Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationFri, 22 Dec 2017 19:42:01 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2017/Dec/22/t1513968311jua7l255nys317k.htm/, Retrieved Fri, 01 Nov 2024 00:14:27 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=310823, Retrieved Fri, 01 Nov 2024 00:14:27 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact130
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [] [2017-12-22 18:42:01] [b2175b183860d0b8d43a5c45f5ee68fd] [Current]
Feedback Forum

Post a new message
Dataseries X:
70	4	1	6	280	25	1
120	3	5	8	135	0	1
70	4	1	5	320	25	1
50	4	0	0	330	25	1
110	2	2	8	-1	25	1
110	2	2	10	70	25	1
110	2	0	14	30	25	1
130	3	2	8	100	25	133
90	2	1	6	125	25	1
90	3	0	5	190	25	1
120	1	2	12	35	25	1
110	6	2	1	105	25	1
120	1	3	9	45	25	1
110	3	2	7	105	25	1
110	1	1	13	55	25	1
110	2	0	3	25	25	1
100	2	0	2	35	25	1
110	1	0	12	20	25	1
110	1	1	13	65	25	1
110	3	3	7	160	25	1
100	3	0	0	-1	0	1
110	2	0	3	30	25	1
100	2	1	10	120	25	1
100	2	0	5	80	25	1
110	2	1	13	30	25	1
110	1	0	11	25	25	1
100	3	0	7	100	25	1
120	3	2	10	200	25	125
120	3	0	12	190	25	133
110	1	1	12	25	25	1
100	2	0	15	40	25	1
110	1	1	9	45	25	1
100	3	1	5	85	25	1
110	3	0	3	90	25	1
120	3	3	4	100	25	1
120	1	2	11	45	25	1
110	3	1	10	90	25	1
110	1	0	11	35	25	1
110	2	1	6	60	100	1
140	3	1	9	95	100	13
110	2	1	3	40	25	1
100	4	2	6	95	25	1
110	2	1	12	55	25	1
100	4	1	3	95	25	1
150	4	3	11	170	25	1
150	4	3	11	170	25	1
160	3	2	13	160	25	15
100	2	1	6	90	25	1
120	2	1	9	40	25	1
140	3	2	7	130	25	133
90	3	0	2	90	25	1
130	3	2	10	120	25	125
120	3	1	14	260	25	133
100	3	0	3	45	100	1
50	1	0	0	15	0	5
50	2	0	0	50	0	5
100	4	1	6	110	25	1
100	5	2	-1	110	0	1
120	3	1	12	240	25	133
100	3	2	8	140	25	1
90	2	0	6	110	25	1
110	1	0	2	30	25	1
110	2	0	3	35	25	1
80	2	0	0	95	0	83
90	3	0	0	140	0	1
90	3	0	0	120	0	1
110	2	1	15	40	25	1
110	6	0	3	55	25	1
90	2	0	5	90	25	1
110	2	1	3	35	100	1
140	3	1	14	230	100	15
100	3	1	3	110	100	1
110	2	1	3	60	25	1
110	1	1	12	25	25	1
100	3	1	3	115	25	1
100	3	1	3	110	25	1
110	2	1	8	60	25	1




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time8 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=310823&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]8 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=310823&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=310823&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R ServerBig Analytics Cloud Computing Center







Multiple Linear Regression - Estimated Regression Equation
calories[t] = + 74.7941 + 5.23519protein[t] + 7.12168fat[t] + 2.10219sugars[t] -0.113585potass[t] + 0.208239vitamins[t] + 0.140074weight[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
calories[t] =  +  74.7941 +  5.23519protein[t] +  7.12168fat[t] +  2.10219sugars[t] -0.113585potass[t] +  0.208239vitamins[t] +  0.140074weight[t]  + e[t] \tabularnewline
 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=310823&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]calories[t] =  +  74.7941 +  5.23519protein[t] +  7.12168fat[t] +  2.10219sugars[t] -0.113585potass[t] +  0.208239vitamins[t] +  0.140074weight[t]  + e[t][/C][/ROW]
[ROW][C][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=310823&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=310823&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
calories[t] = + 74.7941 + 5.23519protein[t] + 7.12168fat[t] + 2.10219sugars[t] -0.113585potass[t] + 0.208239vitamins[t] + 0.140074weight[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+74.79 5.283+1.4160e+01 3.138e-22 1.569e-22
protein+5.235 1.771+2.9560e+00 0.004247 0.002124
fat+7.122 1.56+4.5670e+00 2.068e-05 1.034e-05
sugars+2.102 0.3881+5.4160e+00 8.104e-07 4.052e-07
potass-0.1136 0.02602-4.3650e+00 4.303e-05 2.152e-05
vitamins+0.2082 0.0648+3.2140e+00 0.001982 0.0009911
weight+0.1401 0.0412+3.4000e+00 0.001118 0.0005589

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & +74.79 &  5.283 & +1.4160e+01 &  3.138e-22 &  1.569e-22 \tabularnewline
protein & +5.235 &  1.771 & +2.9560e+00 &  0.004247 &  0.002124 \tabularnewline
fat & +7.122 &  1.56 & +4.5670e+00 &  2.068e-05 &  1.034e-05 \tabularnewline
sugars & +2.102 &  0.3881 & +5.4160e+00 &  8.104e-07 &  4.052e-07 \tabularnewline
potass & -0.1136 &  0.02602 & -4.3650e+00 &  4.303e-05 &  2.152e-05 \tabularnewline
vitamins & +0.2082 &  0.0648 & +3.2140e+00 &  0.001982 &  0.0009911 \tabularnewline
weight & +0.1401 &  0.0412 & +3.4000e+00 &  0.001118 &  0.0005589 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=310823&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]+74.79[/C][C] 5.283[/C][C]+1.4160e+01[/C][C] 3.138e-22[/C][C] 1.569e-22[/C][/ROW]
[ROW][C]protein[/C][C]+5.235[/C][C] 1.771[/C][C]+2.9560e+00[/C][C] 0.004247[/C][C] 0.002124[/C][/ROW]
[ROW][C]fat[/C][C]+7.122[/C][C] 1.56[/C][C]+4.5670e+00[/C][C] 2.068e-05[/C][C] 1.034e-05[/C][/ROW]
[ROW][C]sugars[/C][C]+2.102[/C][C] 0.3881[/C][C]+5.4160e+00[/C][C] 8.104e-07[/C][C] 4.052e-07[/C][/ROW]
[ROW][C]potass[/C][C]-0.1136[/C][C] 0.02602[/C][C]-4.3650e+00[/C][C] 4.303e-05[/C][C] 2.152e-05[/C][/ROW]
[ROW][C]vitamins[/C][C]+0.2082[/C][C] 0.0648[/C][C]+3.2140e+00[/C][C] 0.001982[/C][C] 0.0009911[/C][/ROW]
[ROW][C]weight[/C][C]+0.1401[/C][C] 0.0412[/C][C]+3.4000e+00[/C][C] 0.001118[/C][C] 0.0005589[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=310823&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=310823&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+74.79 5.283+1.4160e+01 3.138e-22 1.569e-22
protein+5.235 1.771+2.9560e+00 0.004247 0.002124
fat+7.122 1.56+4.5670e+00 2.068e-05 1.034e-05
sugars+2.102 0.3881+5.4160e+00 8.104e-07 4.052e-07
potass-0.1136 0.02602-4.3650e+00 4.303e-05 2.152e-05
vitamins+0.2082 0.0648+3.2140e+00 0.001982 0.0009911
weight+0.1401 0.0412+3.4000e+00 0.001118 0.0005589







