Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationFri, 23 Dec 2016 15:55:42 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/23/t1482505043y4yk48sugw1ednf.htm/, Retrieved Fri, 01 Nov 2024 03:38:31 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=302972, Retrieved Fri, 01 Nov 2024 03:38:31 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact154
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [] [2016-12-23 14:55:42] [361c8dad91b3f1ef2e651cd04783c23b] [Current]
Feedback Forum

Post a new message
Dataseries X:
10	4	2	3	5	4
13	5	3	4	5	4
14	4	4	4	5	4
12	3	4	3	4	4
12	4	4	4	5	4
13	3	4	4	5	5
13	3	4	3	3	4
13	3	4	4	4	4
13	4	5	4	5	5
14	4	5	4	5	5
14	4	4	4	5	4
12	4	4	3	5	4
12	4	4	3	4	5
11	3	3	4	4	5
12	4	4	4	2	5
14	3	4	4	4	5
12	3	4	4	4	5
11	5	5	3	4	4
13	4	4	4	5	4
13	3	4	3	4	5
12	4	4	4	5	5
13	4	4	4	4	5
12	4	4	4	4	4
13	4	4	4	4	5
11	3	4	4	4	4
12	3	4	3	5	5
12	4	4	4	4	4
13	2	4	4	5	5
13	5	4	4	4	4
10	4	3	4	4	4
12	4	5	4	5	5
13	5	4	4	4	5
13	4	3	4	5	5
10	2	3	4	5	4
14	4	5	4	4	4
12	3	4	4	4	4
10	4	3	3	4	5
10	4	3	4	4	4
14	4	4	4	4	4
12	5	4	4	4	4
14	4	5	4	5	5
10	3	3	4	4	4
13	5	5	3	5	5
12	5	4	3	4	4
12	4	4	3	4	5
13	4	4	4	4	4
12	3	5	3	3	4
10	4	4	4	5	4
9	2	3	2	4	4
14	4	5	4	4	4
15	5	5	4	5	4
14	5	5	4	4	4
8	4	3	4	5	5
11	4	3	3	4	5
10	4	4	4	4	4
12	3	4	3	3	4
14	3	4	4	4	3
12	4	4	3	5	4
12	4	4	4	5	4
14	5	5	4	5	5
13	2	4	4	5	5
13	4	4	4	5	5
13	3	4	4	2	4
12	4	4	4	5	5
10	4	2	4	4	4
14	4	4	3	5	3
11	4	4	3	5	4
10	5	4	3	3	5
13	3	4	3	5	5
12	3	4	3	4	5
12	4	5	5	5	4
11	4	4	4	4	4
10	4	4	4	4	4
14	4	4	5	5	4
12	3	4	4	4	4
13	4	4	4	5	4
11	3	4	3	5	5
10	3	3	4	4	5
14	4	3	4	4	4
13	4	4	4	4	5
7	3	3	4	4	4
13	4	4	4	5	4
13	4	4	4	5	5
13	4	4	4	5	5
15	5	4	4	4	4
13	5	4	5	4	5
14	4	4	4	5	5
12	3	4	4	4	5
13	3	4	4	4	4
11	4	2	3	4	4
12	4	4	4	4	3
14	4	4	4	4	5
13	4	4	4	5	4
14	4	5	4	5	3
12	3	4	3	5	5
12	4	4	4	4	5
13	5	4	4	4	5
14	5	4	5	4	5
13	4	5	4	5	5
12	3	4	4	4	5
13	5	3	4	5	5
12	4	4	4	4	5
10	5	4	4	4	5
12	3	4	3	4	4
13	5	4	5	5	5
12	4	4	3	5	5
13	4	4	3	4	3
12	4	4	4	4	4
12	4	4	4	4	4
12	3	4	4	5	3
11	4	4	4	4	4
12	4	4	3	4	5
9	3	3	3	5	5
14	4	4	3	4	4
12	3	4	4	4	4
13	4	4	4	3	4
13	5	4	1	5	5
13	5	4	4	5	5
11	4	4	4	4	3
12	4	4	3	4	4
11	3	4	3	4	5
12	4	4	4	4	4
12	4	4	4	5	4
13	4	5	4	4	4
12	3	4	4	4	4
13	4	4	3	4	4
13	4	4	4	4	5
12	3	4	3	4	4
12	4	4	3	4	3
8	3	2	2	4	4
12	4	4	3	5	4
13	5	4	3	5	4
10	2	4	3	3	5
8	3	3	4	4	4
12	4	4	3	4	4
13	5	5	4	5	4
12	4	5	4	4	4
15	5	5	5	5	4
14	4	5	4	5	5
10	4	4	3	4	5
11	3	4	4	5	4
12	4	4	4	4	4
10	4	4	4	4	4
14	4	4	4	5	5
10	4	4	4	5	5
15	5	4	3	5	4
11	4	3	4	4	4
12	4	4	4	4	4
9	3	3	3	4	4
12	4	5	4	4	3
13	4	4	3	4	4
12	4	4	4	4	5
9	3	4	3	5	5
12	4	4	4	4	5
14	5	4	4	5	4
11	4	4	4	3	4
12	2	3	4	4	4
14	4	4	4	4	5
12	4	3	3	5	5
15	4	4	4	4	3
11	4	5	5	4	4
