Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationWed, 13 Dec 2017 09:41:41 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2017/Dec/13/t1513154686volvsuwayqf4ty7.htm/, Retrieved Fri, 01 Nov 2024 00:13:02 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=309222, Retrieved Fri, 01 Nov 2024 00:13:02 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact160
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [] [2017-12-13 08:41:41] [37d4e299f63d60aeb1b8f01e350555e9] [Current]
Feedback Forum

Post a new message
Dataseries X:
4,421292017	1	0	0	0	0	1
3,821047775	1	0	0	0	0	1
4,174578127	1	0	0	0	0	0
4,130233934	1	0	0	0	0	0
3,99852825	1	0	0	0	0	1
4,419526226	1	0	0	0	0	1
3,6169061	1	0	0	0	0	1
3,361906293	1	0	0	0	0	1
3,481357158	1	0	0	0	0	1
4,484755524	1	0	0	0	0	1
4,734325993	1	0	0	0	0	1
3,377809885	1	0	0	0	0	1
3,837873777	1	0	0	0	0	0
4,086492473	1	0	0	0	0	1
4,393148968	1	0	0	0	0	0
5,329339483	1	0	0	0	0	1
5,010192804	1	0	0	0	0	0
4,413590328	1	0	0	0	0	1
3,97059681	1	0	0	0	0	1
3,86260172	1	0	0	0	0	1
3,69073708	1	0	0	0	0	1
3,71823639	1	0	0	0	0	0
4,335847385	1	0	0	0	0	1
4,519646039	1	0	0	0	0	1
3,486377329	1	0	0	0	0	1
3,334865311	1	0	0	0	0	1
3,80739885	1	0	0	0	0	1
4,413351988	1	0	0	0	0	1
2,864847626	0	1	0	0	0	1
3,29779867	0	1	0	0	0	0
2,398982139	0	0	0	1	0	0
3,035764492	0	0	0	0	0	1
3,659980873	1	0	0	0	0	1
3,328873276	0	0	0	0	0	1
3,094848136	0	0	1	0	0	0
3,440594922	0	0	0	0	1	0
4,240299526	0	1	0	0	0	0
2,906779643	0	0	0	0	1	0
3,847490703	0	1	0	0	0	0
2,667909849	0	0	0	1	0	0
3,116962724	0	0	0	1	0	0
3,759888027	1	0	0	0	0	0
3,883478702	1	0	0	0	0	0
3,352187048	1	0	0	0	0	0
2,656344995	0	0	0	0	1	0
2,768614863	0	0	0	1	0	0
3,536095804	0	0	0	0	1	0
4,45904287	0	1	0	0	0	0
4,132328024	0	1	0	0	0	0
3,078940377	0	0	0	0	1	0
3,502376935	0	0	0	0	1	0
3,242542067	0	0	1	0	0	0
3,142358367	0	0	1	0	0	0
3,185062294	0	1	0	0	0	0
3,442286704	0	0	1	0	0	0
3,474648706	0	0	1	0	0	1
3,498350043	0	0	0	1	0	1
3,975143731	1	0	0	0	0	1
2,614213026	0	0	1	0	0	1
3,181382318	0	1	0	0	0	0
2,4545866	0	0	0	0	1	0
3,956020725	0	1	0	0	0	0




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time8 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=309222&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]8 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=309222&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=309222&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R ServerBig Analytics Cloud Computing Center







Multiple Linear Regression - Estimated Regression Equation
LnExport[t] = + 3.23295 + 0.830033Eur[t] + 0.457599Asia[t] -0.047587NorthAM[t] -0.332656SouthAm[t] -0.1507Africa[t] -0.0506264OECD[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
LnExport[t] =  +  3.23295 +  0.830033Eur[t] +  0.457599Asia[t] -0.047587NorthAM[t] -0.332656SouthAm[t] -0.1507Africa[t] -0.0506264OECD[t]  + e[t] \tabularnewline
 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=309222&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]LnExport[t] =  +  3.23295 +  0.830033Eur[t] +  0.457599Asia[t] -0.047587NorthAM[t] -0.332656SouthAm[t] -0.1507Africa[t] -0.0506264OECD[t]  + e[t][/C][/ROW]
[ROW][C][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=309222&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=309222&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
LnExport[t] = + 3.23295 + 0.830033Eur[t] + 0.457599Asia[t] -0.047587NorthAM[t] -0.332656SouthAm[t] -0.1507Africa[t] -0.0506264OECD[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+3.233 0.371+8.7140e+00 6.084e-12 3.042e-12
Eur+0.83 0.35+2.3710e+00 0.02126 0.01063
Asia+0.4576 0.3974+1.1510e+00 0.2546 0.1273
NorthAM-0.04759 0.403-1.1810e-01 0.9064 0.4532
SouthAm-0.3327 0.4179-7.9600e-01 0.4294 0.2147
Africa-0.1507 0.4125-3.6530e-01 0.7163 0.3581
OECD-0.05063 0.1543-3.2820e-01 0.744 0.372

