Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationFri, 23 Dec 2016 20:17:21 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/23/t1482520652wva8e9q16qj2xb1.htm/, Retrieved Fri, 01 Nov 2024 03:40:08 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=303031, Retrieved Fri, 01 Nov 2024 03:40:08 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact103
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [] [2016-12-23 19:17:21] [f297cab75242d404ff18382737066a42] [Current]
Feedback Forum

Post a new message
Dataseries X:
22	4	5	5	4
24	5	5	5	4
21	5	5	4	4
21	3	4	4	4
24	5	5	5	4
20	5	5	5	4
22	5	4	5	5
20	4	NA	4	4
19	5	5	4	4
23	5	5	5	5
21	4	3	4	3
19	3	5	4	3
19	4	5	5	4
21	5	5	5	4
21	4	4	4	4
22	5	4	5	4
22	4	5	5	4
19	NA	NA	NA	NA
21	5	4	4	4
21	5	4	5	5
21	5	5	5	4
20	3	5	5	4
22	4	5	5	4
22	4	4	4	4
24	5	5	5	5
21	3	4	3	3
19	5	5	4	5
19	4	4	4	3
23	4	5	4	4
21	4	5	4	4
21	4	3	5	4
19	5	4	5	3
21	5	5	5	4
19	4	4	5	5
21	5	5	5	4
21	5	5	5	5
23	4	4	4	4
19	5	4	4	4
19	4	4	4	4
19	4	5	4	3
18	4	4	4	4
22	4	4	4	4
18	4	3	4	3
22	5	5	4	3
18	5	4	5	4
22	4	4	4	4
22	4	4	4	4
19	4	NA	4	1
22	4	4	4	4
25	4	4	4	3
19	5	5	5	4
19	4	4	4	4
19	4	5	4	4
19	5	5	5	4
21	4	5	4	4
21	4	5	4	4
20	4	4	4	3
19	5	4	3	4
19	4	4	4	4
22	5	4	4	3
26	4	5	4	4
19	4	5	5	4
21	4	5	5	4
21	5	5	5	3
20	5	5	5	4
23	4	4	3	3
22	4	2	4	3
22	4	5	5	4
22	4	4	4	4
21	4	4	4	3
21	4	5	5	4
22	4	5	5	4
23	2	5	4	5
18	5	5	5	4
24	4	5	4	4
22	5	5	4	3
21	5	5	5	4
21	4	5	5	5
21	5	5	5	5
23	5	5	5	4
21	4	5	5	4
23	4	4	4	4
21	4	4	4	4
19	4	3	4	4
21	5	5	5	5
21	4	5	4	3
21	4	4	4	4
23	5	5	5	5
23	5	5	5	5
20	4	5	5	4
20	5	4	2	4
19	4	3	4	3
23	4	4	4	4
22	3	4	3	4
19	4	5	5	4
23	5	5	5	5
22	5	5	5	5
22	4	5	5	4
21	5	5	5	5
21	3	4	4	3
21	5	5	5	5
21	4	5	4	4
22	5	5	5	5
25	3	4	4	3
21	4	4	4	4
23	5	5	5	5
19	5	5	5	4
22	4	5	4	5
20	4	5	4	4
21	4	5	4	4
25	5	4	5	5
21	4	4	4	3
19	5	4	5	4
23	4	3	4	4
22	4	4	4	4
21	4	4	4	4
24	5	5	5	5
21	5	5	4	4
19	5	5	5	5
18	5	5	5	3
19	4	5	4	4
20	5	4	5	5
19	4	5	5	4
22	5	5	5	4
21	5	4	3	5
22	5	5	4	4
24	4	5	4	4
28	4	4	4	4
19	5	5	5	4
18	5	5	4	4
23	4	5	4	4
19	5	5	4	4
23	4	4	4	4
19	5	5	5	5
22	4	3	4	3
21	4	5	4	4
19	3	3	2	5
22	2	3	4	4
21	4	5	4	4
23	4	5	5	4
22	4	4	4	4
19	4	5	NA	4
19	5	5	5	4
21	5	5	4	NA
22	3	5	5	4
21	4	5	4	3
20	4	5	4	4
23	5	5	4	3
22	4	5	4	4
23	5	5	5	5
22	3	4	4	3
21	5	5	5	5
20	5	5	5	4
18	3	5	5	3
18	5	5	5	4
20	4	5	4	4
19	5	5	5	4
21	5	5	5	5
24	5	4	5	5
19	5	5	5	4
20	4	5	4	3
19	5	4	5	4
23	5	4	2	5
22	4	5	4	4
21	4	5	5	4
24	4	4	5	3
21	4	5	4	4
21	4	4	4	3
22	5	5	5	3




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time9 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time9 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=303031&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]9 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=303031&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=303031&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time9 seconds
R ServerBig Analytics Cloud Computing Center







Multiple Linear Regression - Estimated Regression Equation
a[t] = + 21.364 -0.345897b[t] -0.0589782c[t] -0.106646d[t] + 0.493261e[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
a[t] =  +  21.364 -0.345897b[t] -0.0589782c[t] -0.106646d[t] +  0.493261e[t]  + e[t] \tabularnewline
 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=303031&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]a[t] =  +  21.364 -0.345897b[t] -0.0589782c[t] -0.106646d[t] +  0.493261e[t]  + e[t][/C][/ROW]
[ROW][C][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=303031&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=303031&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
a[t] = + 21.364 -0.345897b[t] -0.0589782c[t] -0.106646d[t] + 0.493261e[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+21.36 1.351+1.5810e+01 1.974e-34 9.87e-35
b-0.3459 0.2378-1.4540e+00 0.1478 0.07392
c-0.05898 0.2496-2.3630e-01 0.8135 0.4068
d-0.1066 0.2523-4.2280e-01 0.673 0.3365
e+0.4933 0.2404+2.0520e+00 0.04185 0.02092

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & +21.36 &  1.351 & +1.5810e+01 &  1.974e-34 &  9.87e-35 \tabularnewline
b & -0.3459 &  0.2378 & -1.4540e+00 &  0.1478 &  0.07392 \tabularnewline
c & -0.05898 &  0.2496 & -2.3630e-01 &  0.8135 &  0.4068 \tabularnewline
d & -0.1066 &  0.2523 & -4.2280e-01 &  0.673 &  0.3365 \tabularnewline
e & +0.4933 &  0.2404 & +2.0520e+00 &  0.04185 &  0.02092 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=303031&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]+21.36[/C][C] 1.351[/C][C]+1.5810e+01[/C][C] 1.974e-34[/C][C] 9.87e-35[/C][/ROW]
[ROW][C]b[/C][C]-0.3459[/C][C] 0.2378[/C][C]-1.4540e+00[/C][C] 0.1478[/C][C] 0.07392[/C][/ROW]
[ROW][C]c[/C][C]-0.05898[/C][C] 0.2496[/C][C]-2.3630e-01[/C][C] 0.8135[/C][C] 0.4068[/C][/ROW]
[ROW][C]d[/C][C]-0.1066[/C][C] 0.2523[/C][C]-4.2280e-01[/C][C] 0.673[/C][C] 0.3365[/C][/ROW]
[ROW][C]e[/C][C]+0.4933[/C][C] 0.2404[/C][C]+2.0520e+00[/C][C] 0.04185[/C][C] 0.02092[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=303031&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=303031&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+21.36 1.351+1.5810e+01 1.974e-34 9.87e-35
b-0.3459 0.2378-1.4540e+00 0.1478 0.07392
c-0.05898 0.2496-2.3630e-01 0.8135 0.4068
d-0.1066 0.2523-4.2280e-01 0.673 0.3365
e+0.4933 0.2404+2.0520e+00 0.04185 0.02092







Multiple Linear Regression - Regression Statistics
Multiple R 0.1857
R-squared 0.03448
Adjusted R-squared 0.01019
F-TEST (value) 1.42
F-TEST (DF numerator)4
F-TEST (DF denominator)159
p-value 0.2299
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 1.772
Sum Squared Residuals 499.4

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R &  0.1857 \tabularnewline
R-squared &  0.03448 \tabularnewline
Adjusted R-squared &  0.01019 \tabularnewline
F-TEST (value) &  1.42 \tabularnewline
F-TEST (DF numerator) & 4 \tabularnewline
F-TEST (DF denominator) & 159 \tabularnewline
p-value &  0.2299 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation &  1.772 \tabularnewline
Sum Squared Residuals &  499.4 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=303031&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C] 0.1857[/C][/ROW]
[ROW][C]R-squared[/C][C] 0.03448[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C] 0.01019[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C] 1.42[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]4[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]159[/C][/ROW]
[ROW][C]p-value[/C][C] 0.2299[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C] 1.772[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C] 499.4[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=303031&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=303031&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R 0.1857
R-squared 0.03448
Adjusted R-squared 0.01019
F-TEST (value) 1.42
F-TEST (DF numerator)4
F-TEST (DF denominator)159
p-value 0.2299
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 1.772
Sum Squared Residuals 499.4







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 22 21.13 0.8747
2 24 20.78 3.221
3 21 20.89 0.1139
4 21 21.64-0.6368
5 24 20.78 3.221
6 20 20.78-0.7794
7 22 21.33 0.6684
8 19 20.89-1.886
9 23 21.27 1.727
10 21 20.86 0.1434
11 19 21.08-2.085
12 19 21.13-2.125
13 21 20.78 0.2206
14 21 21.29-0.2909
15 22 20.84 1.162
16 22 21.13 0.8747
17 21 20.95 0.05497
18 21 21.33-0.3316
19 21 20.78 0.2206
20 20 21.47-1.471
21 22 21.13 0.8747
22 22 21.29 0.7091
23 24 21.27 2.727
24 21 21.25-0.2502
25 19 21.38-2.379
26 19 20.8-1.798
27 23 21.23 1.768
28 21 21.23-0.2319
29 21 21.24-0.2433
30 19 20.35-1.345
31 21 20.78 0.2206
32 19 21.68-2.678
33 21 20.78 0.2206
34 21 21.27-0.2727
35 23 21.29 1.709
36 19 20.95-1.945
37 19 21.29-2.291
38 19 20.74-1.739
39 18 21.29-3.291
40 22 21.29 0.7091
41 18 20.86-2.857
42 22 20.39 1.607
43 18 20.84-2.838
44 22 21.29 0.7091
45 22 21.29 0.7091
46 22 21.29 0.7091
47 25 20.8 4.202
48 19 20.78-1.779
49 19 21.29-2.291
50 19 21.23-2.232
51 19 20.78-1.779
52 21 21.23-0.2319
53 21 21.23-0.2319
54 20 20.8-0.7977
55 19 21.05-2.052
56 19 21.29-2.291
57 22 20.45 1.548
58 26 21.23 4.768
59 19 21.13-2.125
60 21 21.13-0.1253
61 21 20.29 0.7139
62 20 20.78-0.7794
63 23 20.9 2.096
64 22 20.92 1.084
65 22 21.13 0.8747
66 22 21.29 0.7091
67 21 20.8 0.2023
68 21 21.13-0.1253
69 22 21.13 0.8747
70 23 22.42 0.583
71 18 20.78-2.779
72 24 21.23 2.768
73 22 20.39 1.607
74 21 20.78 0.2206
75 21 21.62-0.6186
76 21 21.27-0.2727
77 23 20.78 2.221
78 21 21.13-0.1253
79 23 21.29 1.709
80 21 21.29-0.2909
81 19 21.35-2.35
82 21 21.27-0.2727
83 21 20.74 0.2613
84 21 21.29-0.2909
85 23 21.27 1.727
86 23 21.27 1.727
87 20 21.13-1.125
88 20 21.16-1.158
89 19 20.86-1.857
90 23 21.29 1.709
91 22 21.74 0.2565
92 19 21.13-2.125
93 23 21.27 1.727
94 22 21.27 0.7273
95 22 21.13 0.8747
96 21 21.27-0.2727
97 21 21.14-0.1436
98 21 21.27-0.2727
99 21 21.23-0.2319
100 22 21.27 0.7273
101 25 21.14 3.856
102 21 21.29-0.2909
103 23 21.27 1.727
104 19 20.78-1.779
105 22 21.73 0.2748
106 20 21.23-1.232
107 21 21.23-0.2319
108 25 21.33 3.668
109 21 20.8 0.2023
110 19 20.84-1.838
111 23 21.35 1.65
112 22 21.29 0.7091
113 21 21.29-0.2909
114 24 21.27 2.727
115 21 20.89 0.1139
116 19 21.27-2.273
117 18 20.29-2.286
118 19 21.23-2.232
119 20 21.33-1.332
120 19 21.13-2.125
121 22 20.78 1.221
122 21 21.54-0.5449
123 22 20.89 1.114
124 24 21.23 2.768
125 28 21.29 6.709
126 19 20.78-1.779
127 18 20.89-2.886
128 23 21.23 1.768
129 19 20.89-1.886
130 23 21.29 1.709
131 19 21.27-2.273
132 22 20.86 1.143
133 21 21.23-0.2319
134 19 22.4-3.402
135 22 22.04-0.0417
136 21 21.23-0.2319
137 23 21.13 1.875
138 22 21.29 0.7091
139 19 20.78-1.779
140 22 21.47 0.5288
141 21 20.74 0.2613
142 20 21.23-1.232
143 23 20.39 2.607
144 22 21.23 0.7681
145 23 21.27 1.727
146 22 21.14 0.8564
147 21 21.27-0.2727
148 20 20.78-0.7794
149 18 20.98-2.978
150 18 20.78-2.779
151 20 21.23-1.232
152 19 20.78-1.779
153 21 21.27-0.2727
154 24 21.33 2.668
155 19 20.78-1.779
156 20 20.74-0.7387
157 19 20.84-1.838
158 23 21.65 1.348
159 22 21.23 0.7681
160 21 21.13-0.1253
161 24 20.69 3.309
162 21 21.23-0.2319
163 21 20.8 0.2023
164 22 20.29 1.714

