/C][/ROW]
[ROW][C]8[/C][C]1524[/C][C]1514[/C][C]2183.88[/C][C]-669.874[/C][C]9.99861[/C][/ROW]
[ROW][C]9[/C][C]1596[/C][C]1529.44[/C][C]2207.67[/C][C]-678.224[/C][C]66.5569[/C][/ROW]
[ROW][C]10[/C][C]2074[/C][C]1860.73[/C][C]2215.04[/C][C]-354.307[/C][C]213.265[/C][/ROW]
[ROW][C]11[/C][C]2199[/C][C]2021.46[/C][C]2206.67[/C][C]-185.207[/C][C]177.54[/C][/ROW]
[ROW][C]12[/C][C]2512[/C][C]2720.95[/C][C]2203.62[/C][C]517.326[/C][C]-208.951[/C][/ROW]
[ROW][C]13[/C][C]2933[/C][C]3075.58[/C][C]2201.83[/C][C]873.751[/C][C]-142.585[/C][/ROW]
[ROW][C]14[/C][C]2889[/C][C]3094.29[/C][C]2197.96[/C][C]896.335[/C][C]-205.293[/C][/ROW]
[ROW][C]15[/C][C]2938[/C][C]2878.04[/C][C]2190.5[/C][C]687.543[/C][C]59.9569[/C][/ROW]
[ROW][C]16[/C][C]2497[/C][C]2326.79[/C][C]2170.21[/C][C]156.585[/C][C]170.207[/C][/ROW]
[ROW][C]17[/C][C]1870[/C][C]1868.64[/C][C]2153.12[/C][C]-284.482[/C][C]1.35694[/C][/ROW]
[ROW][C]18[/C][C]1726[/C][C]1721.52[/C][C]2161.54[/C][C]-440.024[/C][C]4.48194[/C][/ROW]
[ROW][C]19[/C][C]1607[/C][C]1649.58[/C][C]2169[/C][C]-519.424[/C][C]-42.5764[/C][/ROW]
[ROW][C]20[/C][C]1545[/C][C]1534.79[/C][C]2204.67[/C][C]-669.874[/C][C]10.2069[/C][/ROW]
[ROW][C]21[/C][C]1396[/C][C]1578.23[/C][C]2256.46[/C][C]-678.224[/C][C]-182.235[/C][/ROW]
[ROW][C]22[/C][C]1787[/C][C]1891.94[/C][C]2246.25[/C][C]-354.307[/C][C]-104.943[/C][/ROW]
[ROW][C]23[/C][C]2076[/C][C]2031.04[/C][C]2216.25[/C][C]-185.207[/C][C]44.9569[/C][/ROW]
[ROW][C]24[/C][C]2837[/C][C]2717.74[/C][C]2200.42[/C][C]517.326[/C][C]119.257[/C][/ROW]
[ROW][C]25[/C][C]2787[/C][C]3063.17[/C][C]2189.42[/C][C]873.751[/C][C]-276.168[/C][/ROW]
[ROW][C]26[/C][C]3891[/C][C]3070.63[/C][C]2174.29[/C][C]896.335[/C][C]820.374[/C][/ROW]
[ROW][C]27[/C][C]3179[/C][C]2849.96[/C][C]2162.42[/C][C]687.543[/C][C]329.04[/C][/ROW]
[ROW][C]28[/C][C]2011[/C][C]2311.75[/C][C]2155.17[/C][C]156.585[/C][C]-300.751[/C][/ROW]
[ROW][C]29[/C][C]1636[/C][C]1862.48[/C][C]2146.96[/C][C]-284.482[/C][C]-226.476[/C][/ROW]
[ROW][C]30[/C][C]1580[/C][C]1703.73[/C][C]2143.75[/C][C]-440.024[/C][C]-123.726[/C][/ROW]
[ROW][C]31[/C][C]1489[/C][C]1636.87[/C][C]2156.29[/C][C]-519.424[/C][C]-147.868[/C][/ROW]
[ROW][C]32[/C][C]1300[/C][C]1433[/C][C]2102.87[/C][C]-669.874[/C][C]-133.001[/C][/ROW]
[ROW][C]33[/C][C]1356[/C][C]1325.03[/C][C]2003.25[/C][C]-678.224[/C][C]30.9736[/C][/ROW]
[ROW][C]34[/C][C]1653[/C][C]1633.9[/C][C]1988.21[/C][C]-354.307[/C][C]19.0986[/C][/ROW]
[ROW][C]35[/C][C]2013[/C][C]1825.71[/C][C]2010.92[/C][C]-185.207[/C][C]187.29[/C][/ROW]
[ROW][C]36[/C][C]2823[/C][C]2531.83[/C][C]2014.5[/C][C]517.326[/C][C]291.174[/C][/ROW]
[ROW][C]37[/C][C]3102[/C][C]2887.54[/C][C]2013.79[/C][C]873.751[/C][C]214.457[/C][/ROW]
[ROW][C]38[/C][C]2294[/C][C]2913.04[/C][C]2016.71[/C][C]896.335[/C][C]-619.043[/C][/ROW]
[ROW][C]39[/C][C]2385[/C][C]2706.38[/C][C]2018.83[/C][C]687.543[/C][C]-321.376[/C][/ROW]
[ROW][C]40[/C][C]2444[/C][C]2171.29[/C][C]2014.71[/C][C]156.585[/C][C]272.707[/C][/ROW]
[ROW][C]41[/C][C]1748[/C][C]1710.98[/C][C]1995.46[/C][C]-284.482[/C][C]37.0236[/C][/ROW]
[ROW][C]42[/C][C]1554[/C][C]1517.81[/C][C]1957.83[/C][C]-440.024[/C][C]36.1903[/C][/ROW]
[ROW][C]43[/C][C]1498[/C][C]1404.37[/C][C]1923.79[/C][C]-519.424[/C][C]93.6319[/C][/ROW]
[ROW][C]44[/C][C]1361[/C][C]1277.08[/C][C]1946.96[/C][C]-669.874[/C][C]83.9153[/C][/ROW]