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & +3.233 &  0.371 & +8.7140e+00 &  6.084e-12 &  3.042e-12 \tabularnewline
Eur & +0.83 &  0.35 & +2.3710e+00 &  0.02126 &  0.01063 \tabularnewline
Asia & +0.4576 &  0.3974 & +1.1510e+00 &  0.2546 &  0.1273 \tabularnewline
NorthAM & -0.04759 &  0.403 & -1.1810e-01 &  0.9064 &  0.4532 \tabularnewline
SouthAm & -0.3327 &  0.4179 & -7.9600e-01 &  0.4294 &  0.2147 \tabularnewline
Africa & -0.1507 &  0.4125 & -3.6530e-01 &  0.7163 &  0.3581 \tabularnewline
OECD & -0.05063 &  0.1543 & -3.2820e-01 &  0.744 &  0.372 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=309222&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]+3.233[/C][C] 0.371[/C][C]+8.7140e+00[/C][C] 6.084e-12[/C][C] 3.042e-12[/C][/ROW]
[ROW][C]Eur[/C][C]+0.83[/C][C] 0.35[/C][C]+2.3710e+00[/C][C] 0.02126[/C][C] 0.01063[/C][/ROW]
[ROW][C]Asia[/C][C]+0.4576[/C][C] 0.3974[/C][C]+1.1510e+00[/C][C] 0.2546[/C][C] 0.1273[/C][/ROW]
[ROW][C]NorthAM[/C][C]-0.04759[/C][C] 0.403[/C][C]-1.1810e-01[/C][C] 0.9064[/C][C] 0.4532[/C][/ROW]
[ROW][C]SouthAm[/C][C]-0.3327[/C][C] 0.4179[/C][C]-7.9600e-01[/C][C] 0.4294[/C][C] 0.2147[/C][/ROW]
[ROW][C]Africa[/C][C]-0.1507[/C][C] 0.4125[/C][C]-3.6530e-01[/C][C] 0.7163[/C][C] 0.3581[/C][/ROW]
[ROW][C]OECD[/C][C]-0.05063[/C][C] 0.1543[/C][C]-3.2820e-01[/C][C] 0.744[/C][C] 0.372[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=309222&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=309222&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+3.233 0.371+8.7140e+00 6.084e-12 3.042e-12
Eur+0.83 0.35+2.3710e+00 0.02126 0.01063
Asia+0.4576 0.3974+1.1510e+00 0.2546 0.1273
NorthAM-0.04759 0.403-1.1810e-01 0.9064 0.4532
SouthAm-0.3327 0.4179-7.9600e-01 0.4294 0.2147
Africa-0.1507 0.4125-3.6530e-01 0.7163 0.3581
OECD-0.05063 0.1543-3.2820e-01 0.744 0.372







Multiple Linear Regression - Regression Statistics
Multiple R 0.6943
R-squared 0.4821
Adjusted R-squared 0.4256
F-TEST (value) 8.531
F-TEST (DF numerator)6
F-TEST (DF denominator)55
p-value 1.463e-06
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 0.4772
Sum Squared Residuals 12.52

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R &  0.6943 \tabularnewline
R-squared &  0.4821 \tabularnewline
Adjusted R-squared &  0.4256 \tabularnewline
F-TEST (value) &  8.531 \tabularnewline
F-TEST (DF numerator) & 6 \tabularnewline
F-TEST (DF denominator) & 55 \tabularnewline
p-value &  1.463e-06 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation &  0.4772 \tabularnewline
Sum Squared Residuals &  12.52 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=309222&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C] 0.6943[/C][/ROW]
[ROW][C]R-squared[/C][C] 0.4821[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C] 0.4256[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C] 8.531[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]6[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]55[/C][/ROW]
[ROW][C]p-value[/C][C] 1.463e-06[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C] 0.4772[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C] 12.52[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=309222&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=309222&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R 0.6943
R-squared 0.4821
Adjusted R-squared 0.4256
F-TEST (value) 8.531
F-TEST (DF numerator)6
F-TEST (DF denominator)55
p-value 1.463e-06
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 0.4772
Sum Squared Residuals 12.52







Menu of Residual Diagnostics
DescriptionLink
HistogramCompute
Central TendencyCompute
QQ PlotCompute
Kernel Density PlotCompute
Skewness/Kurtosis TestCompute
Skewness-Kurtosis PlotCompute
Harrell-Davis PlotCompute
Bootstrap Plot -- Central TendencyCompute
Blocked Bootstrap Plot -- Central TendencyCompute
(Partial) Autocorrelation PlotCompute
Spectral AnalysisCompute
Tukey lambda PPCC PlotCompute
Box-Cox Normality PlotCompute
Summary StatisticsCompute

\begin{tabular}{lllllllll}
\hline
Menu of Residual Diagnostics \tabularnewline
Description & Link \tabularnewline
Histogram & Compute \tabularnewline
Central Tendency & Compute \tabularnewline
QQ Plot & Compute \tabularnewline
Kernel Density Plot & Compute \tabularnewline
Skewness/Kurtosis Test & Compute \tabularnewline
Skewness-Kurtosis Plot & Compute \tabularnewline
Harrell-Davis Plot & Compute \tabularnewline
Bootstrap Plot -- Central Tendency & Compute \tabularnewline
Blocked Bootstrap Plot -- Central Tendency & Compute \tabularnewline
(Partial) Autocorrelation Plot & Compute \tabularnewline
Spectral Analysis & Compute \tabularnewline
Tukey lambda PPCC Plot & Compute \tabularnewline
Box-Cox Normality Plot & Compute \tabularnewline
Summary Statistics & Compute \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=309222&T=4

[TABLE]
[ROW][C]Menu of Residual Diagnostics[/C][/ROW]
[ROW][C]Description[/C][C]Link[/C][/ROW]
[ROW][C]Histogram[/C][C]Compute[/C][/ROW]
[ROW][C]Central Tendency[/C][C]Compute[/C][/ROW]
[ROW][C]QQ Plot[/C][C]Compute[/C][/ROW]
[ROW][C]Kernel Density Plot[/C][C]Compute[/C][/ROW]
[ROW][C]Skewness/Kurtosis Test[/C][C]Compute[/C][/ROW]
[ROW][C]Skewness-Kurtosis Plot[/C][C]Compute[/C][/ROW]
[ROW][C]Harrell-Davis Plot[/C][C]Compute[/C][/ROW]
[ROW][C]Bootstrap Plot -- Central Tendency[/C][C]Compute[/C][/ROW]
[ROW][C]Blocked Bootstrap Plot -- Central Tendency[/C][C]Compute[/C][/ROW]
[ROW][C](Partial) Autocorrelation Plot[/C][C]Compute[/C][/ROW]
[ROW][C]Spectral Analysis[/C][C]Compute[/C][/ROW]
[ROW][C]Tukey lambda PPCC Plot[/C][C]Compute[/C][/ROW]
[ROW][C]Box-Cox Normality Plot[/C][C]Compute[/C][/ROW]
[ROW][C]Summary Statistics[/C][C]Compute[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=309222&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=309222&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Menu of Residual Diagnostics
DescriptionLink
HistogramCompute
Central TendencyCompute
QQ PlotCompute
Kernel Density PlotCompute
Skewness/Kurtosis TestCompute
Skewness-Kurtosis PlotCompute
Harrell-Davis PlotCompute
Bootstrap Plot -- Central TendencyCompute
Blocked Bootstrap Plot -- Central TendencyCompute
(Partial) Autocorrelation PlotCompute
Spectral AnalysisCompute
Tukey lambda PPCC PlotCompute
Box-Cox Normality PlotCompute
Summary StatisticsCompute