Multiple Linear Regression - Regression Statistics
Multiple R 0.7923
R-squared 0.6277
Adjusted R-squared 0.5958
F-TEST (value) 19.67
F-TEST (DF numerator)6
F-TEST (DF denominator)70
p-value 2.596e-13
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 12.39
Sum Squared Residuals 1.074e+04

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R &  0.7923 \tabularnewline
R-squared &  0.6277 \tabularnewline
Adjusted R-squared &  0.5958 \tabularnewline
F-TEST (value) &  19.67 \tabularnewline
F-TEST (DF numerator) & 6 \tabularnewline
F-TEST (DF denominator) & 70 \tabularnewline
p-value &  2.596e-13 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation &  12.39 \tabularnewline
Sum Squared Residuals &  1.074e+04 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=310823&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C] 0.7923[/C][/ROW]
[ROW][C]R-squared[/C][C] 0.6277[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C] 0.5958[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C] 19.67[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]6[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]70[/C][/ROW]
[ROW][C]p-value[/C][C] 2.596e-13[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C] 12.39[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C] 1.074e+04[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=310823&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=310823&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R 0.7923
R-squared 0.6277
Adjusted R-squared 0.5958
F-TEST (value) 19.67
F-TEST (DF numerator)6
F-TEST (DF denominator)70
p-value 2.596e-13
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 12.39
Sum Squared Residuals 1.074e+04







Menu of Residual Diagnostics
DescriptionLink
HistogramCompute
Central TendencyCompute
QQ PlotCompute
Kernel Density PlotCompute
Skewness/Kurtosis TestCompute
Skewness-Kurtosis PlotCompute
Harrell-Davis PlotCompute
Bootstrap Plot -- Central TendencyCompute
Blocked Bootstrap Plot -- Central TendencyCompute
(Partial) Autocorrelation PlotCompute
Spectral AnalysisCompute
Tukey lambda PPCC PlotCompute
Box-Cox Normality PlotCompute
Summary StatisticsCompute

\begin{tabular}{lllllllll}
\hline
Menu of Residual Diagnostics \tabularnewline
Description & Link \tabularnewline
Histogram & Compute \tabularnewline
Central Tendency & Compute \tabularnewline
QQ Plot & Compute \tabularnewline
Kernel Density Plot & Compute \tabularnewline
Skewness/Kurtosis Test & Compute \tabularnewline
Skewness-Kurtosis Plot & Compute \tabularnewline
Harrell-Davis Plot & Compute \tabularnewline
Bootstrap Plot -- Central Tendency & Compute \tabularnewline
Blocked Bootstrap Plot -- Central Tendency & Compute \tabularnewline
(Partial) Autocorrelation Plot & Compute \tabularnewline
Spectral Analysis & Compute \tabularnewline
Tukey lambda PPCC Plot & Compute \tabularnewline
Box-Cox Normality Plot & Compute \tabularnewline
Summary Statistics & Compute \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=310823&T=4

[TABLE]
[ROW][C]Menu of Residual Diagnostics[/C][/ROW]
[ROW][C]Description[/C][C]Link[/C][/ROW]
[ROW][C]Histogram[/C][C]Compute[/C][/ROW]
[ROW][C]Central Tendency[/C][C]Compute[/C][/ROW]
[ROW][C]QQ Plot[/C][C]Compute[/C][/ROW]
[ROW][C]Kernel Density Plot[/C][C]Compute[/C][/ROW]
[ROW][C]Skewness/Kurtosis Test[/C][C]Compute[/C][/ROW]
[ROW][C]Skewness-Kurtosis Plot[/C][C]Compute[/C][/ROW]
[ROW][C]Harrell-Davis Plot[/C][C]Compute[/C][/ROW]
[ROW][C]Bootstrap Plot -- Central Tendency[/C][C]Compute[/C][/ROW]
[ROW][C]Blocked Bootstrap Plot -- Central Tendency[/C][C]Compute[/C][/ROW]
[ROW][C](Partial) Autocorrelation Plot[/C][C]Compute[/C][/ROW]
[ROW][C]Spectral Analysis[/C][C]Compute[/C][/ROW]
[ROW][C]Tukey lambda PPCC Plot[/C][C]Compute[/C][/ROW]
[ROW][C]Box-Cox Normality Plot[/C][C]Compute[/C][/ROW]
[ROW][C]Summary Statistics[/C][C]Compute[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=310823&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=310823&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Menu of Residual Diagnostics
DescriptionLink
HistogramCompute
Central TendencyCompute
QQ PlotCompute
Kernel Density PlotCompute
Skewness/Kurtosis TestCompute
Skewness-Kurtosis PlotCompute
Harrell-Davis PlotCompute
Bootstrap Plot -- Central TendencyCompute
Blocked Bootstrap Plot -- Central TendencyCompute
(Partial) Autocorrelation PlotCompute
Spectral AnalysisCompute
Tukey lambda PPCC PlotCompute
Box-Cox Normality PlotCompute
Summary StatisticsCompute







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 70 89.01-19.01
2 120 127.7-7.732
3 70 82.37-12.37
4 50 63.6-13.6
5 110 121.8-11.79
6 110 117.9-7.925
7 110 116.6-6.634
8 130 134-4.038
9 90 96.15-6.147
10 90 84.78 5.225
11 120 120.9-0.8695
12 110 116-5.97
13 120 120.5-0.5488
14 110 112.9-2.878
15 110 113.6-3.578
16 110 94.08 15.92
17 100 90.84 9.161
18 110 108.3 1.67
19 110 112.4-2.442
20 110 113.8-3.752
21 100 90.75 9.247
22 110 93.51 16.49
23 100 105.1-5.124
24 100 92.03 7.965
25 110 121.7-11.65
26 110 105.7 4.34
27 100 99.2 0.7975
28 120 125.8-5.763
29 120 118 2.019
30 110 114.9-4.884
31 100 117.6-17.6
32 110 106.3 3.695
33 100 103.8-3.824
34 110 91.93 18.07
35 120 114.3 5.739
36 120 117.6 2.369
37 110 113.8-3.767
38 110 104.5 5.476
39 110 119.1-9.148
40 140 128.4 11.6
41 110 99.5 10.5
42 100 117.1-17.15
43 110 116.7-6.711
44 100 103.7-3.719
45 150 126.3 23.74
46 150 126.3 23.74
47 160 121.2 38.8
48 100 100.1-0.1227
49 120 112.1 7.891
50 140 128.5 11.47
51 90 89.83 0.1726
52 130 134.8-4.85
53 120 121.4-1.356
54 100 112.7-12.66
55 50 79.03-29.03
56 50 80.29-30.29
57 100 108.3-8.321
58 100 100.8-0.7569
59 120 119.4 0.5769
60 100 111-11
61 90 90.73-0.7293
62 110 86.17 23.83
63 110 92.94 17.06
64 80 86.1-6.1
65 90 74.74 15.26
66 90 77.01 12.99
67 110 124.7-14.72
68 110 111.6-1.611
69 90 90.9-0.8988
70 110 115.7-5.681
71 140 123.9 16.15
72 100 112.4-12.4
73 110 97.22 12.78
74 110 114.9-4.884
75 100 96.21 3.788
76 100 96.78 3.22
77 110 107.7 2.265

