Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_variancereduction.wasp
Title produced by softwareVariance Reduction Matrix
Date of computationMon, 11 Dec 2017 15:04:36 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2017/Dec/11/t1513001173t39xuhawq3t9iny.htm/, Retrieved Thu, 31 Oct 2024 23:07:35 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=308989, Retrieved Thu, 31 Oct 2024 23:07:35 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact142
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Variance Reduction Matrix] [Variance reductio...] [2017-12-11 14:04:36] [4bbd12ea3a6c2ab532848261ff0d9984] [Current]
Feedback Forum

Post a new message
Dataseries X:
52.20
63.90
70.30
64.30
77.20
71.90
46.30
61.50
73.30
75.00
74.40
74.70
71.70
66.60
75.10
67.50
74.60
76.40
53.90
70.10
76.10
79.40
74.80
65.30
63.50
64.40
70.30
74.50
69.40
74.50
52.80
61.50
73.90
79.40
69.80
77.40
69.40
75.00
76.40
75.90
70.30
89.50
62.50
59.00
89.50
83.50
76.00
85.80
66.90
75.40
84.60
81.80
75.00
92.60
66.40
75.70
91.30
88.60
85.80
86.70
71.00
83.20
85.00
79.30
77.50
96.50
56.50
75.20
86.30
84.80
91.60
110.70
81.00
81.50
91.00
81.30
93.50
100.70
68.50
77.60
102.70
113.10
98.50
108.20
89.60
93.30
104.60
94.30
100.70
111.80
76.10
102.10
149.20
172.30
125.60
132.20
106.50
116.60
110.80
121.90
117.20
123.90
98.00
93.50
136.30
131.00
113.20
101.00
88.70
96.90
105.80
95.20
88.00
107.70
71.10
72.30
101.50
103.20
103.00
88.30
78.00
91.80
111.50
100.20
94.30
118.20
80.50
92.60
113.10
111.80
101.70
106.50
88.90
101.20
119.00
104.60
120.20
112.60
88.10
99.20
126.50
113.20
114.20
128.10
109.20
107.00
142.30
106.00
115.20
129.70
90.40
97.50
118.30
121.20
117.50
105.50
97.30
98.00
114.80
109.80
121.90
123.00
104.10
99.90
128.50
127.70
116.70
112.10
102.80
110.80
117.80
122.40
120.40
119.20
101.30
101.20
136.10
133.60
109.60
115.80
104.30
115.00
124.60
123.10
120.00
132.00
107.20
101.00
153.10
144.50
125.80
125.40
111.70
118.40
135.60
130.70
128.50
137.10
92.10
103.70
139.00
125.00
130.20
116.40
106.40
121.20
147.60
116.00
137.50
136.40
95.80
127.00




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=308989&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=308989&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=308989&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Variance Reduction Matrix
V(Y[t],d=0,D=0)545.751Range126Trim Var.377.959
V(Y[t],d=1,D=0)283.956Range98.8Trim Var.151.173
V(Y[t],d=2,D=0)722.972Range143.4Trim Var.424.605
V(Y[t],d=3,D=0)2102.39Range242.1Trim Var.1196.44
V(Y[t],d=0,D=1)167.039Range100.5Trim Var.75.6201
V(Y[t],d=1,D=1)135.866Range63.4Trim Var.80.3168
V(Y[t],d=2,D=1)387.205Range110.3Trim Var.235.475
V(Y[t],d=3,D=1)1281.51Range202.7Trim Var.780.445
V(Y[t],d=0,D=2)408.847Range146.9Trim Var.189.65
V(Y[t],d=1,D=2)329.033Range108.4Trim Var.182.391
V(Y[t],d=2,D=2)940.867Range183.7Trim Var.541.442
V(Y[t],d=3,D=2)3137.21Range321.4Trim Var.1863.25

\begin{tabular}{lllllllll}
\hline
Variance Reduction Matrix \tabularnewline
V(Y[t],d=0,D=0) & 545.751 & Range & 126 & Trim Var. & 377.959 \tabularnewline
V(Y[t],d=1,D=0) & 283.956 & Range & 98.8 & Trim Var. & 151.173 \tabularnewline
V(Y[t],d=2,D=0) & 722.972 & Range & 143.4 & Trim Var. & 424.605 \tabularnewline
V(Y[t],d=3,D=0) & 2102.39 & Range & 242.1 & Trim Var. & 1196.44 \tabularnewline
V(Y[t],d=0,D=1) & 167.039 & Range & 100.5 & Trim Var. & 75.6201 \tabularnewline
V(Y[t],d=1,D=1) & 135.866 & Range & 63.4 & Trim Var. & 80.3168 \tabularnewline
V(Y[t],d=2,D=1) & 387.205 & Range & 110.3 & Trim Var. & 235.475 \tabularnewline
V(Y[t],d=3,D=1) & 1281.51 & Range & 202.7 & Trim Var. & 780.445 \tabularnewline
V(Y[t],d=0,D=2) & 408.847 & Range & 146.9 & Trim Var. & 189.65 \tabularnewline
V(Y[t],d=1,D=2) & 329.033 & Range & 108.4 & Trim Var. & 182.391 \tabularnewline
V(Y[t],d=2,D=2) & 940.867 & Range & 183.7 & Trim Var. & 541.442 \tabularnewline
V(Y[t],d=3,D=2) & 3137.21 & Range & 321.4 & Trim Var. & 1863.25 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=308989&T=1