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 4.421 4.012 0.4089
2 3.821 4.012-0.1913
3 4.175 4.063 0.1116
4 4.13 4.063 0.06726
5 3.999 4.012-0.01382
6 4.42 4.012 0.4072
7 3.617 4.012-0.3954
8 3.362 4.012-0.6504
9 3.481 4.012-0.531
10 4.485 4.012 0.4724
11 4.734 4.012 0.722
12 3.378 4.012-0.6345
13 3.838 4.063-0.2251
14 4.086 4.012 0.07414
15 4.393 4.063 0.3302
16 5.329 4.012 1.317
17 5.01 4.063 0.9472
18 4.414 4.012 0.4012
19 3.971 4.012-0.04175
20 3.863 4.012-0.1497
21 3.691 4.012-0.3216
22 3.718 4.063-0.3447
23 4.336 4.012 0.3235
24 4.52 4.012 0.5073
25 3.486 4.012-0.526
26 3.335 4.012-0.6775
27 3.807 4.012-0.205
28 4.413 4.012 0.401
29 2.865 3.64-0.7751
30 3.298 3.691-0.3927
31 2.399 2.9-0.5013
32 3.036 3.182-0.1466
33 3.66 4.012-0.3524
34 3.329 3.182 0.1466
35 3.095 3.185-0.09051
36 3.441 3.082 0.3583
37 4.24 3.691 0.5498
38 2.907 3.082-0.1755
39 3.847 3.691 0.1569
40 2.668 2.9-0.2324
41 3.117 2.9 0.2167
42 3.76 4.063-0.3031
43 3.883 4.063-0.1795
44 3.352 4.063-0.7108
45 2.656 3.082-0.4259
46 2.769 2.9-0.1317
47 3.536 3.082 0.4538
48 4.459 3.691 0.7685
49 4.132 3.691 0.4418
50 3.079 3.082-0.003305
51 3.502 3.082 0.4201
52 3.243 3.185 0.05718
53 3.142 3.185-0.043
54 3.185 3.691-0.5055
55 3.442 3.185 0.2569
56 3.475 3.135 0.3399
57 3.498 2.85 0.6487
58 3.975 4.012-0.03721
59 2.614 3.135-0.5205
60 3.181 3.691-0.5092
61 2.455 3.082-0.6277
62 3.956 3.691 0.2655

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 &  4.421 &  4.012 &  0.4089 \tabularnewline
2 &  3.821 &  4.012 & -0.1913 \tabularnewline
3 &  4.175 &  4.063 &  0.1116 \tabularnewline
4 &  4.13 &  4.063 &  0.06726 \tabularnewline
5 &  3.999 &  4.012 & -0.01382 \tabularnewline
6 &  4.42 &  4.012 &  0.4072 \tabularnewline
7 &  3.617 &  4.012 & -0.3954 \tabularnewline
8 &  3.362 &  4.012 & -0.6504 \tabularnewline
9 &  3.481 &  4.012 & -0.531 \tabularnewline
10 &  4.485 &  4.012 &  0.4724 \tabularnewline
11 &  4.734 &  4.012 &  0.722 \tabularnewline
12 &  3.378 &  4.012 & -0.6345 \tabularnewline
13 &  3.838 &  4.063 & -0.2251 \tabularnewline
14 &  4.086 &  4.012 &  0.07414 \tabularnewline
15 &  4.393 &  4.063 &  0.3302 \tabularnewline
16 &  5.329 &  4.012 &  1.317 \tabularnewline
17 &  5.01 &  4.063 &  0.9472 \tabularnewline
18 &  4.414 &  4.012 &  0.4012 \tabularnewline
19 &  3.971 &  4.012 & -0.04175 \tabularnewline
20 &  3.863 &  4.012 & -0.1497 \tabularnewline
21 &  3.691 &  4.012 & -0.3216 \tabularnewline
22 &  3.718 &  4.063 & -0.3447 \tabularnewline
23 &  4.336 &  4.012 &  0.3235 \tabularnewline
24 &  4.52 &  4.012 &  0.5073 \tabularnewline
25 &  3.486 &  4.012 & -0.526 \tabularnewline
26 &  3.335 &  4.012 & -0.6775 \tabularnewline
27 &  3.807 &  4.012 & -0.205 \tabularnewline
28 &  4.413 &  4.012 &  0.401 \tabularnewline
29 &  2.865 &  3.64 & -0.7751 \tabularnewline
30 &  3.298 &  3.691 & -0.3927 \tabularnewline
31 &  2.399 &  2.9 & -0.5013 \tabularnewline
32 &  3.036 &  3.182 & -0.1466 \tabularnewline
33 &  3.66 &  4.012 & -0.3524 \tabularnewline
34 &  3.329 &  3.182 &  0.1466 \tabularnewline
35 &  3.095 &  3.185 & -0.09051 \tabularnewline
36 &  3.441 &  3.082 &  0.3583 \tabularnewline
37 &  4.24 &  3.691 &  0.5498 \tabularnewline
38 &  2.907 &  3.082 & -0.1755 \tabularnewline
39 &  3.847 &  3.691 &  0.1569 \tabularnewline
40 &  2.668 &  2.9 & -0.2324 \tabularnewline
41 &  3.117 &  2.9 &  0.2167 \tabularnewline
42 &  3.76 &  4.063 & -0.3031 \tabularnewline
43 &  3.883 &  4.063 & -0.1795 \tabularnewline
44 &  3.352 &  4.063 & -0.7108 \tabularnewline
45 &  2.656 &  3.082 & -0.4259 \tabularnewline
46 &  2.769 &  2.9 & -0.1317 \tabularnewline
47 &  3.536 &  3.082 &  0.4538 \tabularnewline
48 &  4.459 &  3.691 &  0.7685 \tabularnewline
49 &  4.132 &  3.691 &  0.4418 \tabularnewline
50 &  3.079 &  3.082 & -0.003305 \tabularnewline
51 &  3.502 &  3.082 &  0.4201 \tabularnewline
52 &  3.243 &  3.185 &  0.05718 \tabularnewline
53 &  3.142 &  3.185 & -0.043 \tabularnewline
54 &  3.185 &  3.691 & -0.5055 \tabularnewline
55 &  3.442 &  3.185 &  0.2569 \tabularnewline
56 &  3.475 &  3.135 &  0.3399 \tabularnewline
57 &  3.498 &  2.85 &  0.6487 \tabularnewline
58 &  3.975 &  4.012 & -0.03721 \tabularnewline
59 &  2.614 &  3.135 & -0.5205 \tabularnewline
60 &  3.181 &  3.691 & -0.5092 \tabularnewline
61 &  2.455 &  3.082 & -0.6277 \tabularnewline
62 &  3.956 &  3.691 &  0.2655 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=309222&T=5