12	5	4	4	4	4
12	5	4	3	4	4
10	3	3	4	5	5
12	4	4	4	4	5
11	4	4	4	5	4
11	2	3	5	5	4




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time8 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302972&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]8 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=302972&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302972&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R ServerBig Analytics Cloud Computing Center







Multiple Linear Regression - Estimated Regression Equation
TVDC[t] = + 4.40619 + 0.407956SK1[t] + 1.09952SK2[t] + 0.267735SK4[t] + 0.251121SK5[t] -0.0639611SK6[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
TVDC[t] =  +  4.40619 +  0.407956SK1[t] +  1.09952SK2[t] +  0.267735SK4[t] +  0.251121SK5[t] -0.0639611SK6[t]  + e[t] \tabularnewline
 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302972&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]TVDC[t] =  +  4.40619 +  0.407956SK1[t] +  1.09952SK2[t] +  0.267735SK4[t] +  0.251121SK5[t] -0.0639611SK6[t]  + e[t][/C][/ROW]
[ROW][C][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302972&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302972&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
TVDC[t] = + 4.40619 + 0.407956SK1[t] + 1.09952SK2[t] + 0.267735SK4[t] + 0.251121SK5[t] -0.0639611SK6[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+4.406 1.219+3.6160e+00 0.0004 0.0002
SK1+0.408 0.1367+2.9850e+00 0.003283 0.001641
SK2+1.099 0.1676+6.5590e+00 7.023e-10 3.512e-10
SK4+0.2677 0.1647+1.6250e+00 0.1061 0.05303
SK5+0.2511 0.1592+1.5770e+00 0.1166 0.05832
SK6-0.06396 0.1639-3.9020e-01 0.6969 0.3485

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & +4.406 &  1.219 & +3.6160e+00 &  0.0004 &  0.0002 \tabularnewline
SK1 & +0.408 &  0.1367 & +2.9850e+00 &  0.003283 &  0.001641 \tabularnewline
SK2 & +1.099 &  0.1676 & +6.5590e+00 &  7.023e-10 &  3.512e-10 \tabularnewline
SK4 & +0.2677 &  0.1647 & +1.6250e+00 &  0.1061 &  0.05303 \tabularnewline
SK5 & +0.2511 &  0.1592 & +1.5770e+00 &  0.1166 &  0.05832 \tabularnewline
SK6 & -0.06396 &  0.1639 & -3.9020e-01 &  0.6969 &  0.3485 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302972&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]+4.406[/C][C] 1.219[/C][C]+3.6160e+00[/C][C] 0.0004[/C][C] 0.0002[/C][/ROW]
[ROW][C]SK1[/C][C]+0.408[/C][C] 0.1367[/C][C]+2.9850e+00[/C][C] 0.003283[/C][C] 0.001641[/C][/ROW]
[ROW][C]SK2[/C][C]+1.099[/C][C] 0.1676[/C][C]+6.5590e+00[/C][C] 7.023e-10[/C][C] 3.512e-10[/C][/ROW]
[ROW][C]SK4[/C][C]+0.2677[/C][C] 0.1647[/C][C]+1.6250e+00[/C][C] 0.1061[/C][C] 0.05303[/C][/ROW]