[TABLE]
[ROW][C]Variance Reduction Matrix[/C][/ROW]
[ROW][C]V(Y[t],d=0,D=0)[/C][C]545.751[/C][C]Range[/C][C]126[/C][C]Trim Var.[/C][C]377.959[/C][/ROW]
[ROW][C]V(Y[t],d=1,D=0)[/C][C]283.956[/C][C]Range[/C][C]98.8[/C][C]Trim Var.[/C][C]151.173[/C][/ROW]
[ROW][C]V(Y[t],d=2,D=0)[/C][C]722.972[/C][C]Range[/C][C]143.4[/C][C]Trim Var.[/C][C]424.605[/C][/ROW]
[ROW][C]V(Y[t],d=3,D=0)[/C][C]2102.39[/C][C]Range[/C][C]242.1[/C][C]Trim Var.[/C][C]1196.44[/C][/ROW]
[ROW][C]V(Y[t],d=0,D=1)[/C][C]167.039[/C][C]Range[/C][C]100.5[/C][C]Trim Var.[/C][C]75.6201[/C][/ROW]
[ROW][C]V(Y[t],d=1,D=1)[/C][C]135.866[/C][C]Range[/C][C]63.4[/C][C]Trim Var.[/C][C]80.3168[/C][/ROW]
[ROW][C]V(Y[t],d=2,D=1)[/C][C]387.205[/C][C]Range[/C][C]110.3[/C][C]Trim Var.[/C][C]235.475[/C][/ROW]
[ROW][C]V(Y[t],d=3,D=1)[/C][C]1281.51[/C][C]Range[/C][C]202.7[/C][C]Trim Var.[/C][C]780.445[/C][/ROW]
[ROW][C]V(Y[t],d=0,D=2)[/C][C]408.847[/C][C]Range[/C][C]146.9[/C][C]Trim Var.[/C][C]189.65[/C][/ROW]
[ROW][C]V(Y[t],d=1,D=2)[/C][C]329.033[/C][C]Range[/C][C]108.4[/C][C]Trim Var.[/C][C]182.391[/C][/ROW]
[ROW][C]V(Y[t],d=2,D=2)[/C][C]940.867[/C][C]Range[/C][C]183.7[/C][C]Trim Var.[/C][C]541.442[/C][/ROW]
[ROW][C]V(Y[t],d=3,D=2)[/C][C]3137.21[/C][C]Range[/C][C]321.4[/C][C]Trim Var.[/C][C]1863.25[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=308989&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=308989&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variance Reduction Matrix
V(Y[t],d=0,D=0)545.751Range126Trim Var.377.959
V(Y[t],d=1,D=0)283.956Range98.8Trim Var.151.173
V(Y[t],d=2,D=0)722.972Range143.4Trim Var.424.605
V(Y[t],d=3,D=0)2102.39Range242.1Trim Var.1196.44
V(Y[t],d=0,D=1)167.039Range100.5Trim Var.75.6201
V(Y[t],d=1,D=1)135.866Range63.4Trim Var.80.3168
V(Y[t],d=2,D=1)387.205Range110.3Trim Var.235.475
V(Y[t],d=3,D=1)1281.51Range202.7Trim Var.780.445
V(Y[t],d=0,D=2)408.847Range146.9Trim Var.189.65
V(Y[t],d=1,D=2)329.033Range108.4Trim Var.182.391
V(Y[t],d=2,D=2)940.867Range183.7Trim Var.541.442
V(Y[t],d=3,D=2)3137.21Range321.4Trim Var.1863.25



Parameters (Session):
par1 = 12 ;
Parameters (R input):
par1 = 12 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
n.orig <- length(x)
x <- na.omit(x)
n <- length(x)
sx <- sort(x)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variance Reduction Matrix',6,TRUE)
a<-table.row.end(a)
if(n.orig!=n) {
a<-table.row.start(a)
a<-table.element(a,'Warning: NAs were removed from the time series! The results shown below will only be correct if the NAs are all located at the start and/or end of the time series.',6,F)
a<-table.row.end(a)
}
for (bigd in 0:2) {
for (smalld in 0:3) {
mylabel <- 'V(Y[t],d='
mylabel <- paste(mylabel,as.character(smalld),sep='')
mylabel <- paste(mylabel,',D=',sep='')
mylabel <- paste(mylabel,as.character(bigd),sep='')
mylabel <- paste(mylabel,')',sep='')
a<-table.row.start(a)
a<-table.element(a,mylabel,header=TRUE)
myx <- x
if (smalld > 0) myx <- diff(myx,lag=1,differences=smalld)
if (bigd > 0) myx <- diff(myx,lag=par1,differences=bigd)
a<-table.element(a,signif(var(myx), digits=6))
a<-table.element(a,'Range',header=TRUE)
a<-table.element(a,signif(max(myx)-min(myx), digits=6))
a<-table.element(a,'Trim Var.',header=TRUE)
smyx <- sort(myx)
sn <- length(smyx)
a<-table.element(a,signif(var(smyx[smyx>quantile(smyx,0.05) & smyxa<-table.row.end(a)
}
}
a<-table.end(a)
table.save(a,file='mytable.tab')
bitmap(file='pic0.png')
op <- par(mfrow=c(2,2))
plot(x,type='l',xlab='time',ylab='value',main='d=0, D=0')
plot(diff(x,lag=1,differences=1),type='l',xlab='time',ylab='value',main='d=1, D=0')
plot(diff(x,lag=par1,differences=1),type='l',xlab='time',ylab='value',main='d=0, D=1')
plot(diff(diff(x,lag=1,differences=1),lag=par1,differences=1),type='l',xlab='time',ylab='value',main='d=1, D=1')
par(op)
dev.off()