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 &  70 &  89.01 & -19.01 \tabularnewline
2 &  120 &  127.7 & -7.732 \tabularnewline
3 &  70 &  82.37 & -12.37 \tabularnewline
4 &  50 &  63.6 & -13.6 \tabularnewline
5 &  110 &  121.8 & -11.79 \tabularnewline
6 &  110 &  117.9 & -7.925 \tabularnewline
7 &  110 &  116.6 & -6.634 \tabularnewline
8 &  130 &  134 & -4.038 \tabularnewline
9 &  90 &  96.15 & -6.147 \tabularnewline
10 &  90 &  84.78 &  5.225 \tabularnewline
11 &  120 &  120.9 & -0.8695 \tabularnewline
12 &  110 &  116 & -5.97 \tabularnewline
13 &  120 &  120.5 & -0.5488 \tabularnewline
14 &  110 &  112.9 & -2.878 \tabularnewline
15 &  110 &  113.6 & -3.578 \tabularnewline
16 &  110 &  94.08 &  15.92 \tabularnewline
17 &  100 &  90.84 &  9.161 \tabularnewline
18 &  110 &  108.3 &  1.67 \tabularnewline
19 &  110 &  112.4 & -2.442 \tabularnewline
20 &  110 &  113.8 & -3.752 \tabularnewline
21 &  100 &  90.75 &  9.247 \tabularnewline
22 &  110 &  93.51 &  16.49 \tabularnewline
23 &  100 &  105.1 & -5.124 \tabularnewline
24 &  100 &  92.03 &  7.965 \tabularnewline
25 &  110 &  121.7 & -11.65 \tabularnewline
26 &  110 &  105.7 &  4.34 \tabularnewline
27 &  100 &  99.2 &  0.7975 \tabularnewline
28 &  120 &  125.8 & -5.763 \tabularnewline
29 &  120 &  118 &  2.019 \tabularnewline
30 &  110 &  114.9 & -4.884 \tabularnewline
31 &  100 &  117.6 & -17.6 \tabularnewline
32 &  110 &  106.3 &  3.695 \tabularnewline
33 &  100 &  103.8 & -3.824 \tabularnewline
34 &  110 &  91.93 &  18.07 \tabularnewline
35 &  120 &  114.3 &  5.739 \tabularnewline
36 &  120 &  117.6 &  2.369 \tabularnewline
37 &  110 &  113.8 & -3.767 \tabularnewline
38 &  110 &  104.5 &  5.476 \tabularnewline
39 &  110 &  119.1 & -9.148 \tabularnewline
40 &  140 &  128.4 &  11.6 \tabularnewline
41 &  110 &  99.5 &  10.5 \tabularnewline
42 &  100 &  117.1 & -17.15 \tabularnewline
43 &  110 &  116.7 & -6.711 \tabularnewline
44 &  100 &  103.7 & -3.719 \tabularnewline
45 &  150 &  126.3 &  23.74 \tabularnewline
46 &  150 &  126.3 &  23.74 \tabularnewline
47 &  160 &  121.2 &  38.8 \tabularnewline
48 &  100 &  100.1 & -0.1227 \tabularnewline
49 &  120 &  112.1 &  7.891 \tabularnewline
50 &  140 &  128.5 &  11.47 \tabularnewline
51 &  90 &  89.83 &  0.1726 \tabularnewline
52 &  130 &  134.8 & -4.85 \tabularnewline
53 &  120 &  121.4 & -1.356 \tabularnewline
54 &  100 &  112.7 & -12.66 \tabularnewline
55 &  50 &  79.03 & -29.03 \tabularnewline
56 &  50 &  80.29 & -30.29 \tabularnewline
57 &  100 &  108.3 & -8.321 \tabularnewline
58 &  100 &  100.8 & -0.7569 \tabularnewline
59 &  120 &  119.4 &  0.5769 \tabularnewline
60 &  100 &  111 & -11 \tabularnewline
61 &  90 &  90.73 & -0.7293 \tabularnewline
62 &  110 &  86.17 &  23.83 \tabularnewline
63 &  110 &  92.94 &  17.06 \tabularnewline
64 &  80 &  86.1 & -6.1 \tabularnewline
65 &  90 &  74.74 &  15.26 \tabularnewline
66 &  90 &  77.01 &  12.99 \tabularnewline
67 &  110 &  124.7 & -14.72 \tabularnewline
68 &  110 &  111.6 & -1.611 \tabularnewline
69 &  90 &  90.9 & -0.8988 \tabularnewline
70 &  110 &  115.7 & -5.681 \tabularnewline
71 &  140 &  123.9 &  16.15 \tabularnewline
72 &  100 &  112.4 & -12.4 \tabularnewline
73 &  110 &  97.22 &  12.78 \tabularnewline
74 &  110 &  114.9 & -4.884 \tabularnewline
75 &  100 &  96.21 &  3.788 \tabularnewline
76 &  100 &  96.78 &  3.22 \tabularnewline
77 &  110 &  107.7 &  2.265 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=310823&T=5