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 &  22 &  21.13 &  0.8747 \tabularnewline
2 &  24 &  20.78 &  3.221 \tabularnewline
3 &  21 &  20.89 &  0.1139 \tabularnewline
4 &  21 &  21.64 & -0.6368 \tabularnewline
5 &  24 &  20.78 &  3.221 \tabularnewline
6 &  20 &  20.78 & -0.7794 \tabularnewline
7 &  22 &  21.33 &  0.6684 \tabularnewline
8 &  19 &  20.89 & -1.886 \tabularnewline
9 &  23 &  21.27 &  1.727 \tabularnewline
10 &  21 &  20.86 &  0.1434 \tabularnewline
11 &  19 &  21.08 & -2.085 \tabularnewline
12 &  19 &  21.13 & -2.125 \tabularnewline
13 &  21 &  20.78 &  0.2206 \tabularnewline
14 &  21 &  21.29 & -0.2909 \tabularnewline
15 &  22 &  20.84 &  1.162 \tabularnewline
16 &  22 &  21.13 &  0.8747 \tabularnewline
17 &  21 &  20.95 &  0.05497 \tabularnewline
18 &  21 &  21.33 & -0.3316 \tabularnewline
19 &  21 &  20.78 &  0.2206 \tabularnewline
20 &  20 &  21.47 & -1.471 \tabularnewline
21 &  22 &  21.13 &  0.8747 \tabularnewline
22 &  22 &  21.29 &  0.7091 \tabularnewline
23 &  24 &  21.27 &  2.727 \tabularnewline
24 &  21 &  21.25 & -0.2502 \tabularnewline
25 &  19 &  21.38 & -2.379 \tabularnewline
26 &  19 &  20.8 & -1.798 \tabularnewline
27 &  23 &  21.23 &  1.768 \tabularnewline
28 &  21 &  21.23 & -0.2319 \tabularnewline
29 &  21 &  21.24 & -0.2433 \tabularnewline
30 &  19 &  20.35 & -1.345 \tabularnewline
31 &  21 &  20.78 &  0.2206 \tabularnewline
32 &  19 &  21.68 & -2.678 \tabularnewline
33 &  21 &  20.78 &  0.2206 \tabularnewline
34 &  21 &  21.27 & -0.2727 \tabularnewline
35 &  23 &  21.29 &  1.709 \tabularnewline
36 &  19 &  20.95 & -1.945 \tabularnewline
37 &  19 &  21.29 & -2.291 \tabularnewline
38 &  19 &  20.74 & -1.739 \tabularnewline
39 &  18 &  21.29 & -3.291 \tabularnewline
40 &  22 &  21.29 &  0.7091 \tabularnewline
41 &  18 &  20.86 & -2.857 \tabularnewline
42 &  22 &  20.39 &  1.607 \tabularnewline
43 &  18 &  20.84 & -2.838 \tabularnewline
44 &  22 &  21.29 &  0.7091 \tabularnewline
45 &  22 &  21.29 &  0.7091 \tabularnewline
46 &  22 &  21.29 &  0.7091 \tabularnewline
47 &  25 &  20.8 &  4.202 \tabularnewline
48 &  19 &  20.78 & -1.779 \tabularnewline
49 &  19 &  21.29 & -2.291 \tabularnewline
50 &  19 &  21.23 & -2.232 \tabularnewline
51 &  19 &  20.78 & -1.779 \tabularnewline
52 &  21 &  21.23 & -0.2319 \tabularnewline
53 &  21 &  21.23 & -0.2319 \tabularnewline
54 &  20 &  20.8 & -0.7977 \tabularnewline
55 &  19 &  21.05 & -2.052 \tabularnewline
56 &  19 &  21.29 & -2.291 \tabularnewline
57 &  22 &  20.45 &  1.548 \tabularnewline
58 &  26 &  21.23 &  4.768 \tabularnewline
59 &  19 &  21.13 & -2.125 \tabularnewline
60 &  21 &  21.13 & -0.1253 \tabularnewline
61 &  21 &  20.29 &  0.7139 \tabularnewline
62 &  20 &  20.78 & -0.7794 \tabularnewline
63 &  23 &  20.9 &  2.096 \tabularnewline
64 &  22 &  20.92 &  1.084 \tabularnewline
65 &  22 &  21.13 &  0.8747 \tabularnewline
66 &  22 &  21.29 &  0.7091 \tabularnewline
67 &  21 &  20.8 &  0.2023 \tabularnewline
68 &  21 &  21.13 & -0.1253 \tabularnewline
69 &  22 &  21.13 &  0.8747 \tabularnewline
70 &  23 &  22.42 &  0.583 \tabularnewline
71 &  18 &  20.78 & -2.779 \tabularnewline
72 &  24 &  21.23 &  2.768 \tabularnewline
73 &  22 &  20.39 &  1.607 \tabularnewline
74 &  21 &  20.78 &  0.2206 \tabularnewline
75 &  21 &  21.62 & -0.6186 \tabularnewline
76 &  21 &  21.27 & -0.2727 \tabularnewline
77 &  23 &  20.78 &  2.221 \tabularnewline
78 &  21 &  21.13 & -0.1253 \tabularnewline
79 &  23 &  21.29 &  1.709 \tabularnewline
80 &  21 &  21.29 & -0.2909 \tabularnewline
81 &  19 &  21.35 & -2.35 \tabularnewline
82 &  21 &  21.27 & -0.2727 \tabularnewline
83 &  21 &  20.74 &  0.2613 \tabularnewline
84 &  21 &  21.29 & -0.2909 \tabularnewline
85 &  23 &  21.27 &  1.727 \tabularnewline
86 &  23 &  21.27 &  1.727 \tabularnewline
87 &  20 &  21.13 & -1.125 \tabularnewline
88 &  20 &  21.16 & -1.158 \tabularnewline
89 &  19 &  20.86 & -1.857 \tabularnewline
90 &  23 &  21.29 &  1.709 \tabularnewline
91 &  22 &  21.74 &  0.2565 \tabularnewline
92 &  19 &  21.13 & -2.125 \tabularnewline
93 &  23 &  21.27 &  1.727 \tabularnewline
94 &  22 &  21.27 &  0.7273 \tabularnewline
95 &  22 &  21.13 &  0.8747 \tabularnewline
96 &  21 &  21.27 & -0.2727 \tabularnewline
97 &  21 &  21.14 & -0.1436 \tabularnewline
98 &  21 &  21.27 & -0.2727 \tabularnewline
99 &  21 &  21.23 & -0.2319 \tabularnewline
100 &  22 &  21.27 &  0.7273 \tabularnewline
101 &  25 &  21.14 &  3.856 \tabularnewline
102 &  21 &  21.29 & -0.2909 \tabularnewline
103 &  23 &  21.27 &  1.727 \tabularnewline
104 &  19 &  20.78 & -1.779 \tabularnewline
105 &  22 &  21.73 &  0.2748 \tabularnewline
106 &  20 &  21.23 & -1.232 \tabularnewline
107 &  21 &  21.23 & -0.2319 \tabularnewline
108 &  25 &  21.33 &  3.668 \tabularnewline
109 &  21 &  20.8 &  0.2023 \tabularnewline
110 &  19 &  20.84 & -1.838 \tabularnewline
111 &  23 &  21.35 &  1.65 \tabularnewline
112 &  22 &  21.29 &  0.7091 \tabularnewline
113 &  21 &  21.29 & -0.2909 \tabularnewline
114 &  24 &  21.27 &  2.727 \tabularnewline
115 &  21 &  20.89 &  0.1139 \tabularnewline
116 &  19 &  21.27 & -2.273 \tabularnewline
117 &  18 &  20.29 & -2.286 \tabularnewline
118 &  19 &  21.23 & -2.232 \tabularnewline
119 &  20 &  21.33 & -1.332 \tabularnewline
120 &  19 &  21.13 & -2.125 \tabularnewline
121 &  22 &  20.78 &  1.221 \tabularnewline
122 &  21 &  21.54 & -0.5449 \tabularnewline
123 &  22 &  20.89 &  1.114 \tabularnewline
124 &  24 &  21.23 &  2.768 \tabularnewline
125 &  28 &  21.29 &  6.709 \tabularnewline
126 &  19 &  20.78 & -1.779 \tabularnewline
127 &  18 &  20.89 & -2.886 \tabularnewline
128 &  23 &  21.23 &  1.768 \tabularnewline
129 &  19 &  20.89 & -1.886 \tabularnewline
130 &  23 &  21.29 &  1.709 \tabularnewline
131 &  19 &  21.27 & -2.273 \tabularnewline
132 &  22 &  20.86 &  1.143 \tabularnewline
133 &  21 &  21.23 & -0.2319 \tabularnewline
134 &  19 &  22.4 & -3.402 \tabularnewline
135 &  22 &  22.04 & -0.0417 \tabularnewline
136 &  21 &  21.23 & -0.2319 \tabularnewline
137 &  23 &  21.13 &  1.875 \tabularnewline
138 &  22 &  21.29 &  0.7091 \tabularnewline
139 &  19 &  20.78 & -1.779 \tabularnewline
140 &  22 &  21.47 &  0.5288 \tabularnewline
141 &  21 &  20.74 &  0.2613 \tabularnewline
142 &  20 &  21.23 & -1.232 \tabularnewline
143 &  23 &  20.39 &  2.607 \tabularnewline
144 &  22 &  21.23 &  0.7681 \tabularnewline
145 &  23 &  21.27 &  1.727 \tabularnewline
146 &  22 &  21.14 &  0.8564 \tabularnewline
147 &  21 &  21.27 & -0.2727 \tabularnewline
148 &  20 &  20.78 & -0.7794 \tabularnewline
149 &  18 &  20.98 & -2.978 \tabularnewline
150 &  18 &  20.78 & -2.779 \tabularnewline
151 &  20 &  21.23 & -1.232 \tabularnewline
152 &  19 &  20.78 & -1.779 \tabularnewline
153 &  21 &  21.27 & -0.2727 \tabularnewline
154 &  24 &  21.33 &  2.668 \tabularnewline
155 &  19 &  20.78 & -1.779 \tabularnewline
156 &  20 &  20.74 & -0.7387 \tabularnewline
157 &  19 &  20.84 & -1.838 \tabularnewline
158 &  23 &  21.65 &  1.348 \tabularnewline
159 &  22 &  21.23 &  0.7681 \tabularnewline
160 &  21 &  21.13 & -0.1253 \tabularnewline
161 &  24 &  20.69 &  3.309 \tabularnewline
162 &  21 &  21.23 & -0.2319 \tabularnewline
163 &  21 &  20.8 &  0.2023 \tabularnewline
164 &  22 &  20.29 &  1.714 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=303031&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C] 22[/C][C] 21.13[/C][C] 0.8747[/C][/ROW]
[ROW][C]2[/C][C] 24[/C][C] 20.78[/C][C] 3.221[/C][/ROW]
[ROW][C]3[/C][C] 21[/C][C] 20.89[/C][C] 0.1139[/C][/ROW]
[ROW][C]4[/C][C] 21[/C][C] 21.64[/C][C]-0.6368[/C][/ROW]
[ROW][C]5[/C][C] 24[/C][C] 20.78[/C][C] 3.221[/C][/ROW]
[ROW][C]6[/C][C] 20[/C][C] 20.78[/C][C]-0.7794[/C][/ROW]
[ROW][C]7[/C][C] 22[/C][C] 21.33[/C][C] 0.6684[/C][/ROW]
[ROW][C]8[/C][C] 19[/C][C] 20.89[/C][C]-1.886[/C][/ROW]
[ROW][C]9[/C][C] 23[/C][C] 21.27[/C][C] 1.727[/C][/ROW]
[ROW][C]10[/C][C] 21[/C][C] 20.86[/C][C] 0.1434[/C][/ROW]
[ROW][C]11[/C][C] 19[/C][C] 21.08[/C][C]-2.085[/C][/ROW]
[ROW][C]12[/C][C] 19[/C][C] 21.13[/C][C]-2.125[/C][/ROW]
[ROW][C]13[/C][C] 21[/C][C] 20.78[/C][C] 0.2206[/C][/ROW]
[ROW][C]14[/C][C] 21[/C][C] 21.29[/C][C]-0.2909[/C][/ROW]
[ROW][C]15[/C][C] 22[/C][C] 20.84[/C][C] 1.162[/C][/ROW]
[ROW][C]16[/C][C] 22[/C][C] 21.13[/C][C] 0.8747[/C][/ROW]
[ROW][C]17[/C][C] 21[/C][C] 20.95[/C][C] 0.05497[/C][/ROW]
[ROW][C]18[/C][C] 21[/C][C] 21.33[/C][C]-0.3316[/C][/ROW]
[ROW][C]19[/C][C] 21[/C][C] 20.78[/C][C] 0.2206[/C][/ROW]
[ROW][C]20[/C][C] 20[/C][C] 21.47[/C][C]-1.471[/C][/ROW]
[ROW][C]21[/C][C] 22[/C][C] 21.13[/C][C] 0.8747[/C][/ROW]
[ROW][C]22[/C][C] 22[/C][C] 21.29[/C][C] 0.7091[/C][/ROW]
[ROW][C]23[/C][C] 24[/C][C] 21.27[/C][C] 2.727[/C][/ROW]
[ROW][C]24[/C][C] 21[/C][C] 21.25[/C][C]-0.2502[/C][/ROW]
[ROW][C]25[/C][C] 19[/C][C] 21.38[/C][C]-2.379[/C][/ROW]
[ROW][C]26[/C][C] 19[/C][C] 20.8[/C][C]-1.798[/C][/ROW]
[ROW][C]27[/C][C] 23[/C][C] 21.23[/C][C] 1.768[/C][/ROW]
[ROW][C]28[/C][C] 21[/C][C] 21.23[/C][C]-0.2319[/C][/ROW]
[ROW][C]29[/C][C] 21[/C][C] 21.24[/C][C]-0.2433[/C][/ROW]
[ROW][C]30[/C][C] 19[/C][C] 20.35[/C][C]-1.345[/C][/ROW]
[ROW][C]31[/C][C] 21[/C][C] 20.78[/C][C] 0.2206[/C][/ROW]
[ROW][C]32[/C][C] 19[/C][C] 21.68[/C][C]-2.678[/C][/ROW]
[ROW][C]33[/C][C] 21[/C][C] 20.78[/C][C] 0.2206[/C][/ROW]
[ROW][C]34[/C][C] 21[/C][C] 21.27[/C][C]-0.2727[/C][/ROW]
[ROW][C]35[/C][C] 23[/C][C] 21.29[/C][C] 1.709[/C][/ROW]
[ROW][C]36[/C][C] 19[/C][C] 20.95[/C][C]-1.945[/C][/ROW]
[ROW][C]37[/C][C] 19[/C][C] 21.29[/C][C]-2.291[/C][/ROW]
[ROW][C]38[/C][C] 19[/C][C] 20.74[/C][C]-1.739[/C][/ROW]
[ROW][C]39[/C][C] 18[/C][C] 21.29[/C][C]-3.291[/C][/ROW]
[ROW][C]40[/C][C] 22[/C][C] 21.29[/C][C] 0.7091[/C][/ROW]
[ROW][C]41[/C][C] 18[/C][C] 20.86[/C][C]-2.857[/C][/ROW]
[ROW][C]42[/C][C] 22[/C][C] 20.39[/C][C] 1.607[/C][/ROW]
[ROW][C]43[/C][C] 18[/C][C] 20.84[/C][C]-2.838[/C][/ROW]
[ROW][C]44[/C][C] 22[/C][C] 21.29[/C][C] 0.7091[/C][/ROW]
[ROW][C]45[/C][C] 22[/C][C] 21.29[/C][C] 0.7091[/C][/ROW]
[ROW][C]46[/C][C] 22[/C][C] 21.29[/C][C] 0.7091[/C][/ROW]
[ROW][C]47[/C][C] 25[/C][C] 20.8[/C][C] 4.202[/C][/ROW]