[ROW][C]SK5[/C][C]+0.2511[/C][C] 0.1592[/C][C]+1.5770e+00[/C][C] 0.1166[/C][C] 0.05832[/C][/ROW]
[ROW][C]SK6[/C][C]-0.06396[/C][C] 0.1639[/C][C]-3.9020e-01[/C][C] 0.6969[/C][C] 0.3485[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302972&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302972&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+4.406 1.219+3.6160e+00 0.0004 0.0002
SK1+0.408 0.1367+2.9850e+00 0.003283 0.001641
SK2+1.099 0.1676+6.5590e+00 7.023e-10 3.512e-10
SK4+0.2677 0.1647+1.6250e+00 0.1061 0.05303
SK5+0.2511 0.1592+1.5770e+00 0.1166 0.05832
SK6-0.06396 0.1639-3.9020e-01 0.6969 0.3485







Multiple Linear Regression - Regression Statistics
Multiple R 0.5862
R-squared 0.3437
Adjusted R-squared 0.3233
F-TEST (value) 16.86
F-TEST (DF numerator)5
F-TEST (DF denominator)161
p-value 2.205e-13
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 1.234
Sum Squared Residuals 245.2

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R &  0.5862 \tabularnewline
R-squared &  0.3437 \tabularnewline
Adjusted R-squared &  0.3233 \tabularnewline
F-TEST (value) &  16.86 \tabularnewline
F-TEST (DF numerator) & 5 \tabularnewline
F-TEST (DF denominator) & 161 \tabularnewline
p-value &  2.205e-13 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation &  1.234 \tabularnewline
Sum Squared Residuals &  245.2 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302972&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C] 0.5862[/C][/ROW]
[ROW][C]R-squared[/C][C] 0.3437[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C] 0.3233[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C] 16.86[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]5[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]161[/C][/ROW]
[ROW][C]p-value[/C][C] 2.205e-13[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C] 1.234[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C] 245.2[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302972&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302972&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R 0.5862
R-squared 0.3437
Adjusted R-squared 0.3233
F-TEST (value) 16.86
F-TEST (DF numerator)5
F-TEST (DF denominator)161
p-value 2.205e-13
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 1.234
Sum Squared Residuals 245.2







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 10 10.04-0.04003
2 13 11.82 1.185
3 14 12.51 1.493
4 12 11.58 0.42
5 12 12.51-0.5068
6 13 12.03 0.9651
7 13 11.33 1.671
8 13 11.85 1.152
9 13 13.54-0.5424
10 14 13.54 0.4576
11 14 12.51 1.493
12 12 12.24-0.2391