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C] 4.421[/C][C] 4.012[/C][C] 0.4089[/C][/ROW]
[ROW][C]2[/C][C] 3.821[/C][C] 4.012[/C][C]-0.1913[/C][/ROW]
[ROW][C]3[/C][C] 4.175[/C][C] 4.063[/C][C] 0.1116[/C][/ROW]
[ROW][C]4[/C][C] 4.13[/C][C] 4.063[/C][C] 0.06726[/C][/ROW]
[ROW][C]5[/C][C] 3.999[/C][C] 4.012[/C][C]-0.01382[/C][/ROW]
[ROW][C]6[/C][C] 4.42[/C][C] 4.012[/C][C] 0.4072[/C][/ROW]
[ROW][C]7[/C][C] 3.617[/C][C] 4.012[/C][C]-0.3954[/C][/ROW]
[ROW][C]8[/C][C] 3.362[/C][C] 4.012[/C][C]-0.6504[/C][/ROW]
[ROW][C]9[/C][C] 3.481[/C][C] 4.012[/C][C]-0.531[/C][/ROW]
[ROW][C]10[/C][C] 4.485[/C][C] 4.012[/C][C] 0.4724[/C][/ROW]
[ROW][C]11[/C][C] 4.734[/C][C] 4.012[/C][C] 0.722[/C][/ROW]
[ROW][C]12[/C][C] 3.378[/C][C] 4.012[/C][C]-0.6345[/C][/ROW]
[ROW][C]13[/C][C] 3.838[/C][C] 4.063[/C][C]-0.2251[/C][/ROW]
[ROW][C]14[/C][C] 4.086[/C][C] 4.012[/C][C] 0.07414[/C][/ROW]
[ROW][C]15[/C][C] 4.393[/C][C] 4.063[/C][C] 0.3302[/C][/ROW]
[ROW][C]16[/C][C] 5.329[/C][C] 4.012[/C][C] 1.317[/C][/ROW]
[ROW][C]17[/C][C] 5.01[/C][C] 4.063[/C][C] 0.9472[/C][/ROW]
[ROW][C]18[/C][C] 4.414[/C][C] 4.012[/C][C] 0.4012[/C][/ROW]
[ROW][C]19[/C][C] 3.971[/C][C] 4.012[/C][C]-0.04175[/C][/ROW]
[ROW][C]20[/C][C] 3.863[/C][C] 4.012[/C][C]-0.1497[/C][/ROW]
[ROW][C]21[/C][C] 3.691[/C][C] 4.012[/C][C]-0.3216[/C][/ROW]
[ROW][C]22[/C][C] 3.718[/C][C] 4.063[/C][C]-0.3447[/C][/ROW]
[ROW][C]23[/C][C] 4.336[/C][C] 4.012[/C][C] 0.3235[/C][/ROW]
[ROW][C]24[/C][C] 4.52[/C][C] 4.012[/C][C] 0.5073[/C][/ROW]
[ROW][C]25[/C][C] 3.486[/C][C] 4.012[/C][C]-0.526[/C][/ROW]
[ROW][C]26[/C][C] 3.335[/C][C] 4.012[/C][C]-0.6775[/C][/ROW]
[ROW][C]27[/C][C] 3.807[/C][C] 4.012[/C][C]-0.205[/C][/ROW]
[ROW][C]28[/C][C] 4.413[/C][C] 4.012[/C][C] 0.401[/C][/ROW]
[ROW][C]29[/C][C] 2.865[/C][C] 3.64[/C][C]-0.7751[/C][/ROW]
[ROW][C]30[/C][C] 3.298[/C][C] 3.691[/C][C]-0.3927[/C][/ROW]
[ROW][C]31[/C][C] 2.399[/C][C] 2.9[/C][C]-0.5013[/C][/ROW]
[ROW][C]32[/C][C] 3.036[/C][C] 3.182[/C][C]-0.1466[/C][/ROW]
[ROW][C]33[/C][C] 3.66[/C][C] 4.012[/C][C]-0.3524[/C][/ROW]
[ROW][C]34[/C][C] 3.329[/C][C] 3.182[/C][C] 0.1466[/C][/ROW]
[ROW][C]35[/C][C] 3.095[/C][C] 3.185[/C][C]-0.09051[/C][/ROW]
[ROW][C]36[/C][C] 3.441[/C][C] 3.082[/C][C] 0.3583[/C][/ROW]
[ROW][C]37[/C][C] 4.24[/C][C] 3.691[/C][C] 0.5498[/C][/ROW]
[ROW][C]38[/C][C] 2.907[/C][C] 3.082[/C][C]-0.1755[/C][/ROW]
[ROW][C]39[/C][C] 3.847[/C][C] 3.691[/C][C] 0.1569[/C][/ROW]
[ROW][C]40[/C][C] 2.668[/C][C] 2.9[/C][C]-0.2324[/C][/ROW]
[ROW][C]41[/C][C] 3.117[/C][C] 2.9[/C][C] 0.2167[/C][/ROW]
[ROW][C]42[/C][C] 3.76[/C][C] 4.063[/C][C]-0.3031[/C][/ROW]
[ROW][C]43[/C][C] 3.883[/C][C] 4.063[/C][C]-0.1795[/C][/ROW]
[ROW][C]44[/C][C] 3.352[/C][C] 4.063[/C][C]-0.7108[/C][/ROW]
[ROW][C]45[/C][C] 2.656[/C][C] 3.082[/C][C]-0.4259[/C][/ROW]
[ROW][C]46[/C][C] 2.769[/C][C] 2.9[/C][C]-0.1317[/C][/ROW]
[ROW][C]47[/C][C] 3.536[/C][C] 3.082[/C][C] 0.4538[/C][/ROW]
[ROW][C]48[/C][C] 4.459[/C][C] 3.691[/C][C] 0.7685[/C][/ROW]
[ROW][C]49[/C][C] 4.132[/C][C] 3.691[/C][C] 0.4418[/C][/ROW]
[ROW][C]50[/C][C] 3.079[/C][C] 3.082[/C][C]-0.003305[/C][/ROW]
[ROW][C]51[/C][C] 3.502[/C][C] 3.082[/C][C] 0.4201[/C][/ROW]
[ROW][C]52[/C][C] 3.243[/C][C] 3.185[/C][C] 0.05718[/C][/ROW]
[ROW][C]53[/C][C] 3.142[/C][C] 3.185[/C][C]-0.043[/C][/ROW]
[ROW][C]54[/C][C] 3.185[/C][C] 3.691[/C][C]-0.5055[/C][/ROW]
[ROW][C]55[/C][C] 3.442[/C][C] 3.185[/C][C] 0.2569[/C][/ROW]
[ROW][C]56[/C][C] 3.475[/C][C] 3.135[/C][C] 0.3399[/C][/ROW]
[ROW][C]57[/C][C] 3.498[/C][C] 2.85[/C][C] 0.6487[/C][/ROW]
[ROW][C]58[/C][C] 3.975[/C][C] 4.012[/C][C]-0.03721[/C][/ROW]
[ROW][C]59[/C][C] 2.614[/C][C] 3.135[/C][C]-0.5205[/C][/ROW]
[ROW][C]60[/C][C] 3.181[/C][C] 3.691[/C][C]-0.5092[/C][/ROW]
[ROW][C]61[/C][C] 2.455[/C][C] 3.082[/C][C]-0.6277[/C][/ROW]
[ROW][C]62[/C][C] 3.956[/C][C] 3.691[/C][C] 0.2655[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=309222&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=309222&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 4.421 4.012 0.4089
2 3.821 4.012-0.1913
3 4.175 4.063 0.1116
4 4.13 4.063 0.06726
5 3.999 4.012-0.01382
6 4.42 4.012 0.4072
7 3.617 4.012-0.3954
8 3.362 4.012-0.6504
9 3.481 4.012-0.531
10 4.485 4.012 0.4724
11 4.734 4.012 0.722
12 3.378 4.012-0.6345
13 3.838 4.063-0.2251
14 4.086 4.012 0.07414
15 4.393 4.063 0.3302
16 5.329 4.012 1.317
17 5.01 4.063 0.9472
18 4.414 4.012 0.4012
19 3.971 4.012-0.04175
20 3.863 4.012-0.1497
21 3.691 4.012-0.3216
22 3.718 4.063-0.3447
23 4.336 4.012 0.3235
24 4.52 4.012 0.5073
25 3.486 4.012-0.526
26 3.335 4.012-0.6775
27 3.807 4.012-0.205
28 4.413 4.012 0.401
29 2.865 3.64-0.7751
30 3.298 3.691-0.3927
31 2.399 2.9-0.5013
32 3.036 3.182-0.1466
33 3.66 4.012-0.3524
34 3.329 3.182 0.1466
35 3.095 3.185-0.09051
36 3.441 3.082 0.3583
37 4.24 3.691 0.5498
38 2.907 3.082-0.1755
39 3.847 3.691 0.1569
40 2.668 2.9-0.2324
41 3.117 2.9 0.2167
42 3.76 4.063-0.3031
43 3.883 4.063-0.1795
44 3.352 4.063-0.7108
45 2.656 3.082-0.4259
46 2.769 2.9-0.1317
47 3.536 3.082 0.4538
48 4.459 3.691 0.7685
49 4.132 3.691 0.4418
50 3.079 3.082-0.003305
51 3.502 3.082 0.4201
52 3.243 3.185 0.05718
53 3.142 3.185-0.043
54 3.185 3.691-0.5055
55 3.442 3.185 0.2569
56 3.475 3.135 0.3399
57 3.498 2.85 0.6487
58 3.975 4.012-0.03721
59 2.614 3.135-0.5205
60 3.181 3.691-0.5092
61 2.455 3.082-0.6277
62 3.956 3.691 0.2655