[ROW][C]48[/C][C] 19[/C][C] 20.78[/C][C]-1.779[/C][/ROW]
[ROW][C]49[/C][C] 19[/C][C] 21.29[/C][C]-2.291[/C][/ROW]
[ROW][C]50[/C][C] 19[/C][C] 21.23[/C][C]-2.232[/C][/ROW]
[ROW][C]51[/C][C] 19[/C][C] 20.78[/C][C]-1.779[/C][/ROW]
[ROW][C]52[/C][C] 21[/C][C] 21.23[/C][C]-0.2319[/C][/ROW]
[ROW][C]53[/C][C] 21[/C][C] 21.23[/C][C]-0.2319[/C][/ROW]
[ROW][C]54[/C][C] 20[/C][C] 20.8[/C][C]-0.7977[/C][/ROW]
[ROW][C]55[/C][C] 19[/C][C] 21.05[/C][C]-2.052[/C][/ROW]
[ROW][C]56[/C][C] 19[/C][C] 21.29[/C][C]-2.291[/C][/ROW]
[ROW][C]57[/C][C] 22[/C][C] 20.45[/C][C] 1.548[/C][/ROW]
[ROW][C]58[/C][C] 26[/C][C] 21.23[/C][C] 4.768[/C][/ROW]
[ROW][C]59[/C][C] 19[/C][C] 21.13[/C][C]-2.125[/C][/ROW]
[ROW][C]60[/C][C] 21[/C][C] 21.13[/C][C]-0.1253[/C][/ROW]
[ROW][C]61[/C][C] 21[/C][C] 20.29[/C][C] 0.7139[/C][/ROW]
[ROW][C]62[/C][C] 20[/C][C] 20.78[/C][C]-0.7794[/C][/ROW]
[ROW][C]63[/C][C] 23[/C][C] 20.9[/C][C] 2.096[/C][/ROW]
[ROW][C]64[/C][C] 22[/C][C] 20.92[/C][C] 1.084[/C][/ROW]
[ROW][C]65[/C][C] 22[/C][C] 21.13[/C][C] 0.8747[/C][/ROW]
[ROW][C]66[/C][C] 22[/C][C] 21.29[/C][C] 0.7091[/C][/ROW]
[ROW][C]67[/C][C] 21[/C][C] 20.8[/C][C] 0.2023[/C][/ROW]
[ROW][C]68[/C][C] 21[/C][C] 21.13[/C][C]-0.1253[/C][/ROW]
[ROW][C]69[/C][C] 22[/C][C] 21.13[/C][C] 0.8747[/C][/ROW]
[ROW][C]70[/C][C] 23[/C][C] 22.42[/C][C] 0.583[/C][/ROW]
[ROW][C]71[/C][C] 18[/C][C] 20.78[/C][C]-2.779[/C][/ROW]
[ROW][C]72[/C][C] 24[/C][C] 21.23[/C][C] 2.768[/C][/ROW]
[ROW][C]73[/C][C] 22[/C][C] 20.39[/C][C] 1.607[/C][/ROW]
[ROW][C]74[/C][C] 21[/C][C] 20.78[/C][C] 0.2206[/C][/ROW]
[ROW][C]75[/C][C] 21[/C][C] 21.62[/C][C]-0.6186[/C][/ROW]
[ROW][C]76[/C][C] 21[/C][C] 21.27[/C][C]-0.2727[/C][/ROW]
[ROW][C]77[/C][C] 23[/C][C] 20.78[/C][C] 2.221[/C][/ROW]
[ROW][C]78[/C][C] 21[/C][C] 21.13[/C][C]-0.1253[/C][/ROW]
[ROW][C]79[/C][C] 23[/C][C] 21.29[/C][C] 1.709[/C][/ROW]
[ROW][C]80[/C][C] 21[/C][C] 21.29[/C][C]-0.2909[/C][/ROW]
[ROW][C]81[/C][C] 19[/C][C] 21.35[/C][C]-2.35[/C][/ROW]
[ROW][C]82[/C][C] 21[/C][C] 21.27[/C][C]-0.2727[/C][/ROW]
[ROW][C]83[/C][C] 21[/C][C] 20.74[/C][C] 0.2613[/C][/ROW]
[ROW][C]84[/C][C] 21[/C][C] 21.29[/C][C]-0.2909[/C][/ROW]
[ROW][C]85[/C][C] 23[/C][C] 21.27[/C][C] 1.727[/C][/ROW]
[ROW][C]86[/C][C] 23[/C][C] 21.27[/C][C] 1.727[/C][/ROW]
[ROW][C]87[/C][C] 20[/C][C] 21.13[/C][C]-1.125[/C][/ROW]
[ROW][C]88[/C][C] 20[/C][C] 21.16[/C][C]-1.158[/C][/ROW]
[ROW][C]89[/C][C] 19[/C][C] 20.86[/C][C]-1.857[/C][/ROW]
[ROW][C]90[/C][C] 23[/C][C] 21.29[/C][C] 1.709[/C][/ROW]
[ROW][C]91[/C][C] 22[/C][C] 21.74[/C][C] 0.2565[/C][/ROW]
[ROW][C]92[/C][C] 19[/C][C] 21.13[/C][C]-2.125[/C][/ROW]
[ROW][C]93[/C][C] 23[/C][C] 21.27[/C][C] 1.727[/C][/ROW]
[ROW][C]94[/C][C] 22[/C][C] 21.27[/C][C] 0.7273[/C][/ROW]
[ROW][C]95[/C][C] 22[/C][C] 21.13[/C][C] 0.8747[/C][/ROW]
[ROW][C]96[/C][C] 21[/C][C] 21.27[/C][C]-0.2727[/C][/ROW]
[ROW][C]97[/C][C] 21[/C][C] 21.14[/C][C]-0.1436[/C][/ROW]
[ROW][C]98[/C][C] 21[/C][C] 21.27[/C][C]-0.2727[/C][/ROW]
[ROW][C]99[/C][C] 21[/C][C] 21.23[/C][C]-0.2319[/C][/ROW]
[ROW][C]100[/C][C] 22[/C][C] 21.27[/C][C] 0.7273[/C][/ROW]
[ROW][C]101[/C][C] 25[/C][C] 21.14[/C][C] 3.856[/C][/ROW]
[ROW][C]102[/C][C] 21[/C][C] 21.29[/C][C]-0.2909[/C][/ROW]
[ROW][C]103[/C][C] 23[/C][C] 21.27[/C][C] 1.727[/C][/ROW]
[ROW][C]104[/C][C] 19[/C][C] 20.78[/C][C]-1.779[/C][/ROW]
[ROW][C]105[/C][C] 22[/C][C] 21.73[/C][C] 0.2748[/C][/ROW]
[ROW][C]106[/C][C] 20[/C][C] 21.23[/C][C]-1.232[/C][/ROW]
[ROW][C]107[/C][C] 21[/C][C] 21.23[/C][C]-0.2319[/C][/ROW]
[ROW][C]108[/C][C] 25[/C][C] 21.33[/C][C] 3.668[/C][/ROW]
[ROW][C]109[/C][C] 21[/C][C] 20.8[/C][C] 0.2023[/C][/ROW]
[ROW][C]110[/C][C] 19[/C][C] 20.84[/C][C]-1.838[/C][/ROW]
[ROW][C]111[/C][C] 23[/C][C] 21.35[/C][C] 1.65[/C][/ROW]
[ROW][C]112[/C][C] 22[/C][C] 21.29[/C][C] 0.7091[/C][/ROW]
[ROW][C]113[/C][C] 21[/C][C] 21.29[/C][C]-0.2909[/C][/ROW]
[ROW][C]114[/C][C] 24[/C][C] 21.27[/C][C] 2.727[/C][/ROW]
[ROW][C]115[/C][C] 21[/C][C] 20.89[/C][C] 0.1139[/C][/ROW]
[ROW][C]116[/C][C] 19[/C][C] 21.27[/C][C]-2.273[/C][/ROW]
[ROW][C]117[/C][C] 18[/C][C] 20.29[/C][C]-2.286[/C][/ROW]
[ROW][C]118[/C][C] 19[/C][C] 21.23[/C][C]-2.232[/C][/ROW]
[ROW][C]119[/C][C] 20[/C][C] 21.33[/C][C]-1.332[/C][/ROW]
[ROW][C]120[/C][C] 19[/C][C] 21.13[/C][C]-2.125[/C][/ROW]
[ROW][C]121[/C][C] 22[/C][C] 20.78[/C][C] 1.221[/C][/ROW]
[ROW][C]122[/C][C] 21[/C][C] 21.54[/C][C]-0.5449[/C][/ROW]
[ROW][C]123[/C][C] 22[/C][C] 20.89[/C][C] 1.114[/C][/ROW]
[ROW][C]124[/C][C] 24[/C][C] 21.23[/C][C] 2.768[/C][/ROW]
[ROW][C]125[/C][C] 28[/C][C] 21.29[/C][C] 6.709[/C][/ROW]
[ROW][C]126[/C][C] 19[/C][C] 20.78[/C][C]-1.779[/C][/ROW]
[ROW][C]127[/C][C] 18[/C][C] 20.89[/C][C]-2.886[/C][/ROW]
[ROW][C]128[/C][C] 23[/C][C] 21.23[/C][C] 1.768[/C][/ROW]
[ROW][C]129[/C][C] 19[/C][C] 20.89[/C][C]-1.886[/C][/ROW]
[ROW][C]130[/C][C] 23[/C][C] 21.29[/C][C] 1.709[/C][/ROW]
[ROW][C]131[/C][C] 19[/C][C] 21.27[/C][C]-2.273[/C][/ROW]
[ROW][C]132[/C][C] 22[/C][C] 20.86[/C][C] 1.143[/C][/ROW]
[ROW][C]133[/C][C] 21[/C][C] 21.23[/C][C]-0.2319[/C][/ROW]
[ROW][C]134[/C][C] 19[/C][C] 22.4[/C][C]-3.402[/C][/ROW]
[ROW][C]135[/C][C] 22[/C][C] 22.04[/C][C]-0.0417[/C][/ROW]
[ROW][C]136[/C][C] 21[/C][C] 21.23[/C][C]-0.2319[/C][/ROW]
[ROW][C]137[/C][C] 23[/C][C] 21.13[/C][C] 1.875[/C][/ROW]
[ROW][C]138[/C][C] 22[/C][C] 21.29[/C][C] 0.7091[/C][/ROW]
[ROW][C]139[/C][C] 19[/C][C] 20.78[/C][C]-1.779[/C][/ROW]
[ROW][C]140[/C][C] 22[/C][C] 21.47[/C][C] 0.5288[/C][/ROW]
[ROW][C]141[/C][C] 21[/C][C] 20.74[/C][C] 0.2613[/C][/ROW]
[ROW][C]142[/C][C] 20[/C][C] 21.23[/C][C]-1.232[/C][/ROW]
[ROW][C]143[/C][C] 23[/C][C] 20.39[/C][C] 2.607[/C][/ROW]
[ROW][C]144[/C][C] 22[/C][C] 21.23[/C][C] 0.7681[/C][/ROW]
[ROW][C]145[/C][C] 23[/C][C] 21.27[/C][C] 1.727[/C][/ROW]
[ROW][C]146[/C][C] 22[/C][C] 21.14[/C][C] 0.8564[/C][/ROW]
[ROW][C]147[/C][C] 21[/C][C] 21.27[/C][C]-0.2727[/C][/ROW]
[ROW][C]148[/C][C] 20[/C][C] 20.78[/C][C]-0.7794[/C][/ROW]
[ROW][C]149[/C][C] 18[/C][C] 20.98[/C][C]-2.978[/C][/ROW]
[ROW][C]150[/C][C] 18[/C][C] 20.78[/C][C]-2.779[/C][/ROW]
[ROW][C]151[/C][C] 20[/C][C] 21.23[/C][C]-1.232[/C][/ROW]
[ROW][C]152[/C][C] 19[/C][C] 20.78[/C][C]-1.779[/C][/ROW]
[ROW][C]153[/C][C] 21[/C][C] 21.27[/C][C]-0.2727[/C][/ROW]
[ROW][C]154[/C][C] 24[/C][C] 21.33[/C][C] 2.668[/C][/ROW]
[ROW][C]155[/C][C] 19[/C][C] 20.78[/C][C]-1.779[/C][/ROW]
[ROW][C]156[/C][C] 20[/C][C] 20.74[/C][C]-0.7387[/C][/ROW]
[ROW][C]157[/C][C] 19[/C][C] 20.84[/C][C]-1.838[/C][/ROW]
[ROW][C]158[/C][C] 23[/C][C] 21.65[/C][C] 1.348[/C][/ROW]
[ROW][C]159[/C][C] 22[/C][C] 21.23[/C][C] 0.7681[/C][/ROW]
[ROW][C]160[/C][C] 21[/C][C] 21.13[/C][C]-0.1253[/C][/ROW]
[ROW][C]161[/C][C] 24[/C][C] 20.69[/C][C] 3.309[/C][/ROW]
[ROW][C]162[/C][C] 21[/C][C] 21.23[/C][C]-0.2319[/C][/ROW]
[ROW][C]163[/C][C] 21[/C][C] 20.8[/C][C] 0.2023[/C][/ROW]
[ROW][C]164[/C][C] 22[/C][C] 20.29[/C][C] 1.714[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=303031&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=303031&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 22 21.13 0.8747
2 24 20.78 3.221
3 21 20.89 0.1139
4 21 21.64-0.6368
5 24 20.78 3.221
6 20 20.78-0.7794
7 22 21.33 0.6684
8 19 20.89-1.886
9 23 21.27 1.727
10 21 20.86 0.1434
11 19 21.08-2.085
12 19 21.13-2.125
13 21 20.78 0.2206
14 21 21.29-0.2909
15 22 20.84 1.162
16 22 21.13 0.8747
17 21 20.95 0.05497
18 21 21.33-0.3316
19 21 20.78 0.2206
20 20 21.47-1.471
21 22 21.13 0.8747
22 22 21.29 0.7091
23 24 21.27 2.727
24 21 21.25-0.2502
25 19 21.38-2.379
26 19 20.8-1.798
27 23 21.23 1.768
28 21 21.23-0.2319
29 21 21.24-0.2433
30 19 20.35-1.345
31 21 20.78 0.2206
32 19 21.68-2.678
33 21 20.78 0.2206
34 21 21.27-0.2727
35 23 21.29 1.709
36 19 20.95-1.945
37 19 21.29-2.291
38 19 20.74-1.739
39 18 21.29-3.291
40 22 21.29 0.7091
41 18 20.86-2.857
42 22 20.39 1.607
43 18 20.84-2.838
44 22 21.29 0.7091
45 22 21.29 0.7091
46 22 21.29 0.7091
47 25 20.8 4.202
48 19 20.78-1.779
49 19 21.29-2.291
50 19 21.23-2.232
51 19 20.78-1.779
52 21 21.23-0.2319
53 21 21.23-0.2319
54 20 20.8-0.7977
55 19 21.05-2.052
56 19 21.29-2.291
57 22 20.45 1.548
58 26 21.23 4.768
59 19 21.13-2.125
60 21 21.13-0.1253
61 21 20.29 0.7139
62 20 20.78-0.7794
63 23 20.9 2.096
64 22 20.92 1.084
65 22 21.13 0.8747
66 22 21.29 0.7091
67 21 20.8 0.2023
68 21 21.13-0.1253
69 22 21.13 0.8747
70 23 22.42 0.583
71 18 20.78-2.779
72 24 21.23 2.768
73 22 20.39 1.607
74 21 20.78 0.2206
75 21 21.62-0.6186
76 21 21.27-0.2727
77 23 20.78 2.221
78 21 21.13-0.1253
79 23 21.29 1.709
80 21 21.29-0.2909
81 19 21.35-2.35
82 21 21.27-0.2727
83 21 20.74 0.2613
84 21 21.29-0.2909
85 23 21.27 1.727
86 23 21.27 1.727
87 20 21.13-1.125
88 20 21.16-1.158
89 19 20.86-1.857
90 23 21.29 1.709
91 22 21.74 0.2565
92 19 21.13-2.125
93 23 21.27 1.727
94 22 21.27 0.7273
95 22 21.13 0.8747
96 21 21.27-0.2727
97 21 21.14-0.1436
98 21 21.27-0.2727
99 21 21.23-0.2319
100 22 21.27 0.7273
101 25 21.14 3.856
102 21 21.29-0.2909
103 23 21.27 1.727
104 19 20.78-1.779
105 22 21.73 0.2748
106 20 21.23-1.232
107 21 21.23-0.2319
108 25 21.33 3.668
109 21 20.8 0.2023
110 19 20.84-1.838
111 23 21.35 1.65
112 22 21.29 0.7091
113 21 21.29-0.2909
114 24 21.27 2.727
115 21 20.89 0.1139
116 19 21.27-2.273
117 18 20.29-2.286
118 19 21.23-2.232
119 20 21.33-1.332
120 19 21.13-2.125
121 22 20.78 1.221
122 21 21.54-0.5449
123 22 20.89 1.114
124 24 21.23 2.768
125 28 21.29 6.709
126 19 20.78-1.779
127 18 20.89-2.886
128 23 21.23 1.768
129 19 20.89-1.886
130 23 21.29 1.709
131 19 21.27-2.273
132 22 20.86 1.143
133 21 21.23-0.2319
134 19 22.4-3.402
135 22 22.04-0.0417
136 21 21.23-0.2319
137 23 21.13 1.875
138 22 21.29 0.7091
139 19 20.78-1.779
140 22 21.47 0.5288
141 21 20.74 0.2613
142 20 21.23-1.232
143 23 20.39 2.607
144 22 21.23 0.7681
145 23 21.27 1.727
146 22 21.14 0.8564
147 21 21.27-0.2727
148 20 20.78-0.7794
149 18 20.98-2.978
150 18 20.78-2.779
151 20 21.23-1.232
152 19 20.78-1.779
153 21 21.27-0.2727
154 24 21.33 2.668
155 19 20.78-1.779
156 20 20.74-0.7387
157 19 20.84-1.838
158 23 21.65 1.348
159 22 21.23 0.7681
160 21 21.13-0.1253
161 24 20.69 3.309
162 21 21.23-0.2319
163 21 20.8 0.2023
164 22 20.29 1.714