[ROW][C]45[/C][C]1346[/C][C]1316.11[/C][C]1994.33[/C][C]-678.224[/C][C]29.8903[/C][/ROW]
[ROW][C]46[/C][C]1564[/C][C]1632.48[/C][C]1986.79[/C][C]-354.307[/C][C]-68.4847[/C][/ROW]
[ROW][C]47[/C][C]1640[/C][C]1786.88[/C][C]1972.08[/C][C]-185.207[/C][C]-146.876[/C][/ROW]
[ROW][C]48[/C][C]2293[/C][C]2497.78[/C][C]1980.46[/C][C]517.326[/C][C]-204.785[/C][/ROW]
[ROW][C]49[/C][C]2815[/C][C]2858.79[/C][C]1985.04[/C][C]873.751[/C][C]-43.7931[/C][/ROW]
[ROW][C]50[/C][C]3137[/C][C]2882.88[/C][C]1986.54[/C][C]896.335[/C][C]254.124[/C][/ROW]
[ROW][C]51[/C][C]2679[/C][C]2674.75[/C][C]1987.21[/C][C]687.543[/C][C]4.24861[/C][/ROW]
[ROW][C]52[/C][C]1969[/C][C]2144.5[/C][C]1987.92[/C][C]156.585[/C][C]-175.501[/C][/ROW]
[ROW][C]53[/C][C]1870[/C][C]1699.31[/C][C]1983.79[/C][C]-284.482[/C][C]170.69[/C][/ROW]
[ROW][C]54[/C][C]1633[/C][C]1547.64[/C][C]1987.67[/C][C]-440.024[/C][C]85.3569[/C][/ROW]
[ROW][C]55[/C][C]1529[/C][C]1487.7[/C][C]2007.12[/C][C]-519.424[/C][C]41.2986[/C][/ROW]
[ROW][C]56[/C][C]1366[/C][C]1326.29[/C][C]1996.17[/C][C]-669.874[/C][C]39.7069[/C][/ROW]
[ROW][C]57[/C][C]1357[/C][C]1291.36[/C][C]1969.58[/C][C]-678.224[/C][C]65.6403[/C][/ROW]
[ROW][C]58[/C][C]1570[/C][C]1618.11[/C][C]1972.42[/C][C]-354.307[/C][C]-48.1097[/C][/ROW]
[ROW][C]59[/C][C]1535[/C][C]1787.08[/C][C]1972.29[/C][C]-185.207[/C][C]-252.085[/C][/ROW]
[ROW][C]60[/C][C]2491[/C][C]2476.87[/C][C]1959.54[/C][C]517.326[/C][C]14.1319[/C][/ROW]
[ROW][C]61[/C][C]3084[/C][C]2825.08[/C][C]1951.33[/C][C]873.751[/C][C]258.915[/C][/ROW]
[ROW][C]62[/C][C]2605[/C][C]2844.33[/C][C]1948[/C][C]896.335[/C][C]-239.335[/C][/ROW]
[ROW][C]63[/C][C]2573[/C][C]2634.04[/C][C]1946.5[/C][C]687.543[/C][C]-61.0431[/C][/ROW]
[ROW][C]64[/C][C]2143[/C][C]2098.83[/C][C]1942.25[/C][C]156.585[/C][C]44.1653[/C][/ROW]
[ROW][C]65[/C][C]1693[/C][C]1664.77[/C][C]1949.25[/C][C]-284.482[/C][C]28.2319[/C][/ROW]
[ROW][C]66[/C][C]1504[/C][C]1495.48[/C][C]1935.5[/C][C]-440.024[/C][C]8.52361[/C][/ROW]
[ROW][C]67[/C][C]1461[/C][C]NA[/C][C]NA[/C][C]-519.424[/C][C]NA[/C][/ROW]
[ROW][C]68[/C][C]1354[/C][C]NA[/C][C]NA[/C][C]-669.874[/C][C]NA[/C][/ROW]
[ROW][C]69[/C][C]1333[/C][C]NA[/C][C]NA[/C][C]-678.224[/C][C]NA[/C][/ROW]
[ROW][C]70[/C][C]1492[/C][C]NA[/C][C]NA[/C][C]-354.307[/C][C]NA[/C][/ROW]
[ROW][C]71[/C][C]1781[/C][C]NA[/C][C]NA[/C][C]-185.207[/C][C]NA[/C][/ROW]
[ROW][C]72[/C][C]1915[/C][C]NA[/C][C]NA[/C][C]517.326[/C][C]NA[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=304237&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=304237&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
13035NANA873.751NA
22552NANA896.335NA
32704NANA687.543NA
42554NANA156.585NA
52014NANA-284.482NA
61655NANA-440.024NA
717211654.662174.08-519.42466.3403
8152415142183.88-669.8749.99861
915961529.442207.67-678.22466.5569
1020741860.732215.04-354.307213.265
1121992021.462206.67-185.207177.54
1225122720.952203.62517.326-208.951
1329333075.582201.83873.751-142.585
1428893094.292197.96896.335-205.293
1529382878.042190.5687.54359.9569
1624972326.792170.21156.585170.207
1718701868.642153.12-284.4821.35694
1817261721.522161.54-440.0244.48194
1916071649.582169-519.424-42.5764
2015451534.792204.67-669.87410.2069
2113961578.232256.46-678.224-182.235
2217871891.942246.25-354.307-104.943