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
10 0.8627 0.2746 0.1373
11 0.8976 0.2047 0.1024
12 0.9034 0.1932 0.09661
13 0.8524 0.2951 0.1476
14 0.7765 0.447 0.2235
15 0.7145 0.5709 0.2855
16 0.9598 0.08043 0.04022
17 0.9846 0.03078 0.01539
18 0.9805 0.039 0.0195
19 0.9677 0.06458 0.03229
20 0.9504 0.09926 0.04963
21 0.9339 0.1321 0.06607
22 0.9224 0.1552 0.07759
23 0.9069 0.1862 0.0931
24 0.9198 0.1604 0.08019
25 0.9146 0.1708 0.0854
26 0.9267 0.1466 0.07332
27 0.8964 0.2072 0.1036
28 0.9017 0.1967 0.09834
29 0.9341 0.1318 0.0659
30 0.9289 0.1422 0.07108
31 0.9226 0.1549 0.07744
32 0.8926 0.2149 0.1074
33 0.8635 0.273 0.1365
34 0.8158 0.3683 0.1842
35 0.7541 0.4917 0.2459
36 0.7158 0.5683 0.2842
37 0.7563 0.4874 0.2437
38 0.7011 0.5978 0.2989
39 0.6277 0.7446 0.3723
40 0.5784 0.8432 0.4216
41 0.513 0.974 0.487
42 0.4471 0.8943 0.5528
43 0.3807 0.7614 0.6193
44 0.3773 0.7546 0.6227
45 0.3477 0.6955 0.6523
46 0.3413 0.6826 0.6587
47 0.3181 0.6362 0.6819
48 0.4442 0.8883 0.5558
49 0.478 0.9559 0.522
50 0.3507 0.7014 0.6493
51 0.4916 0.9832 0.5084
52 0.3287 0.6575 0.6713