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
8 0.7396 0.5207 0.2604
9 0.6478 0.7045 0.3522
10 0.5136 0.9729 0.4864
11 0.4353 0.8707 0.5647
12 0.6041 0.7918 0.3959
13 0.5222 0.9555 0.4778
14 0.4217 0.8434 0.5783
15 0.3358 0.6716 0.6642
16 0.2642 0.5284 0.7358
17 0.1935 0.3869 0.8065
18 0.1849 0.3698 0.8151
19 0.1417 0.2834 0.8583
20 0.1106 0.2213 0.8894
21 0.08408 0.1682 0.9159
22 0.07577 0.1515 0.9242
23 0.09298 0.186 0.907
24 0.0923 0.1846 0.9077
25 0.1191 0.2382 0.8809
26 0.122 0.2439 0.878
27 0.1685 0.337 0.8315
28 0.1303 0.2605 0.8697
29 0.1035 0.2071 0.8965
30 0.1101 0.2203 0.8899
31 0.08353 0.1671 0.9165
32 0.139 0.2779 0.861
33 0.1088 0.2176 0.8912
34 0.08759 0.1752 0.9124
35 0.1028 0.2055 0.8972
36 0.1125 0.225 0.8875
37 0.1183 0.2367 0.8817
38 0.1104 0.2208 0.8896
39 0.1606 0.3212 0.8394
40 0.1483 0.2966 0.8517
41 0.1648 0.3295 0.8352
42 0.1619 0.3239 0.8381
43 0.2313 0.4625 0.7687
44 0.2158 0.4317 0.7842
45 0.1987 0.3974 0.8013
46 0.1806 0.3613 0.8194
47 0.4432 0.8863 0.5568
48 0.4607 0.9214 0.5393
49 0.4743 0.9485 0.5257
50 0.4936 0.9872 0.5064
51 0.5045 0.9909 0.4955
52 0.4552 0.9104 0.5448
53 0.4068 0.8135 0.5932
54 0.3654 0.7309 0.6346
55 0.3629 0.7259 0.6371
56 0.3745 0.749 0.6255
57 0.3677 0.7355 0.6323
58 0.68 0.6399 0.32
59 0.6988 0.6023 0.3012
60 0.6563 0.6874 0.3437
61 0.6153 0.7694 0.3847
62 0.5823 0.8354 0.4177
63 0.6099 0.7802 0.3901
64 0.5982 0.8036 0.4018
65 0.5653 0.8695 0.4347
66 0.5311 0.9378 0.4689
67 0.4852 0.9704 0.5148
68 0.4391 0.8782 0.5609
69 0.4055 0.811 0.5945
70 0.3768 0.7535 0.6232
71 0.444 0.888 0.556
72 0.5091 0.9818 0.4909
73 0.4961 0.9922 0.5039
74 0.4508 0.9016 0.5492
75 0.4104 0.8209 0.5896
76 0.3673 0.7346 0.6327
77 0.3891 0.7781 0.6109
78 0.3461 0.6922 0.6539
79 0.3452 0.6904 0.6548
80 0.3054 0.6108 0.6946
81 0.3394 0.6789 0.6606
82 0.2995 0.5989 0.7005
83 0.2634 0.5269 0.7366
84 0.2295 0.459 0.7705
85 0.2273 0.4547 0.7727
86 0.2246 0.4491 0.7754
87 0.2044 0.4088 0.7956
88 0.1863 0.3726 0.8137
89 0.2033 0.4066 0.7967
90 0.2 0.4001 0.8
91 0.1713 0.3426 0.8287
92 0.1835 0.3669 0.8165
93 0.1821 0.3642 0.8179
94 0.1584 0.3168 0.8416
95 0.1388 0.2777 0.8612
96 0.1155 0.2311 0.8845
97 0.09657 0.1931 0.9034
98 0.07867 0.1573 0.9213
99 0.0633 0.1266 0.9367
100 0.05283 0.1057 0.9472
101 0.1085 0.2171 0.8915
102 0.08973 0.1795 0.9103
103 0.09097 0.1819 0.909
104 0.09004 0.1801 0.91
105 0.07403 0.1481 0.926
106 0.06463 0.1293 0.9354
107 0.05121 0.1024 0.9488
108 0.1011 0.2022 0.8989
109 0.08229 0.1646 0.9177
110 0.08726 0.1745 0.9127
111 0.07894 0.1579 0.9211
112 0.06403 0.1281 0.936
113 0.05105 0.1021 0.949
114 0.0797 0.1594 0.9203
115 0.06329 0.1266 0.9367
116 0.06491 0.1298 0.9351
117 0.07919 0.1584 0.9208
118 0.08449 0.169 0.9155
119 0.07559 0.1512 0.9244
120 0.07837 0.1567 0.9216
121 0.06839 0.1368 0.9316
122 0.05457 0.1091 0.9454
123 0.04625 0.0925 0.9537
124 0.06983 0.1397 0.9302
125 0.5479 0.9041 0.4521
126 0.5408 0.9184 0.4592
127 0.62 0.7599 0.38
128 0.6444 0.7113 0.3556
129 0.6492 0.7016 0.3508
130 0.6404 0.7191 0.3596
131 0.6522 0.6955 0.3478
132 0.5997 0.8005 0.4003
133 0.5403 0.9194 0.4597
134 0.7483 0.5034 0.2517
135 0.728 0.544 0.272
136 0.6713 0.6575 0.3287
137 0.7161 0.5677 0.2839
138 0.6594 0.6813 0.3406
139 0.642 0.716 0.358
140 0.6267 0.7466 0.3733
141 0.561 0.8781 0.439
142 0.5062 0.9876 0.4938
143 0.6161 0.7679 0.3839
144 0.5782 0.8436 0.4218
145 0.6235 0.7529 0.3765
146 0.5434 0.9133 0.4566
147 0.4651 0.9301 0.5349
148 0.3804 0.7609 0.6196
149 0.4893 0.9786 0.5107
150 0.51 0.98 0.49
151 0.45 0.9 0.55
152 0.3959 0.7917 0.6041
153 0.2898 0.5796 0.7102
154 0.3619 0.7239 0.6381
155 0.2844 0.5689 0.7156
156 0.3142 0.6284 0.6858