13 12 11.92 0.07601
14 11 10.68 0.3158
15 12 11.69 0.3105
16 14 11.78 2.216
17 12 11.78 0.2162
18 11 13.5-2.495
19 13 12.51 0.4932
20 13 11.52 1.484
21 12 12.44-0.4428
22 13 12.19 0.8083
23 12 12.26-0.2557
24 13 12.19 0.8083
25 11 11.85-0.8477
26 12 11.77 0.2328
27 12 12.26-0.2557
28 13 11.63 1.373
29 13 12.66 0.3364
30 10 11.16-1.156
31 12 13.54-1.542
32 13 12.6 0.4003
33 13 11.34 1.657
34 10 10.59-0.5914
35 14 13.36 0.6448
36 12 11.85 0.1523
37 10 10.82-0.8245
38 10 11.16-1.156
39 14 12.26 1.744
40 12 12.66-0.6636
41 14 13.54 0.4576
42 10 10.75-0.7482
43 13 13.68-0.6826
44 12 12.4-0.3959
45 12 11.92 0.07601
46 13 12.26 0.7443
47 12 12.43-0.4284
48 10 12.51-2.507
49 9 9.805-0.8048
50 14 13.36 0.6448
51 15 14.01 0.9857
52 14 13.76 0.2368
53 8 11.34-3.343
54 11 10.82 0.1755
55 10 12.26-2.256
56 12 11.33 0.6711
57 14 11.91 2.088
58 12 12.24-0.2391
59 12 12.51-0.5068
60 14 13.95 0.04967
61 13 11.63 1.373
62 13 12.44 0.5572
63 13 11.35 1.655
64 12 12.44-0.4428
65 10 10.06-0.05664
66 14 12.3 1.697
67 11 12.24-1.239
68 10 12.08-2.081
69 13 11.77 1.233
70 12 11.52 0.484
71 12 13.87-1.874
72 11 12.26-1.256
73 10 12.26-2.256
74 14 12.77 1.225
75 12 11.85 0.1523
76 13 12.51 0.4932
77 11 11.77-0.7672
78 10 10.68-0.6842
79 14 11.16 2.844
80 13 12.19 0.8083
81 7 10.75-3.748
82 13 12.51 0.4932
83 13 12.44 0.5572
84 13 12.44 0.5572
85 15 12.66 2.336
86 13 12.87 0.1326
87 14 12.44 1.557
88 12 11.78 0.2162
89 13 11.85 1.152
90 11 9.789 1.211
91 12 12.32-0.3196
92 14 12.19 1.808
93 13 12.51 0.4932
94 14 13.67 0.3297
95 12 11.77 0.2328
96 12 12.19-0.1917
97 13 12.6 0.4003
98 14 12.87 1.133
99 13 13.54-0.5424
100 12 11.78 0.2162
101 13 11.75 1.249
102 12 12.19-0.1917
103 10 12.6-2.6
104 12 11.58 0.42
105 13 13.12-0.1185
106 12 12.18-0.1751
107 13 12.05 0.9481
108 12 12.26-0.2557
109 12 12.26-0.2557
110 12 12.16-0.1628
111 11 12.26-1.256
112 12 11.92 0.07601
113 9 10.67-1.668
114 14 11.99 2.012
115 12 11.85 0.1523
116 13 12 0.9954
117 13 12.05 0.9524
118 13 12.85 0.1492
119 11 12.32-1.32
120 12 11.99 0.01205
121 11 11.52-0.516
122 12 12.26-0.2557
123 12 12.51-0.5068
124 13 13.36-0.3552
125 12 11.85 0.1523
126 13 11.99 1.012
127 13 12.19 0.8083
128 12 11.58 0.42
129 12 12.05-0.05191
130 8 9.113-1.113
131 12 12.24-0.2391
132 13 12.65 0.353
133 10 10.86-0.857
134 8 10.75-2.748
135 12 11.99 0.01205
136 13 14.01-1.014
137 12 13.36-1.355
138 15 14.28 0.718
139 14 13.54 0.4576
140 10 11.92-1.924
141 11 12.1-1.099
142 12 12.26-0.2557
143 10 12.26-2.256
144 14 12.44 1.557
145 10 12.44-2.443
146 15 12.65 2.353
147 11 11.16-0.1562
148 12 12.26-0.2557
149 9 10.48-1.48
150 12 13.42-1.419
151 13 11.99 1.012