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
10 &  0.8627 &  0.2746 &  0.1373 \tabularnewline
11 &  0.8976 &  0.2047 &  0.1024 \tabularnewline
12 &  0.9034 &  0.1932 &  0.09661 \tabularnewline
13 &  0.8524 &  0.2951 &  0.1476 \tabularnewline
14 &  0.7765 &  0.447 &  0.2235 \tabularnewline
15 &  0.7145 &  0.5709 &  0.2855 \tabularnewline
16 &  0.9598 &  0.08043 &  0.04022 \tabularnewline
17 &  0.9846 &  0.03078 &  0.01539 \tabularnewline
18 &  0.9805 &  0.039 &  0.0195 \tabularnewline
19 &  0.9677 &  0.06458 &  0.03229 \tabularnewline
20 &  0.9504 &  0.09926 &  0.04963 \tabularnewline
21 &  0.9339 &  0.1321 &  0.06607 \tabularnewline
22 &  0.9224 &  0.1552 &  0.07759 \tabularnewline
23 &  0.9069 &  0.1862 &  0.0931 \tabularnewline
24 &  0.9198 &  0.1604 &  0.08019 \tabularnewline
25 &  0.9146 &  0.1708 &  0.0854 \tabularnewline
26 &  0.9267 &  0.1466 &  0.07332 \tabularnewline
27 &  0.8964 &  0.2072 &  0.1036 \tabularnewline
28 &  0.9017 &  0.1967 &  0.09834 \tabularnewline
29 &  0.9341 &  0.1318 &  0.0659 \tabularnewline
30 &  0.9289 &  0.1422 &  0.07108 \tabularnewline
31 &  0.9226 &  0.1549 &  0.07744 \tabularnewline
32 &  0.8926 &  0.2149 &  0.1074 \tabularnewline
33 &  0.8635 &  0.273 &  0.1365 \tabularnewline
34 &  0.8158 &  0.3683 &  0.1842 \tabularnewline
35 &  0.7541 &  0.4917 &  0.2459 \tabularnewline
36 &  0.7158 &  0.5683 &  0.2842 \tabularnewline
37 &  0.7563 &  0.4874 &  0.2437 \tabularnewline
38 &  0.7011 &  0.5978 &  0.2989 \tabularnewline
39 &  0.6277 &  0.7446 &  0.3723 \tabularnewline
40 &  0.5784 &  0.8432 &  0.4216 \tabularnewline
41 &  0.513 &  0.974 &  0.487 \tabularnewline
42 &  0.4471 &  0.8943 &  0.5528 \tabularnewline
43 &  0.3807 &  0.7614 &  0.6193 \tabularnewline
44 &  0.3773 &  0.7546 &  0.6227 \tabularnewline
45 &  0.3477 &  0.6955 &  0.6523 \tabularnewline
46 &  0.3413 &  0.6826 &  0.6587 \tabularnewline
47 &  0.3181 &  0.6362 &  0.6819 \tabularnewline
48 &  0.4442 &  0.8883 &  0.5558 \tabularnewline
49 &  0.478 &  0.9559 &  0.522 \tabularnewline
50 &  0.3507 &  0.7014 &  0.6493 \tabularnewline
51 &  0.4916 &  0.9832 &  0.5084 \tabularnewline
52 &  0.3287 &  0.6575 &  0.6713 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=309222&T=6