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
8 &  0.7396 &  0.5207 &  0.2604 \tabularnewline
9 &  0.6478 &  0.7045 &  0.3522 \tabularnewline
10 &  0.5136 &  0.9729 &  0.4864 \tabularnewline
11 &  0.4353 &  0.8707 &  0.5647 \tabularnewline
12 &  0.6041 &  0.7918 &  0.3959 \tabularnewline
13 &  0.5222 &  0.9555 &  0.4778 \tabularnewline
14 &  0.4217 &  0.8434 &  0.5783 \tabularnewline
15 &  0.3358 &  0.6716 &  0.6642 \tabularnewline
16 &  0.2642 &  0.5284 &  0.7358 \tabularnewline
17 &  0.1935 &  0.3869 &  0.8065 \tabularnewline
18 &  0.1849 &  0.3698 &  0.8151 \tabularnewline
19 &  0.1417 &  0.2834 &  0.8583 \tabularnewline
20 &  0.1106 &  0.2213 &  0.8894 \tabularnewline
21 &  0.08408 &  0.1682 &  0.9159 \tabularnewline
22 &  0.07577 &  0.1515 &  0.9242 \tabularnewline
23 &  0.09298 &  0.186 &  0.907 \tabularnewline
24 &  0.0923 &  0.1846 &  0.9077 \tabularnewline
25 &  0.1191 &  0.2382 &  0.8809 \tabularnewline
26 &  0.122 &  0.2439 &  0.878 \tabularnewline
27 &  0.1685 &  0.337 &  0.8315 \tabularnewline
28 &  0.1303 &  0.2605 &  0.8697 \tabularnewline
29 &  0.1035 &  0.2071 &  0.8965 \tabularnewline
30 &  0.1101 &  0.2203 &  0.8899 \tabularnewline
31 &  0.08353 &  0.1671 &  0.9165 \tabularnewline
32 &  0.139 &  0.2779 &  0.861 \tabularnewline
33 &  0.1088 &  0.2176 &  0.8912 \tabularnewline
34 &  0.08759 &  0.1752 &  0.9124 \tabularnewline
35 &  0.1028 &  0.2055 &  0.8972 \tabularnewline
36 &  0.1125 &  0.225 &  0.8875 \tabularnewline
37 &  0.1183 &  0.2367 &  0.8817 \tabularnewline
38 &  0.1104 &  0.2208 &  0.8896 \tabularnewline
39 &  0.1606 &  0.3212 &  0.8394 \tabularnewline
40 &  0.1483 &  0.2966 &  0.8517 \tabularnewline
41 &  0.1648 &  0.3295 &  0.8352 \tabularnewline
42 &  0.1619 &  0.3239 &  0.8381 \tabularnewline
43 &  0.2313 &  0.4625 &  0.7687 \tabularnewline
44 &  0.2158 &  0.4317 &  0.7842 \tabularnewline
45 &  0.1987 &  0.3974 &  0.8013 \tabularnewline
46 &  0.1806 &  0.3613 &  0.8194 \tabularnewline
47 &  0.4432 &  0.8863 &  0.5568 \tabularnewline
48 &  0.4607 &  0.9214 &  0.5393 \tabularnewline
49 &  0.4743 &  0.9485 &  0.5257 \tabularnewline
50 &  0.4936 &  0.9872 &  0.5064 \tabularnewline
51 &  0.5045 &  0.9909 &  0.4955 \tabularnewline
52 &  0.4552 &  0.9104 &  0.5448 \tabularnewline
53 &  0.4068 &  0.8135 &  0.5932 \tabularnewline
54 &  0.3654 &  0.7309 &  0.6346 \tabularnewline
55 &  0.3629 &  0.7259 &  0.6371 \tabularnewline
56 &  0.3745 &  0.749 &  0.6255 \tabularnewline
57 &  0.3677 &  0.7355 &  0.6323 \tabularnewline
58 &  0.68 &  0.6399 &  0.32 \tabularnewline
59 &  0.6988 &  0.6023 &  0.3012 \tabularnewline
60 &  0.6563 &  0.6874 &  0.3437 \tabularnewline
61 &  0.6153 &  0.7694 &  0.3847 \tabularnewline
62 &  0.5823 &  0.8354 &  0.4177 \tabularnewline
63 &  0.6099 &  0.7802 &  0.3901 \tabularnewline
64 &  0.5982 &  0.8036 &  0.4018 \tabularnewline
65 &  0.5653 &  0.8695 &  0.4347 \tabularnewline
66 &  0.5311 &  0.9378 &  0.4689 \tabularnewline
67 &  0.4852 &  0.9704 &  0.5148 \tabularnewline
68 &  0.4391 &  0.8782 &  0.5609 \tabularnewline
69 &  0.4055 &  0.811 &  0.5945 \tabularnewline
70 &  0.3768 &  0.7535 &  0.6232 \tabularnewline
71 &  0.444 &  0.888 &  0.556 \tabularnewline
72 &  0.5091 &  0.9818 &  0.4909 \tabularnewline
73 &  0.4961 &  0.9922 &  0.5039 \tabularnewline
74 &  0.4508 &  0.9016 &  0.5492 \tabularnewline
75 &  0.4104 &  0.8209 &  0.5896 \tabularnewline
76 &  0.3673 &  0.7346 &  0.6327 \tabularnewline
77 &  0.3891 &  0.7781 &  0.6109 \tabularnewline
78 &  0.3461 &  0.6922 &  0.6539 \tabularnewline
79 &  0.3452 &  0.6904 &  0.6548 \tabularnewline
80 &  0.3054 &  0.6108 &  0.6946 \tabularnewline
81 &  0.3394 &  0.6789 &  0.6606 \tabularnewline
82 &  0.2995 &  0.5989 &  0.7005 \tabularnewline
83 &  0.2634 &  0.5269 &  0.7366 \tabularnewline
84 &  0.2295 &  0.459 &  0.7705 \tabularnewline
85 &  0.2273 &  0.4547 &  0.7727 \tabularnewline
86 &  0.2246 &  0.4491 &  0.7754 \tabularnewline
87 &  0.2044 &  0.4088 &  0.7956 \tabularnewline
88 &  0.1863 &  0.3726 &  0.8137 \tabularnewline
89 &  0.2033 &  0.4066 &  0.7967 \tabularnewline
90 &  0.2 &  0.4001 &  0.8 \tabularnewline
91 &  0.1713 &  0.3426 &  0.8287 \tabularnewline
92 &  0.1835 &  0.3669 &  0.8165 \tabularnewline
93 &  0.1821 &  0.3642 &  0.8179 \tabularnewline
94 &  0.1584 &  0.3168 &  0.8416 \tabularnewline
95 &  0.1388 &  0.2777 &  0.8612 \tabularnewline
96 &  0.1155 &  0.2311 &  0.8845 \tabularnewline
97 &  0.09657 &  0.1931 &  0.9034 \tabularnewline
98 &  0.07867 &  0.1573 &  0.9213 \tabularnewline
99 &  0.0633 &  0.1266 &  0.9367 \tabularnewline
100 &  0.05283 &  0.1057 &  0.9472 \tabularnewline
101 &  0.1085 &  0.2171 &  0.8915 \tabularnewline
102 &  0.08973 &  0.1795 &  0.9103 \tabularnewline
103 &  0.09097 &  0.1819 &  0.909 \tabularnewline
104 &  0.09004 &  0.1801 &  0.91 \tabularnewline
105 &  0.07403 &  0.1481 &  0.926 \tabularnewline
106 &  0.06463 &  0.1293 &  0.9354 \tabularnewline
107 &  0.05121 &  0.1024 &  0.9488 \tabularnewline
108 &  0.1011 &  0.2022 &  0.8989 \tabularnewline
109 &  0.08229 &  0.1646 &  0.9177 \tabularnewline
110 &  0.08726 &  0.1745 &  0.9127 \tabularnewline
111 &  0.07894 &  0.1579 &  0.9211 \tabularnewline
112 &  0.06403 &  0.1281 &  0.936 \tabularnewline
113 &  0.05105 &  0.1021 &  0.949 \tabularnewline
114 &  0.0797 &  0.1594 &  0.9203 \tabularnewline
115 &  0.06329 &  0.1266 &  0.9367 \tabularnewline
116 &  0.06491 &  0.1298 &  0.9351 \tabularnewline
117 &  0.07919 &  0.1584 &  0.9208 \tabularnewline
118 &  0.08449 &  0.169 &  0.9155 \tabularnewline
119 &  0.07559 &  0.1512 &  0.9244 \tabularnewline
120 &  0.07837 &  0.1567 &  0.9216 \tabularnewline
121 &  0.06839 &  0.1368 &  0.9316 \tabularnewline
122 &  0.05457 &  0.1091 &  0.9454 \tabularnewline
123 &  0.04625 &  0.0925 &  0.9537 \tabularnewline
124 &  0.06983 &  0.1397 &  0.9302 \tabularnewline
125 &  0.5479 &  0.9041 &  0.4521 \tabularnewline
126 &  0.5408 &  0.9184 &  0.4592 \tabularnewline
127 &  0.62 &  0.7599 &  0.38 \tabularnewline
128 &  0.6444 &  0.7113 &  0.3556 \tabularnewline
129 &  0.6492 &  0.7016 &  0.3508 \tabularnewline
130 &  0.6404 &  0.7191 &  0.3596 \tabularnewline
131 &  0.6522 &  0.6955 &  0.3478 \tabularnewline
132 &  0.5997 &  0.8005 &  0.4003 \tabularnewline
133 &  0.5403 &  0.9194 &  0.4597 \tabularnewline
134 &  0.7483 &  0.5034 &  0.2517 \tabularnewline
135 &  0.728 &  0.544 &  0.272 \tabularnewline
136 &  0.6713 &  0.6575 &  0.3287 \tabularnewline
137 &  0.7161 &  0.5677 &  0.2839 \tabularnewline
138 &  0.6594 &  0.6813 &  0.3406 \tabularnewline
139 &  0.642 &  0.716 &  0.358 \tabularnewline
140 &  0.6267 &  0.7466 &  0.3733 \tabularnewline
141 &  0.561 &  0.8781 &  0.439 \tabularnewline
142 &  0.5062 &  0.9876 &  0.4938 \tabularnewline
143 &  0.6161 &  0.7679 &  0.3839 \tabularnewline
144 &  0.5782 &  0.8436 &  0.4218 \tabularnewline
145 &  0.6235 &  0.7529 &  0.3765 \tabularnewline
146 &  0.5434 &  0.9133 &  0.4566 \tabularnewline