152 12 12.19-0.1917
153 9 11.77-2.767
154 12 12.19-0.1917
155 14 12.91 1.085
156 11 12-1.005
157 12 10.34 1.66
158 14 12.19 1.808
159 12 11.08 0.9244
160 15 12.32 2.68
161 11 13.62-2.623
162 12 12.66-0.6636
163 12 12.4-0.3959
164 10 10.94-0.9354
165 12 12.19-0.1917
166 11 12.51-1.507
167 11 10.86 0.1409

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 &  10 &  10.04 & -0.04003 \tabularnewline
2 &  13 &  11.82 &  1.185 \tabularnewline
3 &  14 &  12.51 &  1.493 \tabularnewline
4 &  12 &  11.58 &  0.42 \tabularnewline
5 &  12 &  12.51 & -0.5068 \tabularnewline
6 &  13 &  12.03 &  0.9651 \tabularnewline
7 &  13 &  11.33 &  1.671 \tabularnewline
8 &  13 &  11.85 &  1.152 \tabularnewline
9 &  13 &  13.54 & -0.5424 \tabularnewline
10 &  14 &  13.54 &  0.4576 \tabularnewline
11 &  14 &  12.51 &  1.493 \tabularnewline
12 &  12 &  12.24 & -0.2391 \tabularnewline
13 &  12 &  11.92 &  0.07601 \tabularnewline
14 &  11 &  10.68 &  0.3158 \tabularnewline
15 &  12 &  11.69 &  0.3105 \tabularnewline
16 &  14 &  11.78 &  2.216 \tabularnewline
17 &  12 &  11.78 &  0.2162 \tabularnewline
18 &  11 &  13.5 & -2.495 \tabularnewline
19 &  13 &  12.51 &  0.4932 \tabularnewline
20 &  13 &  11.52 &  1.484 \tabularnewline
21 &  12 &  12.44 & -0.4428 \tabularnewline
22 &  13 &  12.19 &  0.8083 \tabularnewline
23 &  12 &  12.26 & -0.2557 \tabularnewline
24 &  13 &  12.19 &  0.8083 \tabularnewline
25 &  11 &  11.85 & -0.8477 \tabularnewline
26 &  12 &  11.77 &  0.2328 \tabularnewline
27 &  12 &  12.26 & -0.2557 \tabularnewline
28 &  13 &  11.63 &  1.373 \tabularnewline
29 &  13 &  12.66 &  0.3364 \tabularnewline
30 &  10 &  11.16 & -1.156 \tabularnewline
31 &  12 &  13.54 & -1.542 \tabularnewline
32 &  13 &  12.6 &  0.4003 \tabularnewline
33 &  13 &  11.34 &  1.657 \tabularnewline
34 &  10 &  10.59 & -0.5914 \tabularnewline
35 &  14 &  13.36 &  0.6448 \tabularnewline
36 &  12 &  11.85 &  0.1523 \tabularnewline
37 &  10 &  10.82 & -0.8245 \tabularnewline
38 &  10 &  11.16 & -1.156 \tabularnewline
39 &  14 &  12.26 &  1.744 \tabularnewline
40 &  12 &  12.66 & -0.6636 \tabularnewline
41 &  14 &  13.54 &  0.4576 \tabularnewline
42 &  10 &  10.75 & -0.7482 \tabularnewline
43 &  13 &  13.68 & -0.6826 \tabularnewline
44 &  12 &  12.4 & -0.3959 \tabularnewline
45 &  12 &  11.92 &  0.07601 \tabularnewline
46 &  13 &  12.26 &  0.7443 \tabularnewline
47 &  12 &  12.43 & -0.4284 \tabularnewline
48 &  10 &  12.51 & -2.507 \tabularnewline
49 &  9 &  9.805 & -0.8048 \tabularnewline
50 &  14 &  13.36 &  0.6448 \tabularnewline
51 &  15 &  14.01 &  0.9857 \tabularnewline
52 &  14 &  13.76 &  0.2368 \tabularnewline