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]10[/C][C] 0.8627[/C][C] 0.2746[/C][C] 0.1373[/C][/ROW]
[ROW][C]11[/C][C] 0.8976[/C][C] 0.2047[/C][C] 0.1024[/C][/ROW]
[ROW][C]12[/C][C] 0.9034[/C][C] 0.1932[/C][C] 0.09661[/C][/ROW]
[ROW][C]13[/C][C] 0.8524[/C][C] 0.2951[/C][C] 0.1476[/C][/ROW]
[ROW][C]14[/C][C] 0.7765[/C][C] 0.447[/C][C] 0.2235[/C][/ROW]
[ROW][C]15[/C][C] 0.7145[/C][C] 0.5709[/C][C] 0.2855[/C][/ROW]
[ROW][C]16[/C][C] 0.9598[/C][C] 0.08043[/C][C] 0.04022[/C][/ROW]
[ROW][C]17[/C][C] 0.9846[/C][C] 0.03078[/C][C] 0.01539[/C][/ROW]
[ROW][C]18[/C][C] 0.9805[/C][C] 0.039[/C][C] 0.0195[/C][/ROW]
[ROW][C]19[/C][C] 0.9677[/C][C] 0.06458[/C][C] 0.03229[/C][/ROW]
[ROW][C]20[/C][C] 0.9504[/C][C] 0.09926[/C][C] 0.04963[/C][/ROW]
[ROW][C]21[/C][C] 0.9339[/C][C] 0.1321[/C][C] 0.06607[/C][/ROW]
[ROW][C]22[/C][C] 0.9224[/C][C] 0.1552[/C][C] 0.07759[/C][/ROW]
[ROW][C]23[/C][C] 0.9069[/C][C] 0.1862[/C][C] 0.0931[/C][/ROW]
[ROW][C]24[/C][C] 0.9198[/C][C] 0.1604[/C][C] 0.08019[/C][/ROW]
[ROW][C]25[/C][C] 0.9146[/C][C] 0.1708[/C][C] 0.0854[/C][/ROW]
[ROW][C]26[/C][C] 0.9267[/C][C] 0.1466[/C][C] 0.07332[/C][/ROW]
[ROW][C]27[/C][C] 0.8964[/C][C] 0.2072[/C][C] 0.1036[/C][/ROW]
[ROW][C]28[/C][C] 0.9017[/C][C] 0.1967[/C][C] 0.09834[/C][/ROW]
[ROW][C]29[/C][C] 0.9341[/C][C] 0.1318[/C][C] 0.0659[/C][/ROW]
[ROW][C]30[/C][C] 0.9289[/C][C] 0.1422[/C][C] 0.07108[/C][/ROW]
[ROW][C]31[/C][C] 0.9226[/C][C] 0.1549[/C][C] 0.07744[/C][/ROW]
[ROW][C]32[/C][C] 0.8926[/C][C] 0.2149[/C][C] 0.1074[/C][/ROW]
[ROW][C]33[/C][C] 0.8635[/C][C] 0.273[/C][C] 0.1365[/C][/ROW]
[ROW][C]34[/C][C] 0.8158[/C][C] 0.3683[/C][C] 0.1842[/C][/ROW]
[ROW][C]35[/C][C] 0.7541[/C][C] 0.4917[/C][C] 0.2459[/C][/ROW]
[ROW][C]36[/C][C] 0.7158[/C][C] 0.5683[/C][C] 0.2842[/C][/ROW]
[ROW][C]37[/C][C] 0.7563[/C][C] 0.4874[/C][C] 0.2437[/C][/ROW]
[ROW][C]38[/C][C] 0.7011[/C][C] 0.5978[/C][C] 0.2989[/C][/ROW]
[ROW][C]39[/C][C] 0.6277[/C][C] 0.7446[/C][C] 0.3723[/C][/ROW]
[ROW][C]40[/C][C] 0.5784[/C][C] 0.8432[/C][C] 0.4216[/C][/ROW]
[ROW][C]41[/C][C] 0.513[/C][C] 0.974[/C][C] 0.487[/C][/ROW]
[ROW][C]42[/C][C] 0.4471[/C][C] 0.8943[/C][C] 0.5528[/C][/ROW]
[ROW][C]43[/C][C] 0.3807[/C][C] 0.7614[/C][C] 0.6193[/C][/ROW]
[ROW][C]44[/C][C] 0.3773[/C][C] 0.7546[/C][C] 0.6227[/C][/ROW]
[ROW][C]45[/C][C] 0.3477[/C][C] 0.6955[/C][C] 0.6523[/C][/ROW]
[ROW][C]46[/C][C] 0.3413[/C][C] 0.6826[/C][C] 0.6587[/C][/ROW]
[ROW][C]47[/C][C] 0.3181[/C][C] 0.6362[/C][C] 0.6819[/C][/ROW]
[ROW][C]48[/C][C] 0.4442[/C][C] 0.8883[/C][C] 0.5558[/C][/ROW]
[ROW][C]49[/C][C] 0.478[/C][C] 0.9559[/C][C] 0.522[/C][/ROW]
[ROW][C]50[/C][C] 0.3507[/C][C] 0.7014[/C][C] 0.6493[/C][/ROW]
[ROW][C]51[/C][C] 0.4916[/C][C] 0.9832[/C][C] 0.5084[/C][/ROW]
[ROW][C]52[/C][C] 0.3287[/C][C] 0.6575[/C][C] 0.6713[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=309222&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=309222&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
10 0.8627 0.2746 0.1373
11 0.8976 0.2047 0.1024
12 0.9034 0.1932 0.09661
13 0.8524 0.2951 0.1476
14 0.7765 0.447 0.2235
15 0.7145 0.5709 0.2855
16 0.9598 0.08043 0.04022
17 0.9846 0.03078 0.01539
18 0.9805 0.039 0.0195
19 0.9677 0.06458 0.03229
20 0.9504 0.09926 0.04963
21 0.9339 0.1321 0.06607
22 0.9224 0.1552 0.07759
23 0.9069 0.1862 0.0931
24 0.9198 0.1604 0.08019
25 0.9146 0.1708 0.0854
26 0.9267 0.1466 0.07332
27 0.8964 0.2072 0.1036
28 0.9017 0.1967 0.09834
29 0.9341 0.1318 0.0659
30 0.9289 0.1422 0.07108
31 0.9226 0.1549 0.07744
32 0.8926 0.2149 0.1074
33 0.8635 0.273 0.1365
34 0.8158 0.3683 0.1842
35 0.7541 0.4917 0.2459
36 0.7158 0.5683 0.2842
37 0.7563 0.4874 0.2437
38 0.7011 0.5978 0.2989
39 0.6277 0.7446 0.3723
40 0.5784 0.8432 0.4216
41 0.513 0.974 0.487
42 0.4471 0.8943 0.5528
43 0.3807 0.7614 0.6193
44 0.3773 0.7546 0.6227
45 0.3477 0.6955 0.6523
46 0.3413 0.6826 0.6587
47 0.3181 0.6362 0.6819
48 0.4442 0.8883 0.5558
49 0.478 0.9559 0.522
50 0.3507 0.7014 0.6493
51 0.4916 0.9832 0.5084
52 0.3287 0.6575 0.6713







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level0 0OK
5% type I error level20.0465116OK
10% type I error level50.116279NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 0 &  0 & OK \tabularnewline
5% type I error level & 2 & 0.0465116 & OK \tabularnewline
10% type I error level & 5 & 0.116279 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=309222&T=7

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]0[/C][C] 0[/C][C]OK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]2[/C][C]0.0465116[/C][C]OK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]5[/C][C]0.116279[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=309222&T=7

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=309222&T=7

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level0 0OK
5% type I error level20.0465116OK
10% type I error level50.116279NOK







Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 2.8403, df1 = 2, df2 = 53, p-value = 0.06733
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0, df1 = 12, df2 = 43, p-value = 1
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.828, df1 = 2, df2 = 53, p-value = 0.1707

\begin{tabular}{lllllllll}
\hline
Ramsey RESET F-Test for powers (2 and 3) of fitted values \tabularnewline
> reset_test_fitted
	RESET test
data:  mylm
RESET = 2.8403, df1 = 2, df2 = 53, p-value = 0.06733
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of regressors \tabularnewline
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0, df1 = 12, df2 = 43, p-value = 1
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of principal components \tabularnewline
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.828, df1 = 2, df2 = 53, p-value = 0.1707
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=309222&T=8

[TABLE]
[ROW][C]Ramsey RESET F-Test for powers (2 and 3) of fitted values[/C][/ROW]
[ROW][C]
> reset_test_fitted
	RESET test
data:  mylm
RESET = 2.8403, df1 = 2, df2 = 53, p-value = 0.06733
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of regressors[/C][/ROW] [ROW][C]
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0, df1 = 12, df2 = 43, p-value = 1
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of principal components[/C][/ROW] [ROW][C]
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.828, df1 = 2, df2 = 53, p-value = 0.1707
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=309222&T=8

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=309222&T=8

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 2.8403, df1 = 2, df2 = 53, p-value = 0.06733
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0, df1 = 12, df2 = 43, p-value = 1
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.828, df1 = 2, df2 = 53, p-value = 0.1707