147 &  0.4651 &  0.9301 &  0.5349 \tabularnewline
148 &  0.3804 &  0.7609 &  0.6196 \tabularnewline
149 &  0.4893 &  0.9786 &  0.5107 \tabularnewline
150 &  0.51 &  0.98 &  0.49 \tabularnewline
151 &  0.45 &  0.9 &  0.55 \tabularnewline
152 &  0.3959 &  0.7917 &  0.6041 \tabularnewline
153 &  0.2898 &  0.5796 &  0.7102 \tabularnewline
154 &  0.3619 &  0.7239 &  0.6381 \tabularnewline
155 &  0.2844 &  0.5689 &  0.7156 \tabularnewline
156 &  0.3142 &  0.6284 &  0.6858 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=303031&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]8[/C][C] 0.7396[/C][C] 0.5207[/C][C] 0.2604[/C][/ROW]
[ROW][C]9[/C][C] 0.6478[/C][C] 0.7045[/C][C] 0.3522[/C][/ROW]
[ROW][C]10[/C][C] 0.5136[/C][C] 0.9729[/C][C] 0.4864[/C][/ROW]
[ROW][C]11[/C][C] 0.4353[/C][C] 0.8707[/C][C] 0.5647[/C][/ROW]
[ROW][C]12[/C][C] 0.6041[/C][C] 0.7918[/C][C] 0.3959[/C][/ROW]
[ROW][C]13[/C][C] 0.5222[/C][C] 0.9555[/C][C] 0.4778[/C][/ROW]
[ROW][C]14[/C][C] 0.4217[/C][C] 0.8434[/C][C] 0.5783[/C][/ROW]
[ROW][C]15[/C][C] 0.3358[/C][C] 0.6716[/C][C] 0.6642[/C][/ROW]
[ROW][C]16[/C][C] 0.2642[/C][C] 0.5284[/C][C] 0.7358[/C][/ROW]
[ROW][C]17[/C][C] 0.1935[/C][C] 0.3869[/C][C] 0.8065[/C][/ROW]
[ROW][C]18[/C][C] 0.1849[/C][C] 0.3698[/C][C] 0.8151[/C][/ROW]
[ROW][C]19[/C][C] 0.1417[/C][C] 0.2834[/C][C] 0.8583[/C][/ROW]
[ROW][C]20[/C][C] 0.1106[/C][C] 0.2213[/C][C] 0.8894[/C][/ROW]
[ROW][C]21[/C][C] 0.08408[/C][C] 0.1682[/C][C] 0.9159[/C][/ROW]
[ROW][C]22[/C][C] 0.07577[/C][C] 0.1515[/C][C] 0.9242[/C][/ROW]
[ROW][C]23[/C][C] 0.09298[/C][C] 0.186[/C][C] 0.907[/C][/ROW]
[ROW][C]24[/C][C] 0.0923[/C][C] 0.1846[/C][C] 0.9077[/C][/ROW]
[ROW][C]25[/C][C] 0.1191[/C][C] 0.2382[/C][C] 0.8809[/C][/ROW]
[ROW][C]26[/C][C] 0.122[/C][C] 0.2439[/C][C] 0.878[/C][/ROW]
[ROW][C]27[/C][C] 0.1685[/C][C] 0.337[/C][C] 0.8315[/C][/ROW]
[ROW][C]28[/C][C] 0.1303[/C][C] 0.2605[/C][C] 0.8697[/C][/ROW]
[ROW][C]29[/C][C] 0.1035[/C][C] 0.2071[/C][C] 0.8965[/C][/ROW]
[ROW][C]30[/C][C] 0.1101[/C][C] 0.2203[/C][C] 0.8899[/C][/ROW]
[ROW][C]31[/C][C] 0.08353[/C][C] 0.1671[/C][C] 0.9165[/C][/ROW]
[ROW][C]32[/C][C] 0.139[/C][C] 0.2779[/C][C] 0.861[/C][/ROW]
[ROW][C]33[/C][C] 0.1088[/C][C] 0.2176[/C][C] 0.8912[/C][/ROW]
[ROW][C]34[/C][C] 0.08759[/C][C] 0.1752[/C][C] 0.9124[/C][/ROW]
[ROW][C]35[/C][C] 0.1028[/C][C] 0.2055[/C][C] 0.8972[/C][/ROW]
[ROW][C]36[/C][C] 0.1125[/C][C] 0.225[/C][C] 0.8875[/C][/ROW]
[ROW][C]37[/C][C] 0.1183[/C][C] 0.2367[/C][C] 0.8817[/C][/ROW]
[ROW][C]38[/C][C] 0.1104[/C][C] 0.2208[/C][C] 0.8896[/C][/ROW]
[ROW][C]39[/C][C] 0.1606[/C][C] 0.3212[/C][C] 0.8394[/C][/ROW]
[ROW][C]40[/C][C] 0.1483[/C][C] 0.2966[/C][C] 0.8517[/C][/ROW]
[ROW][C]41[/C][C] 0.1648[/C][C] 0.3295[/C][C] 0.8352[/C][/ROW]
[ROW][C]42[/C][C] 0.1619[/C][C] 0.3239[/C][C] 0.8381[/C][/ROW]
[ROW][C]43[/C][C] 0.2313[/C][C] 0.4625[/C][C] 0.7687[/C][/ROW]
[ROW][C]44[/C][C] 0.2158[/C][C] 0.4317[/C][C] 0.7842[/C][/ROW]
[ROW][C]45[/C][C] 0.1987[/C][C] 0.3974[/C][C] 0.8013[/C][/ROW]
[ROW][C]46[/C][C] 0.1806[/C][C] 0.3613[/C][C] 0.8194[/C][/ROW]
[ROW][C]47[/C][C] 0.4432[/C][C] 0.8863[/C][C] 0.5568[/C][/ROW]
[ROW][C]48[/C][C] 0.4607[/C][C] 0.9214[/C][C] 0.5393[/C][/ROW]
[ROW][C]49[/C][C] 0.4743[/C][C] 0.9485[/C][C] 0.5257[/C][/ROW]
[ROW][C]50[/C][C] 0.4936[/C][C] 0.9872[/C][C] 0.5064[/C][/ROW]
[ROW][C]51[/C][C] 0.5045[/C][C] 0.9909[/C][C] 0.4955[/C][/ROW]
[ROW][C]52[/C][C] 0.4552[/C][C] 0.9104[/C][C] 0.5448[/C][/ROW]
[ROW][C]53[/C][C] 0.4068[/C][C] 0.8135[/C][C] 0.5932[/C][/ROW]
[ROW][C]54[/C][C] 0.3654[/C][C] 0.7309[/C][C] 0.6346[/C][/ROW]
[ROW][C]55[/C][C] 0.3629[/C][C] 0.7259[/C][C] 0.6371[/C][/ROW]
[ROW][C]56[/C][C] 0.3745[/C][C] 0.749[/C][C] 0.6255[/C][/ROW]
[ROW][C]57[/C][C] 0.3677[/C][C] 0.7355[/C][C] 0.6323[/C][/ROW]
[ROW][C]58[/C][C] 0.68[/C][C] 0.6399[/C][C] 0.32[/C][/ROW]
[ROW][C]59[/C][C] 0.6988[/C][C] 0.6023[/C][C] 0.3012[/C][/ROW]
[ROW][C]60[/C][C] 0.6563[/C][C] 0.6874[/C][C] 0.3437[/C][/ROW]
[ROW][C]61[/C][C] 0.6153[/C][C] 0.7694[/C][C] 0.3847[/C][/ROW]
[ROW][C]62[/C][C] 0.5823[/C][C] 0.8354[/C][C] 0.4177[/C][/ROW]
[ROW][C]63[/C][C] 0.6099[/C][C] 0.7802[/C][C] 0.3901[/C][/ROW]
[ROW][C]64[/C][C] 0.5982[/C][C] 0.8036[/C][C] 0.4018[/C][/ROW]
[ROW][C]65[/C][C] 0.5653[/C][C] 0.8695[/C][C] 0.4347[/C][/ROW]
[ROW][C]66[/C][C] 0.5311[/C][C] 0.9378[/C][C] 0.4689[/C][/ROW]
[ROW][C]67[/C][C] 0.4852[/C][C] 0.9704[/C][C] 0.5148[/C][/ROW]
[ROW][C]68[/C][C] 0.4391[/C][C] 0.8782[/C][C] 0.5609[/C][/ROW]
[ROW][C]69[/C][C] 0.4055[/C][C] 0.811[/C][C] 0.5945[/C][/ROW]
[ROW][C]70[/C][C] 0.3768[/C][C] 0.7535[/C][C] 0.6232[/C][/ROW]
[ROW][C]71[/C][C] 0.444[/C][C] 0.888[/C][C] 0.556[/C][/ROW]
[ROW][C]72[/C][C] 0.5091[/C][C] 0.9818[/C][C] 0.4909[/C][/ROW]
[ROW][C]73[/C][C] 0.4961[/C][C] 0.9922[/C][C] 0.5039[/C][/ROW]
[ROW][C]74[/C][C] 0.4508[/C][C] 0.9016[/C][C] 0.5492[/C][/ROW]
[ROW][C]75[/C][C] 0.4104[/C][C] 0.8209[/C][C] 0.5896[/C][/ROW]
[ROW][C]76[/C][C] 0.3673[/C][C] 0.7346[/C][C] 0.6327[/C][/ROW]
[ROW][C]77[/C][C] 0.3891[/C][C] 0.7781[/C][C] 0.6109[/C][/ROW]
[ROW][C]78[/C][C] 0.3461[/C][C] 0.6922[/C][C] 0.6539[/C][/ROW]
[ROW][C]79[/C][C] 0.3452[/C][C] 0.6904[/C][C] 0.6548[/C][/ROW]
[ROW][C]80[/C][C] 0.3054[/C][C] 0.6108[/C][C] 0.6946[/C][/ROW]
[ROW][C]81[/C][C] 0.3394[/C][C] 0.6789[/C][C] 0.6606[/C][/ROW]
[ROW][C]82[/C][C] 0.2995[/C][C] 0.5989[/C][C] 0.7005[/C][/ROW]
[ROW][C]83[/C][C] 0.2634[/C][C] 0.5269[/C][C] 0.7366[/C][/ROW]
[ROW][C]84[/C][C] 0.2295[/C][C] 0.459[/C][C] 0.7705[/C][/ROW]
[ROW][C]85[/C][C] 0.2273[/C][C] 0.4547[/C][C] 0.7727[/C][/ROW]
[ROW][C]86[/C][C] 0.2246[/C][C] 0.4491[/C][C] 0.7754[/C][/ROW]
[ROW][C]87[/C][C] 0.2044[/C][C] 0.4088[/C][C] 0.7956[/C][/ROW]
[ROW][C]88[/C][C] 0.1863[/C][C] 0.3726[/C][C] 0.8137[/C][/ROW]
[ROW][C]89[/C][C] 0.2033[/C][C] 0.4066[/C][C] 0.7967[/C][/ROW]
[ROW][C]90[/C][C] 0.2[/C][C] 0.4001[/C][C] 0.8[/C][/ROW]
[ROW][C]91[/C][C] 0.1713[/C][C] 0.3426[/C][C] 0.8287[/C][/ROW]
[ROW][C]92[/C][C] 0.1835[/C][C] 0.3669[/C][C] 0.8165[/C][/ROW]
[ROW][C]93[/C][C] 0.1821[/C][C] 0.3642[/C][C] 0.8179[/C][/ROW]
[ROW][C]94[/C][C] 0.1584[/C][C] 0.3168[/C][C] 0.8416[/C][/ROW]
[ROW][C]95[/C][C] 0.1388[/C][C] 0.2777[/C][C] 0.8612[/C][/ROW]
[ROW][C]96[/C][C] 0.1155[/C][C] 0.2311[/C][C] 0.8845[/C][/ROW]
[ROW][C]97[/C][C] 0.09657[/C][C] 0.1931[/C][C] 0.9034[/C][/ROW]
[ROW][C]98[/C][C] 0.07867[/C][C] 0.1573[/C][C] 0.9213[/C][/ROW]
[ROW][C]99[/C][C] 0.0633[/C][C] 0.1266[/C][C] 0.9367[/C][/ROW]
[ROW][C]100[/C][C] 0.05283[/C][C] 0.1057[/C][C] 0.9472[/C][/ROW]
[ROW][C]101[/C][C] 0.1085[/C][C] 0.2171[/C][C] 0.8915[/C][/ROW]
[ROW][C]102[/C][C] 0.08973[/C][C] 0.1795[/C][C] 0.9103[/C][/ROW]
[ROW][C]103[/C][C] 0.09097[/C][C] 0.1819[/C][C] 0.909[/C][/ROW]
[ROW][C]104[/C][C] 0.09004[/C][C] 0.1801[/C][C] 0.91[/C][/ROW]
[ROW][C]105[/C][C] 0.07403[/C][C] 0.1481[/C][C] 0.926[/C][/ROW]
[ROW][C]106[/C][C] 0.06463[/C][C] 0.1293[/C][C] 0.9354[/C][/ROW]
[ROW][C]107[/C][C] 0.05121[/C][C] 0.1024[/C][C] 0.9488[/C][/ROW]