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C] 70[/C][C] 89.01[/C][C]-19.01[/C][/ROW]
[ROW][C]2[/C][C] 120[/C][C] 127.7[/C][C]-7.732[/C][/ROW]
[ROW][C]3[/C][C] 70[/C][C] 82.37[/C][C]-12.37[/C][/ROW]
[ROW][C]4[/C][C] 50[/C][C] 63.6[/C][C]-13.6[/C][/ROW]
[ROW][C]5[/C][C] 110[/C][C] 121.8[/C][C]-11.79[/C][/ROW]
[ROW][C]6[/C][C] 110[/C][C] 117.9[/C][C]-7.925[/C][/ROW]
[ROW][C]7[/C][C] 110[/C][C] 116.6[/C][C]-6.634[/C][/ROW]
[ROW][C]8[/C][C] 130[/C][C] 134[/C][C]-4.038[/C][/ROW]
[ROW][C]9[/C][C] 90[/C][C] 96.15[/C][C]-6.147[/C][/ROW]
[ROW][C]10[/C][C] 90[/C][C] 84.78[/C][C] 5.225[/C][/ROW]
[ROW][C]11[/C][C] 120[/C][C] 120.9[/C][C]-0.8695[/C][/ROW]
[ROW][C]12[/C][C] 110[/C][C] 116[/C][C]-5.97[/C][/ROW]
[ROW][C]13[/C][C] 120[/C][C] 120.5[/C][C]-0.5488[/C][/ROW]
[ROW][C]14[/C][C] 110[/C][C] 112.9[/C][C]-2.878[/C][/ROW]
[ROW][C]15[/C][C] 110[/C][C] 113.6[/C][C]-3.578[/C][/ROW]
[ROW][C]16[/C][C] 110[/C][C] 94.08[/C][C] 15.92[/C][/ROW]
[ROW][C]17[/C][C] 100[/C][C] 90.84[/C][C] 9.161[/C][/ROW]
[ROW][C]18[/C][C] 110[/C][C] 108.3[/C][C] 1.67[/C][/ROW]
[ROW][C]19[/C][C] 110[/C][C] 112.4[/C][C]-2.442[/C][/ROW]
[ROW][C]20[/C][C] 110[/C][C] 113.8[/C][C]-3.752[/C][/ROW]
[ROW][C]21[/C][C] 100[/C][C] 90.75[/C][C] 9.247[/C][/ROW]
[ROW][C]22[/C][C] 110[/C][C] 93.51[/C][C] 16.49[/C][/ROW]
[ROW][C]23[/C][C] 100[/C][C] 105.1[/C][C]-5.124[/C][/ROW]
[ROW][C]24[/C][C] 100[/C][C] 92.03[/C][C] 7.965[/C][/ROW]
[ROW][C]25[/C][C] 110[/C][C] 121.7[/C][C]-11.65[/C][/ROW]
[ROW][C]26[/C][C] 110[/C][C] 105.7[/C][C] 4.34[/C][/ROW]
[ROW][C]27[/C][C] 100[/C][C] 99.2[/C][C] 0.7975[/C][/ROW]
[ROW][C]28[/C][C] 120[/C][C] 125.8[/C][C]-5.763[/C][/ROW]
[ROW][C]29[/C][C] 120[/C][C] 118[/C][C] 2.019[/C][/ROW]
[ROW][C]30[/C][C] 110[/C][C] 114.9[/C][C]-4.884[/C][/ROW]
[ROW][C]31[/C][C] 100[/C][C] 117.6[/C][C]-17.6[/C][/ROW]
[ROW][C]32[/C][C] 110[/C][C] 106.3[/C][C] 3.695[/C][/ROW]
[ROW][C]33[/C][C] 100[/C][C] 103.8[/C][C]-3.824[/C][/ROW]
[ROW][C]34[/C][C] 110[/C][C] 91.93[/C][C] 18.07[/C][/ROW]
[ROW][C]35[/C][C] 120[/C][C] 114.3[/C][C] 5.739[/C][/ROW]
[ROW][C]36[/C][C] 120[/C][C] 117.6[/C][C] 2.369[/C][/ROW]
[ROW][C]37[/C][C] 110[/C][C] 113.8[/C][C]-3.767[/C][/ROW]
[ROW][C]38[/C][C] 110[/C][C] 104.5[/C][C] 5.476[/C][/ROW]
[ROW][C]39[/C][C] 110[/C][C] 119.1[/C][C]-9.148[/C][/ROW]
[ROW][C]40[/C][C] 140[/C][C] 128.4[/C][C] 11.6[/C][/ROW]
[ROW][C]41[/C][C] 110[/C][C] 99.5[/C][C] 10.5[/C][/ROW]
[ROW][C]42[/C][C] 100[/C][C] 117.1[/C][C]-17.15[/C][/ROW]
[ROW][C]43[/C][C] 110[/C][C] 116.7[/C][C]-6.711[/C][/ROW]
[ROW][C]44[/C][C] 100[/C][C] 103.7[/C][C]-3.719[/C][/ROW]
[ROW][C]45[/C][C] 150[/C][C] 126.3[/C][C] 23.74[/C][/ROW]
[ROW][C]46[/C][C] 150[/C][C] 126.3[/C][C] 23.74[/C][/ROW]
[ROW][C]47[/C][C] 160[/C][C] 121.2[/C][C] 38.8[/C][/ROW]
[ROW][C]48[/C][C] 100[/C][C] 100.1[/C][C]-0.1227[/C][/ROW]
[ROW][C]49[/C][C] 120[/C][C] 112.1[/C][C] 7.891[/C][/ROW]
[ROW][C]50[/C][C] 140[/C][C] 128.5[/C][C] 11.47[/C][/ROW]
[ROW][C]51[/C][C] 90[/C][C] 89.83[/C][C] 0.1726[/C][/ROW]
[ROW][C]52[/C][C] 130[/C][C] 134.8[/C][C]-4.85[/C][/ROW]
[ROW][C]53[/C][C] 120[/C][C] 121.4[/C][C]-1.356[/C][/ROW]
[ROW][C]54[/C][C] 100[/C][C] 112.7[/C][C]-12.66[/C][/ROW]
[ROW][C]55[/C][C] 50[/C][C] 79.03[/C][C]-29.03[/C][/ROW]
[ROW][C]56[/C][C] 50[/C][C] 80.29[/C][C]-30.29[/C][/ROW]
[ROW][C]57[/C][C] 100[/C][C] 108.3[/C][C]-8.321[/C][/ROW]
[ROW][C]58[/C][C] 100[/C][C] 100.8[/C][C]-0.7569[/C][/ROW]
[ROW][C]59[/C][C] 120[/C][C] 119.4[/C][C] 0.5769[/C][/ROW]
[ROW][C]60[/C][C] 100[/C][C] 111[/C][C]-11[/C][/ROW]
[ROW][C]61[/C][C] 90[/C][C] 90.73[/C][C]-0.7293[/C][/ROW]
[ROW][C]62[/C][C] 110[/C][C] 86.17[/C][C] 23.83[/C][/ROW]
[ROW][C]63[/C][C] 110[/C][C] 92.94[/C][C] 17.06[/C][/ROW]
[ROW][C]64[/C][C] 80[/C][C] 86.1[/C][C]-6.1[/C][/ROW]
[ROW][C]65[/C][C] 90[/C][C] 74.74[/C][C] 15.26[/C][/ROW]
[ROW][C]66[/C][C] 90[/C][C] 77.01[/C][C] 12.99[/C][/ROW]
[ROW][C]67[/C][C] 110[/C][C] 124.7[/C][C]-14.72[/C][/ROW]
[ROW][C]68[/C][C] 110[/C][C] 111.6[/C][C]-1.611[/C][/ROW]
[ROW][C]69[/C][C] 90[/C][C] 90.9[/C][C]-0.8988[/C][/ROW]
[ROW][C]70[/C][C] 110[/C][C] 115.7[/C][C]-5.681[/C][/ROW]
[ROW][C]71[/C][C] 140[/C][C] 123.9[/C][C] 16.15[/C][/ROW]
[ROW][C]72[/C][C] 100[/C][C] 112.4[/C][C]-12.4[/C][/ROW]
[ROW][C]73[/C][C] 110[/C][C] 97.22[/C][C] 12.78[/C][/ROW]
[ROW][C]74[/C][C] 110[/C][C] 114.9[/C][C]-4.884[/C][/ROW]
[ROW][C]75[/C][C] 100[/C][C] 96.21[/C][C] 3.788[/C][/ROW]
[ROW][C]76[/C][C] 100[/C][C] 96.78[/C][C] 3.22[/C][/ROW]
[ROW][C]77[/C][C] 110[/C][C] 107.7[/C][C] 2.265[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=310823&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=310823&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 70 89.01-19.01
2 120 127.7-7.732
3 70 82.37-12.37
4 50 63.6-13.6
5 110 121.8-11.79
6 110 117.9-7.925
7 110 116.6-6.634
8 130 134-4.038
9 90 96.15-6.147
10 90 84.78 5.225
11 120 120.9-0.8695
12 110 116-5.97
13 120 120.5-0.5488
14 110 112.9-2.878
15 110 113.6-3.578
16 110 94.08 15.92
17 100 90.84 9.161
18 110 108.3 1.67
19 110 112.4-2.442
20 110 113.8-3.752
21 100 90.75 9.247
22 110 93.51 16.49
23 100 105.1-5.124
24 100 92.03 7.965
25 110 121.7-11.65
26 110 105.7 4.34
27 100 99.2 0.7975
28 120 125.8-5.763
29 120 118 2.019
30 110 114.9-4.884
31 100 117.6-17.6
32 110 106.3 3.695
33 100 103.8-3.824
34 110 91.93 18.07
35 120 114.3 5.739
36 120 117.6 2.369
37 110 113.8-3.767
38 110 104.5 5.476
39 110 119.1-9.148
40 140 128.4 11.6
41 110 99.5 10.5
42 100 117.1-17.15
43 110 116.7-6.711
44 100 103.7-3.719
45 150 126.3 23.74
46 150 126.3 23.74
47 160 121.2 38.8
48 100 100.1-0.1227
49 120 112.1 7.891
50 140 128.5 11.47
51 90 89.83 0.1726
52 130 134.8-4.85
53 120 121.4-1.356
54 100 112.7-12.66
55 50 79.03-29.03
56 50 80.29-30.29
57 100 108.3-8.321
58 100 100.8-0.7569
59 120 119.4 0.5769
60 100 111-11
61 90 90.73-0.7293
62 110 86.17 23.83
63 110 92.94 17.06
64 80 86.1-6.1
65 90 74.74 15.26
66 90 77.01 12.99
67 110 124.7-14.72
68 110 111.6-1.611
69 90 90.9-0.8988
70 110 115.7-5.681
71 140 123.9 16.15
72 100 112.4-12.4
73 110 97.22 12.78
74 110 114.9-4.884
75 100 96.21 3.788
76 100 96.78 3.22
77 110 107.7 2.265