2320762031.042216.25-185.20744.9569
2428372717.742200.42517.326119.257
2527873063.172189.42873.751-276.168
2638913070.632174.29896.335820.374
2731792849.962162.42687.543329.04
2820112311.752155.17156.585-300.751
2916361862.482146.96-284.482-226.476
3015801703.732143.75-440.024-123.726
3114891636.872156.29-519.424-147.868
32130014332102.87-669.874-133.001
3313561325.032003.25-678.22430.9736
3416531633.91988.21-354.30719.0986
3520131825.712010.92-185.207187.29
3628232531.832014.5517.326291.174
3731022887.542013.79873.751214.457
3822942913.042016.71896.335-619.043
3923852706.382018.83687.543-321.376
4024442171.292014.71156.585272.707
4117481710.981995.46-284.48237.0236
4215541517.811957.83-440.02436.1903
4314981404.371923.79-519.42493.6319
4413611277.081946.96-669.87483.9153
4513461316.111994.33-678.22429.8903
4615641632.481986.79-354.307-68.4847
4716401786.881972.08-185.207-146.876
4822932497.781980.46517.326-204.785
4928152858.791985.04873.751-43.7931
5031372882.881986.54896.335254.124
5126792674.751987.21687.5434.24861
5219692144.51987.92156.585-175.501
5318701699.311983.79-284.482170.69
5416331547.641987.67-440.02485.3569
5515291487.72007.12-519.42441.2986
5613661326.291996.17-669.87439.7069
5713571291.361969.58-678.22465.6403
5815701618.111972.42-354.307-48.1097
5915351787.081972.29-185.207-252.085
6024912476.871959.54517.32614.1319
6130842825.081951.33873.751258.915
6226052844.331948896.335-239.335
6325732634.041946.5687.543-61.0431
6421432098.831942.25156.58544.1653
6516931664.771949.25-284.48228.2319
6615041495.481935.5-440.0248.52361
671461NANA-519.424NA
681354NANA-669.874NA
691333NANA-678.224NA
701492NANA-354.307NA
711781NANA-185.207NA
721915NANA517.326NA



Parameters (Session):
par1 = additive ; par2 = 12 ;
Parameters (R input):
par1 = additive ; par2 = 12 ;
R code (references can be found in the software module):
par2 <- as.numeric(par2)
x <- ts(x,freq=par2)
m <- decompose(x,type=par1)
m$figure
bitmap(file='test1.png')
plot(m)
dev.off()
mylagmax <- length(x)/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(as.numeric(m$trend),na.action=na.pass,lag.max = mylagmax,main='Trend')
acf(as.numeric(m$seasonal),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(as.numeric(m$random),na.action=na.pass,lag.max = mylagmax,main='Random')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
spectrum(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
spectrum(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
cpgram(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
cpgram(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Classical Decomposition by Moving Averages',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observations',header=TRUE)
a<-table.element(a,'Fit',header=TRUE)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Random',header=TRUE)
a<-table.row.end(a)
for (i in 1:length(m$trend)) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
if (par1 == 'additive') a<-table.element(a,signif(m$trend[i]+m$seasonal[i],6)) else a<-table.element(a,signif(m$trend[i]*m$seasonal[i],6))
a<-table.element(a,signif(m$trend[i],6))
a<-table.element(a,signif(m$seasonal[i],6))
a<-table.element(a,signif(m$random[i],6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')