[ROW][C]108[/C][C] 0.1011[/C][C] 0.2022[/C][C] 0.8989[/C][/ROW]
[ROW][C]109[/C][C] 0.08229[/C][C] 0.1646[/C][C] 0.9177[/C][/ROW]
[ROW][C]110[/C][C] 0.08726[/C][C] 0.1745[/C][C] 0.9127[/C][/ROW]
[ROW][C]111[/C][C] 0.07894[/C][C] 0.1579[/C][C] 0.9211[/C][/ROW]
[ROW][C]112[/C][C] 0.06403[/C][C] 0.1281[/C][C] 0.936[/C][/ROW]
[ROW][C]113[/C][C] 0.05105[/C][C] 0.1021[/C][C] 0.949[/C][/ROW]
[ROW][C]114[/C][C] 0.0797[/C][C] 0.1594[/C][C] 0.9203[/C][/ROW]
[ROW][C]115[/C][C] 0.06329[/C][C] 0.1266[/C][C] 0.9367[/C][/ROW]
[ROW][C]116[/C][C] 0.06491[/C][C] 0.1298[/C][C] 0.9351[/C][/ROW]
[ROW][C]117[/C][C] 0.07919[/C][C] 0.1584[/C][C] 0.9208[/C][/ROW]
[ROW][C]118[/C][C] 0.08449[/C][C] 0.169[/C][C] 0.9155[/C][/ROW]
[ROW][C]119[/C][C] 0.07559[/C][C] 0.1512[/C][C] 0.9244[/C][/ROW]
[ROW][C]120[/C][C] 0.07837[/C][C] 0.1567[/C][C] 0.9216[/C][/ROW]
[ROW][C]121[/C][C] 0.06839[/C][C] 0.1368[/C][C] 0.9316[/C][/ROW]
[ROW][C]122[/C][C] 0.05457[/C][C] 0.1091[/C][C] 0.9454[/C][/ROW]
[ROW][C]123[/C][C] 0.04625[/C][C] 0.0925[/C][C] 0.9537[/C][/ROW]
[ROW][C]124[/C][C] 0.06983[/C][C] 0.1397[/C][C] 0.9302[/C][/ROW]
[ROW][C]125[/C][C] 0.5479[/C][C] 0.9041[/C][C] 0.4521[/C][/ROW]
[ROW][C]126[/C][C] 0.5408[/C][C] 0.9184[/C][C] 0.4592[/C][/ROW]
[ROW][C]127[/C][C] 0.62[/C][C] 0.7599[/C][C] 0.38[/C][/ROW]
[ROW][C]128[/C][C] 0.6444[/C][C] 0.7113[/C][C] 0.3556[/C][/ROW]
[ROW][C]129[/C][C] 0.6492[/C][C] 0.7016[/C][C] 0.3508[/C][/ROW]
[ROW][C]130[/C][C] 0.6404[/C][C] 0.7191[/C][C] 0.3596[/C][/ROW]
[ROW][C]131[/C][C] 0.6522[/C][C] 0.6955[/C][C] 0.3478[/C][/ROW]
[ROW][C]132[/C][C] 0.5997[/C][C] 0.8005[/C][C] 0.4003[/C][/ROW]
[ROW][C]133[/C][C] 0.5403[/C][C] 0.9194[/C][C] 0.4597[/C][/ROW]
[ROW][C]134[/C][C] 0.7483[/C][C] 0.5034[/C][C] 0.2517[/C][/ROW]
[ROW][C]135[/C][C] 0.728[/C][C] 0.544[/C][C] 0.272[/C][/ROW]
[ROW][C]136[/C][C] 0.6713[/C][C] 0.6575[/C][C] 0.3287[/C][/ROW]
[ROW][C]137[/C][C] 0.7161[/C][C] 0.5677[/C][C] 0.2839[/C][/ROW]
[ROW][C]138[/C][C] 0.6594[/C][C] 0.6813[/C][C] 0.3406[/C][/ROW]
[ROW][C]139[/C][C] 0.642[/C][C] 0.716[/C][C] 0.358[/C][/ROW]
[ROW][C]140[/C][C] 0.6267[/C][C] 0.7466[/C][C] 0.3733[/C][/ROW]
[ROW][C]141[/C][C] 0.561[/C][C] 0.8781[/C][C] 0.439[/C][/ROW]
[ROW][C]142[/C][C] 0.5062[/C][C] 0.9876[/C][C] 0.4938[/C][/ROW]
[ROW][C]143[/C][C] 0.6161[/C][C] 0.7679[/C][C] 0.3839[/C][/ROW]
[ROW][C]144[/C][C] 0.5782[/C][C] 0.8436[/C][C] 0.4218[/C][/ROW]
[ROW][C]145[/C][C] 0.6235[/C][C] 0.7529[/C][C] 0.3765[/C][/ROW]
[ROW][C]146[/C][C] 0.5434[/C][C] 0.9133[/C][C] 0.4566[/C][/ROW]
[ROW][C]147[/C][C] 0.4651[/C][C] 0.9301[/C][C] 0.5349[/C][/ROW]
[ROW][C]148[/C][C] 0.3804[/C][C] 0.7609[/C][C] 0.6196[/C][/ROW]
[ROW][C]149[/C][C] 0.4893[/C][C] 0.9786[/C][C] 0.5107[/C][/ROW]
[ROW][C]150[/C][C] 0.51[/C][C] 0.98[/C][C] 0.49[/C][/ROW]
[ROW][C]151[/C][C] 0.45[/C][C] 0.9[/C][C] 0.55[/C][/ROW]
[ROW][C]152[/C][C] 0.3959[/C][C] 0.7917[/C][C] 0.6041[/C][/ROW]
[ROW][C]153[/C][C] 0.2898[/C][C] 0.5796[/C][C] 0.7102[/C][/ROW]
[ROW][C]154[/C][C] 0.3619[/C][C] 0.7239[/C][C] 0.6381[/C][/ROW]
[ROW][C]155[/C][C] 0.2844[/C][C] 0.5689[/C][C] 0.7156[/C][/ROW]
[ROW][C]156[/C][C] 0.3142[/C][C] 0.6284[/C][C] 0.6858[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=303031&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=303031&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
8 0.7396 0.5207 0.2604
9 0.6478 0.7045 0.3522
10 0.5136 0.9729 0.4864
11 0.4353 0.8707 0.5647
12 0.6041 0.7918 0.3959
13 0.5222 0.9555 0.4778
14 0.4217 0.8434 0.5783
15 0.3358 0.6716 0.6642
16 0.2642 0.5284 0.7358
17 0.1935 0.3869 0.8065
18 0.1849 0.3698 0.8151
19 0.1417 0.2834 0.8583
20 0.1106 0.2213 0.8894
21 0.08408 0.1682 0.9159
22 0.07577 0.1515 0.9242
23 0.09298 0.186 0.907
24 0.0923 0.1846 0.9077
25 0.1191 0.2382 0.8809
26 0.122 0.2439 0.878
27 0.1685 0.337 0.8315
28 0.1303 0.2605 0.8697
29 0.1035 0.2071 0.8965
30 0.1101 0.2203 0.8899
31 0.08353 0.1671 0.9165
32 0.139 0.2779 0.861
33 0.1088 0.2176 0.8912
34 0.08759 0.1752 0.9124
35 0.1028 0.2055 0.8972
36 0.1125 0.225 0.8875
37 0.1183 0.2367 0.8817
38 0.1104 0.2208 0.8896
39 0.1606 0.3212 0.8394
40 0.1483 0.2966 0.8517
41 0.1648 0.3295 0.8352
42 0.1619 0.3239 0.8381
43 0.2313 0.4625 0.7687
44 0.2158 0.4317 0.7842
45 0.1987 0.3974 0.8013
46 0.1806 0.3613 0.8194
47 0.4432 0.8863 0.5568
48 0.4607 0.9214 0.5393
49 0.4743 0.9485 0.5257
50 0.4936 0.9872 0.5064
51 0.5045 0.9909 0.4955
52 0.4552 0.9104 0.5448
53 0.4068 0.8135 0.5932
54 0.3654 0.7309 0.6346
55 0.3629 0.7259 0.6371
56 0.3745 0.749 0.6255
57 0.3677 0.7355 0.6323
58 0.68 0.6399 0.32
59 0.6988 0.6023 0.3012
60 0.6563 0.6874 0.3437
61 0.6153 0.7694 0.3847
62 0.5823 0.8354 0.4177
63 0.6099 0.7802 0.3901
64 0.5982 0.8036 0.4018
65 0.5653 0.8695 0.4347
66 0.5311 0.9378 0.4689
67 0.4852 0.9704 0.5148
68 0.4391 0.8782 0.5609
69 0.4055 0.811 0.5945
70 0.3768 0.7535 0.6232
71 0.444 0.888 0.556
72 0.5091 0.9818 0.4909
73 0.4961 0.9922 0.5039
74 0.4508 0.9016 0.5492
75 0.4104 0.8209 0.5896
76 0.3673 0.7346 0.6327
77 0.3891 0.7781 0.6109
78 0.3461 0.6922 0.6539
79 0.3452 0.6904 0.6548
80 0.3054 0.6108 0.6946
81 0.3394 0.6789 0.6606
82 0.2995 0.5989 0.7005
83 0.2634 0.5269 0.7366
84 0.2295 0.459 0.7705
85 0.2273 0.4547 0.7727
86 0.2246 0.4491 0.7754
87 0.2044 0.4088 0.7956
88 0.1863 0.3726 0.8137
89 0.2033 0.4066 0.7967
90 0.2 0.4001 0.8
91 0.1713 0.3426 0.8287
92 0.1835 0.3669 0.8165
93 0.1821 0.3642 0.8179
94 0.1584 0.3168 0.8416
95 0.1388 0.2777 0.8612
96 0.1155 0.2311 0.8845
97 0.09657 0.1931 0.9034
98 0.07867 0.1573 0.9213
99 0.0633 0.1266 0.9367
100 0.05283 0.1057 0.9472
101 0.1085 0.2171 0.8915
102 0.08973 0.1795 0.9103
103 0.09097 0.1819 0.909
104 0.09004 0.1801 0.91
105 0.07403 0.1481 0.926
106 0.06463 0.1293 0.9354
107 0.05121 0.1024 0.9488
108 0.1011 0.2022 0.8989
109 0.08229 0.1646 0.9177
110 0.08726 0.1745 0.9127
111 0.07894 0.1579 0.9211
112 0.06403 0.1281 0.936
113 0.05105 0.1021 0.949
114 0.0797 0.1594 0.9203
115 0.06329 0.1266 0.9367
116 0.06491 0.1298 0.9351
117 0.07919 0.1584 0.9208
118 0.08449 0.169 0.9155
119 0.07559 0.1512 0.9244
120 0.07837 0.1567 0.9216
121 0.06839 0.1368 0.9316
122 0.05457 0.1091 0.9454
123 0.04625 0.0925 0.9537
124 0.06983 0.1397 0.9302
125 0.5479 0.9041 0.4521
126 0.5408 0.9184 0.4592
127 0.62 0.7599 0.38
128 0.6444 0.7113 0.3556
129 0.6492 0.7016 0.3508
130 0.6404 0.7191 0.3596
131 0.6522 0.6955 0.3478
132 0.5997 0.8005 0.4003
133 0.5403 0.9194 0.4597
134 0.7483 0.5034 0.2517
135 0.728 0.544 0.272
136 0.6713 0.6575 0.3287
137 0.7161 0.5677 0.2839
138 0.6594 0.6813 0.3406
139 0.642 0.716 0.358
140 0.6267 0.7466 0.3733
141 0.561 0.8781 0.439
142 0.5062 0.9876 0.4938
143 0.6161 0.7679 0.3839
144 0.5782 0.8436 0.4218
145 0.6235 0.7529 0.3765
146 0.5434 0.9133 0.4566
147 0.4651 0.9301 0.5349
148 0.3804 0.7609 0.6196
149 0.4893 0.9786 0.5107
150 0.51 0.98 0.49
151 0.45 0.9 0.55
152 0.3959 0.7917 0.6041
153 0.2898 0.5796 0.7102
154 0.3619 0.7239 0.6381
155 0.2844 0.5689 0.7156
156 0.3142 0.6284 0.6858