Variance Inflation Factors (Multicollinearity)
> vif
     Eur     Asia  NorthAM  SouthAm   Africa     OECD 
8.305481 5.336966 3.864647 3.525229 4.640962 1.618352 

\begin{tabular}{lllllllll}
\hline
Variance Inflation Factors (Multicollinearity) \tabularnewline
> vif
     Eur     Asia  NorthAM  SouthAm   Africa     OECD 
8.305481 5.336966 3.864647 3.525229 4.640962 1.618352 
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=309222&T=9

[TABLE]
[ROW][C]Variance Inflation Factors (Multicollinearity)[/C][/ROW]
[ROW][C]
> vif
     Eur     Asia  NorthAM  SouthAm   Africa     OECD 
8.305481 5.336966 3.864647 3.525229 4.640962 1.618352 
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=309222&T=9

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=309222&T=9

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variance Inflation Factors (Multicollinearity)
> vif
     Eur     Asia  NorthAM  SouthAm   Africa     OECD 
8.305481 5.336966 3.864647 3.525229 4.640962 1.618352 



Parameters (Session):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ; par6 = 12 ;
Parameters (R input):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ; par6 = 12 ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
library(car)
library(MASS)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
mywarning <- ''
par6 <- as.numeric(par6)
if(is.na(par6)) {
par6 <- 12
mywarning = 'Warning: you did not specify the seasonality. The seasonal period was set to s = 12.'
}
par1 <- as.numeric(par1)
if(is.na(par1)) {
par1 <- 1
mywarning = 'Warning: you did not specify the column number of the endogenous series! The first column was selected by default.'
}
if (par4=='') par4 <- 0
par4 <- as.numeric(par4)
if (!is.numeric(par4)) par4 <- 0
if (par5=='') par5 <- 0
par5 <- as.numeric(par5)
if (!is.numeric(par5)) par5 <- 0
x <- na.omit(t(y))
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'Seasonal Differences (s)'){
(n <- n - par6)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-Bs)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+par6,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'First and Seasonal Differences (s)'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
(n <- n - par6)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-Bs)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+par6,j] - x[i,j]
}
}
x <- x2
}
if(par4 > 0) {
x2 <- array(0, dim=c(n-par4,par4), dimnames=list(1:(n-par4), paste(colnames(x)[par1],'(t-',1:par4,')',sep='')))
for (i in 1:(n-par4)) {
for (j in 1:par4) {
x2[i,j] <- x[i+par4-j,par1]
}
}
x <- cbind(x[(par4+1):n,], x2)
n <- n - par4
}
if(par5 > 0) {
x2 <- array(0, dim=c(n-par5*par6,par5), dimnames=list(1:(n-par5*par6), paste(colnames(x)[par1],'(t-',1:par5,'s)',sep='')))
for (i in 1:(n-par5*par6)) {
for (j in 1:par5) {
x2[i,j] <- x[i+par5*par6-j*par6,par1]
}
}
x <- cbind(x[(par5*par6+1):n,], x2)
n <- n - par5*par6
}
if (par2 == 'Include Seasonal Dummies'){
x2 <- array(0, dim=c(n,par6-1), dimnames=list(1:n, paste('M', seq(1:(par6-1)), sep ='')))
for (i in 1:(par6-1)){
x2[seq(i,n,par6),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
(k <- length(x[n,]))
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
print(x)
(k <- length(x[n,]))
head(x)
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
sresid <- studres(mylm)
hist(sresid, freq=FALSE, main='Distribution of Studentized Residuals')
xfit<-seq(min(sresid),max(sresid),length=40)
yfit<-dnorm(xfit)
lines(xfit, yfit)
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqPlot(mylm, main='QQ Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
print(z)
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, mywarning)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Multiple Linear Regression - Ordinary Least Squares', 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,formatC(signif(mysum$coefficients[i,1],5),format='g',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,2],5),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,3],4),format='e',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4],4),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4]/2,4),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a,formatC(signif(sqrt(mysum$r.squared),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$adj.r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a,formatC(signif(mysum$fstatistic[1],6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a,formatC(signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a,formatC(signif(mysum$sigma,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a,formatC(signif(sum(myerror*myerror),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
myr <- as.numeric(mysum$resid)
myr
a <-table.start()
a <- table.row.start(a)
a <- table.element(a,'Menu of Residual Diagnostics',2,TRUE)
a <- table.row.end(a)
a <- table.row.start(a)
a <- table.element(a,'Description',1,TRUE)
a <- table.element(a,'Link',1,TRUE)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Histogram',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_histogram.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Central Tendency',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_centraltendency.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'QQ Plot',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_fitdistrnorm.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Kernel Density Plot',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_density.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Skewness/Kurtosis Test',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_skewness_kurtosis.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Skewness-Kurtosis Plot',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_skewness_kurtosis_plot.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Harrell-Davis Plot',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_harrell_davis.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Bootstrap Plot -- Central Tendency',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_bootstrapplot1.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Blocked Bootstrap Plot -- Central Tendency',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_bootstrapplot.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'(Partial) Autocorrelation Plot',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_autocorrelation.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Spectral Analysis',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_spectrum.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Tukey lambda PPCC Plot',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_tukeylambda.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Box-Cox Normality Plot',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_boxcoxnorm.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <- table.element(a,'Summary Statistics',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_summary1.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable7.tab')
if(n < 200) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,formatC(signif(x[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(x[i]-mysum$resid[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$resid[i],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,1],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,2],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,3],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,formatC(signif(numsignificant1/numgqtests,6),format='g',flag=' '))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
}
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of fitted values',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_fitted <- resettest(mylm,power=2:3,type='fitted')
a<-table.element(a,paste('
',RC.texteval('reset_test_fitted'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of regressors',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_regressors <- resettest(mylm,power=2:3,type='regressor')
a<-table.element(a,paste('
',RC.texteval('reset_test_regressors'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of principal components',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_principal_components <- resettest(mylm,power=2:3,type='princomp')
a<-table.element(a,paste('
',RC.texteval('reset_test_principal_components'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable8.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variance Inflation Factors (Multicollinearity)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
vif <- vif(mylm)
a<-table.element(a,paste('
',RC.texteval('vif'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable9.tab')