53 &  8 &  11.34 & -3.343 \tabularnewline
54 &  11 &  10.82 &  0.1755 \tabularnewline
55 &  10 &  12.26 & -2.256 \tabularnewline
56 &  12 &  11.33 &  0.6711 \tabularnewline
57 &  14 &  11.91 &  2.088 \tabularnewline
58 &  12 &  12.24 & -0.2391 \tabularnewline
59 &  12 &  12.51 & -0.5068 \tabularnewline
60 &  14 &  13.95 &  0.04967 \tabularnewline
61 &  13 &  11.63 &  1.373 \tabularnewline
62 &  13 &  12.44 &  0.5572 \tabularnewline
63 &  13 &  11.35 &  1.655 \tabularnewline
64 &  12 &  12.44 & -0.4428 \tabularnewline
65 &  10 &  10.06 & -0.05664 \tabularnewline
66 &  14 &  12.3 &  1.697 \tabularnewline
67 &  11 &  12.24 & -1.239 \tabularnewline
68 &  10 &  12.08 & -2.081 \tabularnewline
69 &  13 &  11.77 &  1.233 \tabularnewline
70 &  12 &  11.52 &  0.484 \tabularnewline
71 &  12 &  13.87 & -1.874 \tabularnewline
72 &  11 &  12.26 & -1.256 \tabularnewline
73 &  10 &  12.26 & -2.256 \tabularnewline
74 &  14 &  12.77 &  1.225 \tabularnewline
75 &  12 &  11.85 &  0.1523 \tabularnewline
76 &  13 &  12.51 &  0.4932 \tabularnewline
77 &  11 &  11.77 & -0.7672 \tabularnewline
78 &  10 &  10.68 & -0.6842 \tabularnewline
79 &  14 &  11.16 &  2.844 \tabularnewline
80 &  13 &  12.19 &  0.8083 \tabularnewline
81 &  7 &  10.75 & -3.748 \tabularnewline
82 &  13 &  12.51 &  0.4932 \tabularnewline
83 &  13 &  12.44 &  0.5572 \tabularnewline
84 &  13 &  12.44 &  0.5572 \tabularnewline
85 &  15 &  12.66 &  2.336 \tabularnewline
86 &  13 &  12.87 &  0.1326 \tabularnewline
87 &  14 &  12.44 &  1.557 \tabularnewline
88 &  12 &  11.78 &  0.2162 \tabularnewline
89 &  13 &  11.85 &  1.152 \tabularnewline
90 &  11 &  9.789 &  1.211 \tabularnewline
91 &  12 &  12.32 & -0.3196 \tabularnewline
92 &  14 &  12.19 &  1.808 \tabularnewline
93 &  13 &  12.51 &  0.4932 \tabularnewline
94 &  14 &  13.67 &  0.3297 \tabularnewline
95 &  12 &  11.77 &  0.2328 \tabularnewline
96 &  12 &  12.19 & -0.1917 \tabularnewline
97 &  13 &  12.6 &  0.4003 \tabularnewline
98 &  14 &  12.87 &  1.133 \tabularnewline
99 &  13 &  13.54 & -0.5424 \tabularnewline
100 &  12 &  11.78 &  0.2162 \tabularnewline
101 &  13 &  11.75 &  1.249 \tabularnewline
102 &  12 &  12.19 & -0.1917 \tabularnewline
103 &  10 &  12.6 & -2.6 \tabularnewline
104 &  12 &  11.58 &  0.42 \tabularnewline
105 &  13 &  13.12 & -0.1185 \tabularnewline
106 &  12 &  12.18 & -0.1751 \tabularnewline
107 &  13 &  12.05 &  0.9481 \tabularnewline
108 &  12 &  12.26 & -0.2557 \tabularnewline
109 &  12 &  12.26 & -0.2557 \tabularnewline
110 &  12 &  12.16 & -0.1628 \tabularnewline
111 &  11 &  12.26 & -1.256 \tabularnewline
112 &  12 &  11.92 &  0.07601 \tabularnewline