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level0 0OK
5% type I error level00OK
10% type I error level10.00671141OK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 0 &  0 & OK \tabularnewline
5% type I error level & 0 & 0 & OK \tabularnewline
10% type I error level & 1 & 0.00671141 & OK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=303031&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]0[/C][C] 0[/C][C]OK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]0[/C][C]0[/C][C]OK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]1[/C][C]0.00671141[/C][C]OK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=303031&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=303031&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level0 0OK
5% type I error level00OK
10% type I error level10.00671141OK







Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 2.1976, df1 = 2, df2 = 157, p-value = 0.1145
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.3192, df1 = 8, df2 = 151, p-value = 0.2379
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 2.7209, df1 = 2, df2 = 157, p-value = 0.06892

\begin{tabular}{lllllllll}
\hline
Ramsey RESET F-Test for powers (2 and 3) of fitted values \tabularnewline
> reset_test_fitted
	RESET test
data:  mylm
RESET = 2.1976, df1 = 2, df2 = 157, p-value = 0.1145
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of regressors \tabularnewline
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.3192, df1 = 8, df2 = 151, p-value = 0.2379
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of principal components \tabularnewline
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 2.7209, df1 = 2, df2 = 157, p-value = 0.06892
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=303031&T=7

[TABLE]
[ROW][C]Ramsey RESET F-Test for powers (2 and 3) of fitted values[/C][/ROW]
[ROW][C]
> reset_test_fitted
	RESET test
data:  mylm
RESET = 2.1976, df1 = 2, df2 = 157, p-value = 0.1145
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of regressors[/C][/ROW] [ROW][C]
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.3192, df1 = 8, df2 = 151, p-value = 0.2379
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of principal components[/C][/ROW] [ROW][C]
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 2.7209, df1 = 2, df2 = 157, p-value = 0.06892
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=303031&T=7

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=303031&T=7

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 2.1976, df1 = 2, df2 = 157, p-value = 0.1145
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.3192, df1 = 8, df2 = 151, p-value = 0.2379
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 2.7209, df1 = 2, df2 = 157, p-value = 0.06892







Variance Inflation Factors (Multicollinearity)
> vif
       b        c        d        e 
1.270755 1.283208 1.362280 1.159302 

\begin{tabular}{lllllllll}
\hline
Variance Inflation Factors (Multicollinearity) \tabularnewline
> vif
       b        c        d        e 
1.270755 1.283208 1.362280 1.159302 
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=303031&T=8

[TABLE]
[ROW][C]Variance Inflation Factors (Multicollinearity)[/C][/ROW]
[ROW][C]
> vif
       b        c        d        e 
1.270755 1.283208 1.362280 1.159302 
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=303031&T=8

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=303031&T=8

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variance Inflation Factors (Multicollinearity)
> vif
       b        c        d        e 
1.270755 1.283208 1.362280 1.159302 



Parameters (Session):
Parameters (R input):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
library(car)
library(MASS)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
mywarning <- ''
par1 <- as.numeric(par1)
if(is.na(par1)) {
par1 <- 1
mywarning = 'Warning: you did not specify the column number of the endogenous series! The first column was selected by default.'
}
if (par4=='') par4 <- 0
par4 <- as.numeric(par4)
if (par5=='') par5 <- 0
par5 <- as.numeric(par5)
x <- na.omit(t(y))
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'Seasonal Differences (s=12)'){
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'First and Seasonal Differences (s=12)'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if(par4 > 0) {
x2 <- array(0, dim=c(n-par4,par4), dimnames=list(1:(n-par4), paste(colnames(x)[par1],'(t-',1:par4,')',sep='')))
for (i in 1:(n-par4)) {
for (j in 1:par4) {
x2[i,j] <- x[i+par4-j,par1]
}
}
x <- cbind(x[(par4+1):n,], x2)
n <- n - par4
}
if(par5 > 0) {
x2 <- array(0, dim=c(n-par5*12,par5), dimnames=list(1:(n-par5*12), paste(colnames(x)[par1],'(t-',1:par5,'s)',sep='')))
for (i in 1:(n-par5*12)) {
for (j in 1:par5) {
x2[i,j] <- x[i+par5*12-j*12,par1]
}
}
x <- cbind(x[(par5*12+1):n,], x2)
n <- n - par5*12
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
(k <- length(x[n,]))
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
print(x)
(k <- length(x[n,]))
head(x)
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
sresid <- studres(mylm)
hist(sresid, freq=FALSE, main='Distribution of Studentized Residuals')
xfit<-seq(min(sresid),max(sresid),length=40)
yfit<-dnorm(xfit)
lines(xfit, yfit)
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqPlot(mylm, main='QQ Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
print(z)
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, mywarning)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Multiple Linear Regression - Ordinary Least Squares', 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,formatC(signif(mysum$coefficients[i,1],5),format='g',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,2],5),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,3],4),format='e',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4],4),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4]/2,4),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a,formatC(signif(sqrt(mysum$r.squared),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$adj.r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a,formatC(signif(mysum$fstatistic[1],6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a,formatC(signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a,formatC(signif(mysum$sigma,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a,formatC(signif(sum(myerror*myerror),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
myr <- as.numeric(mysum$resid)
myr
if(n < 200) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,formatC(signif(x[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(x[i]-mysum$resid[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$resid[i],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,1],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,2],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,3],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,formatC(signif(numsignificant1/numgqtests,6),format='g',flag=' '))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
}
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of fitted values',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_fitted <- resettest(mylm,power=2:3,type='fitted')
a<-table.element(a,paste('
',RC.texteval('reset_test_fitted'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of regressors',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_regressors <- resettest(mylm,power=2:3,type='regressor')
a<-table.element(a,paste('
',RC.texteval('reset_test_regressors'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of principal components',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_principal_components <- resettest(mylm,power=2:3,type='princomp')
a<-table.element(a,paste('
',RC.texteval('reset_test_principal_components'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable8.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variance Inflation Factors (Multicollinearity)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
vif <- vif(mylm)
a<-table.element(a,paste('
',RC.texteval('vif'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable9.tab')