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
10 0.2376 0.4752 0.7624
11 0.1157 0.2314 0.8843
12 0.1327 0.2653 0.8673
13 0.08612 0.1722 0.9139
14 0.05098 0.102 0.949
15 0.02476 0.04953 0.9752
16 0.02095 0.0419 0.9791
17 0.01098 0.02195 0.989
18 0.004993 0.009987 0.995
19 0.002271 0.004543 0.9977
20 0.002216 0.004432 0.9978
21 0.001422 0.002845 0.9986
22 0.001675 0.00335 0.9983
23 0.0008489 0.001698 0.9992
24 0.0004377 0.0008753 0.9996
25 0.0002814 0.0005627 0.9997
26 0.0001378 0.0002756 0.9999
27 6.671e-05 0.0001334 0.9999
28 3.865e-05 7.73e-05 1
29 3.359e-05 6.718e-05 1
30 1.691e-05 3.381e-05 1
31 2.348e-05 4.697e-05 1
32 9.731e-06 1.946e-05 1
33 4.47e-06 8.94e-06 1
34 2.662e-05 5.324e-05 1
35 1.931e-05 3.863e-05 1
36 9.601e-06 1.92e-05 1
37 5.454e-06 1.091e-05 1
38 2.891e-06 5.782e-06 1
39 1.791e-06 3.582e-06 1
40 3.64e-05 7.281e-05 1
41 2.243e-05 4.486e-05 1
42 5.41e-05 0.0001082 0.9999
43 2.828e-05 5.655e-05 1
44 1.434e-05 2.868e-05 1
45 0.005192 0.01038 0.9948
46 0.02728 0.05455 0.9727
47 0.3017 0.6035 0.6983
48 0.2401 0.4802 0.7599
49 0.2201 0.4401 0.7799
50 0.2475 0.4949 0.7525
51 0.1913 0.3825 0.8087
52 0.1678 0.3355 0.8322
53 0.1241 0.2482 0.8759
54 0.1123 0.2246 0.8877
55 0.3092 0.6184 0.6908
56 0.8367 0.3266 0.1633
57 0.8009 0.3983 0.1991
58 0.7475 0.505 0.2525
59 0.7279 0.5442 0.2721
60 0.6699 0.6603 0.3301
61 0.7028 0.5944 0.2972
62 0.7859 0.4282 0.2141
63 0.8881 0.2238 0.1119
64 0.9999 0.000175 8.749e-05
65 0.9999 0.0002161 0.000108
66 0.9992 0.001602 0.000801
67 0.9943 0.01148 0.005741