113 &  9 &  10.67 & -1.668 \tabularnewline
114 &  14 &  11.99 &  2.012 \tabularnewline
115 &  12 &  11.85 &  0.1523 \tabularnewline
116 &  13 &  12 &  0.9954 \tabularnewline
117 &  13 &  12.05 &  0.9524 \tabularnewline
118 &  13 &  12.85 &  0.1492 \tabularnewline
119 &  11 &  12.32 & -1.32 \tabularnewline
120 &  12 &  11.99 &  0.01205 \tabularnewline
121 &  11 &  11.52 & -0.516 \tabularnewline
122 &  12 &  12.26 & -0.2557 \tabularnewline
123 &  12 &  12.51 & -0.5068 \tabularnewline
124 &  13 &  13.36 & -0.3552 \tabularnewline
125 &  12 &  11.85 &  0.1523 \tabularnewline
126 &  13 &  11.99 &  1.012 \tabularnewline
127 &  13 &  12.19 &  0.8083 \tabularnewline
128 &  12 &  11.58 &  0.42 \tabularnewline
129 &  12 &  12.05 & -0.05191 \tabularnewline
130 &  8 &  9.113 & -1.113 \tabularnewline
131 &  12 &  12.24 & -0.2391 \tabularnewline
132 &  13 &  12.65 &  0.353 \tabularnewline
133 &  10 &  10.86 & -0.857 \tabularnewline
134 &  8 &  10.75 & -2.748 \tabularnewline
135 &  12 &  11.99 &  0.01205 \tabularnewline
136 &  13 &  14.01 & -1.014 \tabularnewline
137 &  12 &  13.36 & -1.355 \tabularnewline
138 &  15 &  14.28 &  0.718 \tabularnewline
139 &  14 &  13.54 &  0.4576 \tabularnewline
140 &  10 &  11.92 & -1.924 \tabularnewline
141 &  11 &  12.1 & -1.099 \tabularnewline
142 &  12 &  12.26 & -0.2557 \tabularnewline
143 &  10 &  12.26 & -2.256 \tabularnewline
144 &  14 &  12.44 &  1.557 \tabularnewline
145 &  10 &  12.44 & -2.443 \tabularnewline
146 &  15 &  12.65 &  2.353 \tabularnewline
147 &  11 &  11.16 & -0.1562 \tabularnewline
148 &  12 &  12.26 & -0.2557 \tabularnewline
149 &  9 &  10.48 & -1.48 \tabularnewline
150 &  12 &  13.42 & -1.419 \tabularnewline
151 &  13 &  11.99 &  1.012 \tabularnewline
152 &  12 &  12.19 & -0.1917 \tabularnewline
153 &  9 &  11.77 & -2.767 \tabularnewline
154 &  12 &  12.19 & -0.1917 \tabularnewline
155 &  14 &  12.91 &  1.085 \tabularnewline
156 &  11 &  12 & -1.005 \tabularnewline
157 &  12 &  10.34 &  1.66 \tabularnewline
158 &  14 &  12.19 &  1.808 \tabularnewline
159 &  12 &  11.08 &  0.9244 \tabularnewline
160 &  15 &  12.32 &  2.68 \tabularnewline
161 &  11 &  13.62 & -2.623 \tabularnewline
162 &  12 &  12.66 & -0.6636 \tabularnewline
163 &  12 &  12.4 & -0.3959 \tabularnewline
164 &  10 &  10.94 & -0.9354 \tabularnewline
165 &  12 &  12.19 & -0.1917 \tabularnewline
166 &  11 &  12.51 & -1.507 \tabularnewline
167 &  11 &  10.86 &  0.1409 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302972&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C] 10[/C][C] 10.04[/C][C]-0.04003[/C][/ROW]
[ROW][C]2[/C][C] 13[/C][C] 11.82[/C][C] 1.185[/C][/ROW]