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
10 &  0.2376 &  0.4752 &  0.7624 \tabularnewline
11 &  0.1157 &  0.2314 &  0.8843 \tabularnewline
12 &  0.1327 &  0.2653 &  0.8673 \tabularnewline
13 &  0.08612 &  0.1722 &  0.9139 \tabularnewline
14 &  0.05098 &  0.102 &  0.949 \tabularnewline
15 &  0.02476 &  0.04953 &  0.9752 \tabularnewline
16 &  0.02095 &  0.0419 &  0.9791 \tabularnewline
17 &  0.01098 &  0.02195 &  0.989 \tabularnewline
18 &  0.004993 &  0.009987 &  0.995 \tabularnewline
19 &  0.002271 &  0.004543 &  0.9977 \tabularnewline
20 &  0.002216 &  0.004432 &  0.9978 \tabularnewline
21 &  0.001422 &  0.002845 &  0.9986 \tabularnewline
22 &  0.001675 &  0.00335 &  0.9983 \tabularnewline
23 &  0.0008489 &  0.001698 &  0.9992 \tabularnewline
24 &  0.0004377 &  0.0008753 &  0.9996 \tabularnewline
25 &  0.0002814 &  0.0005627 &  0.9997 \tabularnewline
26 &  0.0001378 &  0.0002756 &  0.9999 \tabularnewline
27 &  6.671e-05 &  0.0001334 &  0.9999 \tabularnewline
28 &  3.865e-05 &  7.73e-05 &  1 \tabularnewline
29 &  3.359e-05 &  6.718e-05 &  1 \tabularnewline
30 &  1.691e-05 &  3.381e-05 &  1 \tabularnewline
31 &  2.348e-05 &  4.697e-05 &  1 \tabularnewline
32 &  9.731e-06 &  1.946e-05 &  1 \tabularnewline
33 &  4.47e-06 &  8.94e-06 &  1 \tabularnewline
34 &  2.662e-05 &  5.324e-05 &  1 \tabularnewline
35 &  1.931e-05 &  3.863e-05 &  1 \tabularnewline
36 &  9.601e-06 &  1.92e-05 &  1 \tabularnewline
37 &  5.454e-06 &  1.091e-05 &  1 \tabularnewline
38 &  2.891e-06 &  5.782e-06 &  1 \tabularnewline
39 &  1.791e-06 &  3.582e-06 &  1 \tabularnewline
40 &  3.64e-05 &  7.281e-05 &  1 \tabularnewline
41 &  2.243e-05 &  4.486e-05 &  1 \tabularnewline
42 &  5.41e-05 &  0.0001082 &  0.9999 \tabularnewline
43 &  2.828e-05 &  5.655e-05 &  1 \tabularnewline
44 &  1.434e-05 &  2.868e-05 &  1 \tabularnewline
45 &  0.005192 &  0.01038 &  0.9948 \tabularnewline
46 &  0.02728 &  0.05455 &  0.9727 \tabularnewline
47 &  0.3017 &  0.6035 &  0.6983 \tabularnewline
48 &  0.2401 &  0.4802 &  0.7599 \tabularnewline
49 &  0.2201 &  0.4401 &  0.7799 \tabularnewline
50 &  0.2475 &  0.4949 &  0.7525 \tabularnewline
51 &  0.1913 &  0.3825 &  0.8087 \tabularnewline
52 &  0.1678 &  0.3355 &  0.8322 \tabularnewline
53 &  0.1241 &  0.2482 &  0.8759 \tabularnewline
54 &  0.1123 &  0.2246 &  0.8877 \tabularnewline
55 &  0.3092 &  0.6184 &  0.6908 \tabularnewline
56 &  0.8367 &  0.3266 &  0.1633 \tabularnewline
57 &  0.8009 &  0.3983 &  0.1991 \tabularnewline
58 &  0.7475 &  0.505 &  0.2525 \tabularnewline
59 &  0.7279 &  0.5442 &  0.2721 \tabularnewline
60 &  0.6699 &  0.6603 &  0.3301 \tabularnewline
61 &  0.7028 &  0.5944 &  0.2972 \tabularnewline
62 &  0.7859 &  0.4282 &  0.2141 \tabularnewline
63 &  0.8881 &  0.2238 &  0.1119 \tabularnewline
64 &  0.9999 &  0.000175 &  8.749e-05 \tabularnewline
65 &  0.9999 &  0.0002161 &  0.000108 \tabularnewline
66 &  0.9992 &  0.001602 &  0.000801 \tabularnewline
67 &  0.9943 &  0.01148 &  0.005741 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=310823&T=6

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]10[/C][C] 0.2376[/C][C] 0.4752[/C][C] 0.7624[/C][/ROW]
[ROW][C]11[/C][C] 0.1157[/C][C] 0.2314[/C][C] 0.8843[/C][/ROW]
[ROW][C]12[/C][C] 0.1327[/C][C] 0.2653[/C][C] 0.8673[/C][/ROW]
[ROW][C]13[/C][C] 0.08612[/C][C] 0.1722[/C][C] 0.9139[/C][/ROW]
[ROW][C]14[/C][C] 0.05098[/C][C] 0.102[/C][C] 0.949[/C][/ROW]
[ROW][C]15[/C][C] 0.02476[/C][C] 0.04953[/C][C] 0.9752[/C][/ROW]
[ROW][C]16[/C][C] 0.02095[/C][C] 0.0419[/C][C] 0.9791[/C][/ROW]
[ROW][C]17[/C][C] 0.01098[/C][C] 0.02195[/C][C] 0.989[/C][/ROW]
[ROW][C]18[/C][C] 0.004993[/C][C] 0.009987[/C][C] 0.995[/C][/ROW]
[ROW][C]19[/C][C] 0.002271[/C][C] 0.004543[/C][C] 0.9977[/C][/ROW]
[ROW][C]20[/C][C] 0.002216[/C][C] 0.004432[/C][C] 0.9978[/C][/ROW]
[ROW][C]21[/C][C] 0.001422[/C][C] 0.002845[/C][C] 0.9986[/C][/ROW]
[ROW][C]22[/C][C] 0.001675[/C][C] 0.00335[/C][C] 0.9983[/C][/ROW]
[ROW][C]23[/C][C] 0.0008489[/C][C] 0.001698[/C][C] 0.9992[/C][/ROW]
[ROW][C]24[/C][C] 0.0004377[/C][C] 0.0008753[/C][C] 0.9996[/C][/ROW]
[ROW][C]25[/C][C] 0.0002814[/C][C] 0.0005627[/C][C] 0.9997[/C][/ROW]
[ROW][C]26[/C][C] 0.0001378[/C][C] 0.0002756[/C][C] 0.9999[/C][/ROW]
[ROW][C]27[/C][C] 6.671e-05[/C][C] 0.0001334[/C][C] 0.9999[/C][/ROW]
[ROW][C]28[/C][C] 3.865e-05[/C][C] 7.73e-05[/C][C] 1[/C][/ROW]
[ROW][C]29[/C][C] 3.359e-05[/C][C] 6.718e-05[/C][C] 1[/C][/ROW]
[ROW][C]30[/C][C] 1.691e-05[/C][C] 3.381e-05[/C][C] 1[/C][/ROW]
[ROW][C]31[/C][C] 2.348e-05[/C][C] 4.697e-05[/C][C] 1[/C][/ROW]
[ROW][C]32[/C][C] 9.731e-06[/C][C] 1.946e-05[/C][C] 1[/C][/ROW]
[ROW][C]33[/C][C] 4.47e-06[/C][C] 8.94e-06[/C][C] 1[/C][/ROW]
[ROW][C]34[/C][C] 2.662e-05[/C][C] 5.324e-05[/C][C] 1[/C][/ROW]
[ROW][C]35[/C][C] 1.931e-05[/C][C] 3.863e-05[/C][C] 1[/C][/ROW]
[ROW][C]36[/C][C] 9.601e-06[/C][C] 1.92e-05[/C][C] 1[/C][/ROW]
[ROW][C]37[/C][C] 5.454e-06[/C][C] 1.091e-05[/C][C] 1[/C][/ROW]
[ROW][C]38[/C][C] 2.891e-06[/C][C] 5.782e-06[/C][C] 1[/C][/ROW]
[ROW][C]39[/C][C] 1.791e-06[/C][C] 3.582e-06[/C][C] 1[/C][/ROW]
[ROW][C]40[/C][C] 3.64e-05[/C][C] 7.281e-05[/C][C] 1[/C][/ROW]
[ROW][C]41[/C][C] 2.243e-05[/C][C] 4.486e-05[/C][C] 1[/C][/ROW]
[ROW][C]42[/C][C] 5.41e-05[/C][C] 0.0001082[/C][C] 0.9999[/C][/ROW]
[ROW][C]43[/C][C] 2.828e-05[/C][C] 5.655e-05[/C][C] 1[/C][/ROW]
[ROW][C]44[/C][C] 1.434e-05[/C][C] 2.868e-05[/C][C] 1[/C][/ROW]
[ROW][C]45[/C][C] 0.005192[/C][C] 0.01038[/C][C] 0.9948[/C][/ROW]
[ROW][C]46[/C][C] 0.02728[/C][C] 0.05455[/C][C] 0.9727[/C][/ROW]
[ROW][C]47[/C][C] 0.3017[/C][C] 0.6035[/C][C] 0.6983[/C][/ROW]
[ROW][C]48[/C][C] 0.2401[/C][C] 0.4802[/C][C] 0.7599[/C][/ROW]
[ROW][C]49[/C][C] 0.2201[/C][C] 0.4401[/C][C] 0.7799[/C][/ROW]
[ROW][C]50[/C][C] 0.2475[/C][C] 0.4949[/C][C] 0.7525[/C][/ROW]
[ROW][C]51[/C][C] 0.1913[/C][C] 0.3825[/C][C] 0.8087[/C][/ROW]
[ROW][C]52[/C][C] 0.1678[/C][C] 0.3355[/C][C] 0.8322[/C][/ROW]
[ROW][C]53[/C][C] 0.1241[/C][C] 0.2482[/C][C] 0.8759[/C][/ROW]
[ROW][C]54[/C][C] 0.1123[/C][C] 0.2246[/C][C] 0.8877[/C][/ROW]
[ROW][C]55[/C][C] 0.3092[/C][C] 0.6184[/C][C] 0.6908[/C][/ROW]
[ROW][C]56[/C][C] 0.8367[/C][C] 0.3266[/C][C] 0.1633[/C][/ROW]
[ROW][C]57[/C][C] 0.8009[/C][C] 0.3983[/C][C] 0.1991[/C][/ROW]
[ROW][C]58[/C][C] 0.7475[/C][C] 0.505[/C][C] 0.2525[/C][/ROW]
[ROW][C]59[/C][C] 0.7279[/C][C] 0.5442[/C][C] 0.2721[/C][/ROW]
[ROW][C]60[/C][C] 0.6699[/C][C] 0.6603[/C][C] 0.3301[/C][/ROW]
[ROW][C]61[/C][C] 0.7028[/C][C] 0.5944[/C][C] 0.2972[/C][/ROW]
[ROW][C]62[/C][C] 0.7859[/C][C] 0.4282[/C][C] 0.2141[/C][/ROW]
[ROW][C]63[/C][C] 0.8881[/C][C] 0.2238[/C][C] 0.1119[/C][/ROW]
[ROW][C]64[/C][C] 0.9999[/C][C] 0.000175[/C][C] 8.749e-05[/C][/ROW]
[ROW][C]65[/C][C] 0.9999[/C][C] 0.0002161[/C][C] 0.000108[/C][/ROW]
[ROW][C]66[/C][C] 0.9992[/C][C] 0.001602[/C][C] 0.000801[/C][/ROW]
[ROW][C]67[/C][C] 0.9943[/C][C] 0.01148[/C][C] 0.005741[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=310823&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=310823&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
10 0.2376 0.4752 0.7624
11 0.1157 0.2314 0.8843
12 0.1327 0.2653 0.8673
13 0.08612 0.1722 0.9139
14 0.05098 0.102 0.949
15 0.02476 0.04953 0.9752
16 0.02095 0.0419 0.9791
17 0.01098 0.02195 0.989
18 0.004993 0.009987 0.995
19 0.002271 0.004543 0.9977
20 0.002216 0.004432 0.9978
21 0.001422 0.002845 0.9986
22 0.001675 0.00335 0.9983
23 0.0008489 0.001698 0.9992
24 0.0004377 0.0008753 0.9996
25 0.0002814 0.0005627 0.9997
26 0.0001378 0.0002756 0.9999
27 6.671e-05 0.0001334 0.9999
28 3.865e-05 7.73e-05 1
29 3.359e-05 6.718e-05 1
30 1.691e-05 3.381e-05 1
31 2.348e-05 4.697e-05 1
32 9.731e-06 1.946e-05 1
33 4.47e-06 8.94e-06 1
34 2.662e-05 5.324e-05 1
35 1.931e-05 3.863e-05 1
36 9.601e-06 1.92e-05 1
37 5.454e-06 1.091e-05 1
38 2.891e-06 5.782e-06 1
39 1.791e-06 3.582e-06 1
40 3.64e-05 7.281e-05 1
41 2.243e-05 4.486e-05 1
42 5.41e-05 0.0001082 0.9999
43 2.828e-05 5.655e-05 1
44 1.434e-05 2.868e-05 1
45 0.005192 0.01038 0.9948
46 0.02728 0.05455 0.9727
47 0.3017 0.6035 0.6983
48 0.2401 0.4802 0.7599
49 0.2201 0.4401 0.7799
50 0.2475 0.4949 0.7525
51 0.1913 0.3825 0.8087
52 0.1678 0.3355 0.8322
53 0.1241 0.2482 0.8759
54 0.1123 0.2246 0.8877
55 0.3092 0.6184 0.6908
56 0.8367 0.3266 0.1633
57 0.8009 0.3983 0.1991
58 0.7475 0.505 0.2525
59 0.7279 0.5442 0.2721
60 0.6699 0.6603 0.3301
61 0.7028 0.5944 0.2972
62 0.7859 0.4282 0.2141
63 0.8881 0.2238 0.1119
64 0.9999 0.000175 8.749e-05
65 0.9999 0.0002161 0.000108
66 0.9992 0.001602 0.000801
67 0.9943 0.01148 0.005741







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level30 0.5172NOK
5% type I error level350.603448NOK
10% type I error level360.62069NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 30 &  0.5172 & NOK \tabularnewline
5% type I error level & 35 & 0.603448 & NOK \tabularnewline
10% type I error level & 36 & 0.62069 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=310823&T=7

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]30[/C][C] 0.5172[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]35[/C][C]0.603448[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]36[/C][C]0.62069[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=310823&T=7

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=310823&T=7

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level30 0.5172NOK
5% type I error level350.603448NOK
10% type I error level360.62069NOK







Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 2.2047, df1 = 2, df2 = 68, p-value = 0.1181
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 3.2135, df1 = 12, df2 = 58, p-value = 0.001404
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 4.9222, df1 = 2, df2 = 68, p-value = 0.01008

\begin{tabular}{lllllllll}
\hline
Ramsey RESET F-Test for powers (2 and 3) of fitted values \tabularnewline
> reset_test_fitted
	RESET test
data:  mylm
RESET = 2.2047, df1 = 2, df2 = 68, p-value = 0.1181
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of regressors \tabularnewline
> reset_test_regressors
	RESET test
data:  mylm
RESET = 3.2135, df1 = 12, df2 = 58, p-value = 0.001404
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of principal components \tabularnewline
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 4.9222, df1 = 2, df2 = 68, p-value = 0.01008
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=310823&T=8

[TABLE]
[ROW][C]Ramsey RESET F-Test for powers (2 and 3) of fitted values[/C][/ROW]
[ROW][C]
> reset_test_fitted
	RESET test
data:  mylm
RESET = 2.2047, df1 = 2, df2 = 68, p-value = 0.1181
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of regressors[/C][/ROW] [ROW][C]
> reset_test_regressors
	RESET test
data:  mylm
RESET = 3.2135, df1 = 12, df2 = 58, p-value = 0.001404
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of principal components[/C][/ROW] [ROW][C]
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 4.9222, df1 = 2, df2 = 68, p-value = 0.01008
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=310823&T=8

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=310823&T=8

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 2.2047, df1 = 2, df2 = 68, p-value = 0.1181
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 3.2135, df1 = 12, df2 = 58, p-value = 0.001404
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 4.9222, df1 = 2, df2 = 68, p-value = 0.01008







Variance Inflation Factors (Multicollinearity)
> vif
 protein      fat   sugars   potass vitamins   weight 
1.862241 1.220237 1.473974 1.704467 1.038055 1.229986 

\begin{tabular}{lllllllll}
\hline
Variance Inflation Factors (Multicollinearity) \tabularnewline
> vif
 protein      fat   sugars   potass vitamins   weight 
1.862241 1.220237 1.473974 1.704467 1.038055 1.229986 
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=310823&T=9

[TABLE]
[ROW][C]Variance Inflation Factors (Multicollinearity)[/C][/ROW]
[ROW][C]
> vif
 protein      fat   sugars   potass vitamins   weight 
1.862241 1.220237 1.473974 1.704467 1.038055 1.229986 
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=310823&T=9

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=310823&T=9

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variance Inflation Factors (Multicollinearity)
> vif
 protein      fat   sugars   potass vitamins   weight 
1.862241 1.220237 1.473974 1.704467 1.038055 1.229986 



Parameters (Session):
Parameters (R input):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = ; par5 = ; par6 = 12 ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
library(car)
library(MASS)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
mywarning <- ''
par6 <- as.numeric(par6)
if(is.na(par6)) {
par6 <- 12
mywarning = 'Warning: you did not specify the seasonality. The seasonal period was set to s = 12.'
}
par1 <- as.numeric(par1)
if(is.na(par1)) {
par1 <- 1
mywarning = 'Warning: you did not specify the column number of the endogenous series! The first column was selected by default.'
}
if (par4=='') par4 <- 0
par4 <- as.numeric(par4)
if (!is.numeric(par4)) par4 <- 0
if (par5=='') par5 <- 0
par5 <- as.numeric(par5)
if (!is.numeric(par5)) par5 <- 0
x <- na.omit(t(y))
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'Seasonal Differences (s)'){
(n <- n - par6)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-Bs)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+par6,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'First and Seasonal Differences (s)'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
(n <- n - par6)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-Bs)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+par6,j] - x[i,j]
}
}
x <- x2
}
if(par4 > 0) {
x2 <- array(0, dim=c(n-par4,par4), dimnames=list(1:(n-par4), paste(colnames(x)[par1],'(t-',1:par4,')',sep='')))
for (i in 1:(n-par4)) {
for (j in 1:par4) {
x2[i,j] <- x[i+par4-j,par1]
}
}
x <- cbind(x[(par4+1):n,], x2)
n <- n - par4
}
if(par5 > 0) {
x2 <- array(0, dim=c(n-par5*par6,par5), dimnames=list(1:(n-par5*par6), paste(colnames(x)[par1],'(t-',1:par5,'s)',sep='')))
for (i in 1:(n-par5*par6)) {
for (j in 1:par5) {
x2[i,j] <- x[i+par5*par6-j*par6,par1]
}
}
x <- cbind(x[(par5*par6+1):n,], x2)
n <- n - par5*par6
}
if (par2 == 'Include Seasonal Dummies'){
x2 <- array(0, dim=c(n,par6-1), dimnames=list(1:n, paste('M', seq(1:(par6-1)), sep ='')))
for (i in 1:(par6-1)){
x2[seq(i,n,par6),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
(k <- length(x[n,]))
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
print(x)
(k <- length(x[n,]))
head(x)
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
sresid <- studres(mylm)
hist(sresid, freq=FALSE, main='Distribution of Studentized Residuals')
xfit<-seq(min(sresid),max(sresid),length=40)
yfit<-dnorm(xfit)
lines(xfit, yfit)
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqPlot(mylm, main='QQ Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
print(z)
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, mywarning)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Multiple Linear Regression - Ordinary Least Squares', 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,formatC(signif(mysum$coefficients[i,1],5),format='g',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,2],5),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,3],4),format='e',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4],4),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4]/2,4),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a,formatC(signif(sqrt(mysum$r.squared),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$adj.r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a,formatC(signif(mysum$fstatistic[1],6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a,formatC(signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a,formatC(signif(mysum$sigma,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a,formatC(signif(sum(myerror*myerror),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
myr <- as.numeric(mysum$resid)
myr
a <-table.start()
a <- table.row.start(a)
a <- table.element(a,'Menu of Residual Diagnostics',2,TRUE)
a <- table.row.end(a)
a <- table.row.start(a)
a <- table.element(a,'Description',1,TRUE)
a <- table.element(a,'Link',1,TRUE)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Histogram',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_histogram.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Central Tendency',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_centraltendency.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'QQ Plot',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_fitdistrnorm.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Kernel Density Plot',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_density.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Skewness/Kurtosis Test',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_skewness_kurtosis.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Skewness-Kurtosis Plot',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_skewness_kurtosis_plot.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Harrell-Davis Plot',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_harrell_davis.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Bootstrap Plot -- Central Tendency',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_bootstrapplot1.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Blocked Bootstrap Plot -- Central Tendency',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_bootstrapplot.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'(Partial) Autocorrelation Plot',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_autocorrelation.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Spectral Analysis',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_spectrum.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Tukey lambda PPCC Plot',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_tukeylambda.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Box-Cox Normality Plot',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_boxcoxnorm.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <- table.element(a,'Summary Statistics',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_summary1.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable7.tab')
if(n < 200) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,formatC(signif(x[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(x[i]-mysum$resid[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$resid[i],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,1],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,2],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,3],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,formatC(signif(numsignificant1/numgqtests,6),format='g',flag=' '))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
}
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of fitted values',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_fitted <- resettest(mylm,power=2:3,type='fitted')
a<-table.element(a,paste('
',RC.texteval('reset_test_fitted'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of regressors',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_regressors <- resettest(mylm,power=2:3,type='regressor')
a<-table.element(a,paste('
',RC.texteval('reset_test_regressors'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of principal components',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_principal_components <- resettest(mylm,power=2:3,type='princomp')
a<-table.element(a,paste('
',RC.texteval('reset_test_principal_components'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable8.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variance Inflation Factors (Multicollinearity)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
vif <- vif(mylm)
a<-table.element(a,paste('
',RC.texteval('vif'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable9.tab')