[ROW][C]3[/C][C] 14[/C][C] 12.51[/C][C] 1.493[/C][/ROW]
[ROW][C]4[/C][C] 12[/C][C] 11.58[/C][C] 0.42[/C][/ROW]
[ROW][C]5[/C][C] 12[/C][C] 12.51[/C][C]-0.5068[/C][/ROW]
[ROW][C]6[/C][C] 13[/C][C] 12.03[/C][C] 0.9651[/C][/ROW]
[ROW][C]7[/C][C] 13[/C][C] 11.33[/C][C] 1.671[/C][/ROW]
[ROW][C]8[/C][C] 13[/C][C] 11.85[/C][C] 1.152[/C][/ROW]
[ROW][C]9[/C][C] 13[/C][C] 13.54[/C][C]-0.5424[/C][/ROW]
[ROW][C]10[/C][C] 14[/C][C] 13.54[/C][C] 0.4576[/C][/ROW]
[ROW][C]11[/C][C] 14[/C][C] 12.51[/C][C] 1.493[/C][/ROW]
[ROW][C]12[/C][C] 12[/C][C] 12.24[/C][C]-0.2391[/C][/ROW]
[ROW][C]13[/C][C] 12[/C][C] 11.92[/C][C] 0.07601[/C][/ROW]
[ROW][C]14[/C][C] 11[/C][C] 10.68[/C][C] 0.3158[/C][/ROW]
[ROW][C]15[/C][C] 12[/C][C] 11.69[/C][C] 0.3105[/C][/ROW]
[ROW][C]16[/C][C] 14[/C][C] 11.78[/C][C] 2.216[/C][/ROW]
[ROW][C]17[/C][C] 12[/C][C] 11.78[/C][C] 0.2162[/C][/ROW]
[ROW][C]18[/C][C] 11[/C][C] 13.5[/C][C]-2.495[/C][/ROW]
[ROW][C]19[/C][C] 13[/C][C] 12.51[/C][C] 0.4932[/C][/ROW]
[ROW][C]20[/C][C] 13[/C][C] 11.52[/C][C] 1.484[/C][/ROW]
[ROW][C]21[/C][C] 12[/C][C] 12.44[/C][C]-0.4428[/C][/ROW]
[ROW][C]22[/C][C] 13[/C][C] 12.19[/C][C] 0.8083[/C][/ROW]
[ROW][C]23[/C][C] 12[/C][C] 12.26[/C][C]-0.2557[/C][/ROW]
[ROW][C]24[/C][C] 13[/C][C] 12.19[/C][C] 0.8083[/C][/ROW]
[ROW][C]25[/C][C] 11[/C][C] 11.85[/C][C]-0.8477[/C][/ROW]
[ROW][C]26[/C][C] 12[/C][C] 11.77[/C][C] 0.2328[/C][/ROW]
[ROW][C]27[/C][C] 12[/C][C] 12.26[/C][C]-0.2557[/C][/ROW]
[ROW][C]28[/C][C] 13[/C][C] 11.63[/C][C] 1.373[/C][/ROW]
[ROW][C]29[/C][C] 13[/C][C] 12.66[/C][C] 0.3364[/C][/ROW]
[ROW][C]30[/C][C] 10[/C][C] 11.16[/C][C]-1.156[/C][/ROW]
[ROW][C]31[/C][C] 12[/C][C] 13.54[/C][C]-1.542[/C][/ROW]
[ROW][C]32[/C][C] 13[/C][C] 12.6[/C][C] 0.4003[/C][/ROW]
[ROW][C]33[/C][C] 13[/C][C] 11.34[/C][C] 1.657[/C][/ROW]
[ROW][C]34[/C][C] 10[/C][C] 10.59[/C][C]-0.5914[/C][/ROW]
[ROW][C]35[/C][C] 14[/C][C] 13.36[/C][C] 0.6448[/C][/ROW]
[ROW][C]36[/C][C] 12[/C][C] 11.85[/C][C] 0.1523[/C][/ROW]
[ROW][C]37[/C][C] 10[/C][C] 10.82[/C][C]-0.8245[/C][/ROW]
[ROW][C]38[/C][C] 10[/C][C] 11.16[/C][C]-1.156[/C][/ROW]
[ROW][C]39[/C][C] 14[/C][C] 12.26[/C][C] 1.744[/C][/ROW]
[ROW][C]40[/C][C] 12[/C][C] 12.66[/C][C]-0.6636[/C][/ROW]
[ROW][C]41[/C][C] 14[/C][C] 13.54[/C][C] 0.4576[/C][/ROW]
[ROW][C]42[/C][C] 10[/C][C] 10.75[/C][C]-0.7482[/C][/ROW]
[ROW][C]43[/C][C] 13[/C][C] 13.68[/C][C]-0.6826[/C][/ROW]
[ROW][C]44[/C][C] 12[/C][C] 12.4[/C][C]-0.3959[/C][/ROW]
[ROW][C]45[/C][C] 12[/C][C] 11.92[/C][C] 0.07601[/C][/ROW]
[ROW][C]46[/C][C] 13[/C][C] 12.26[/C][C] 0.7443[/C][/ROW]
[ROW][C]47[/C][C] 12[/C][C] 12.43[/C][C]-0.4284[/C][/ROW]
[ROW][C]48[/C][C] 10[/C][C] 12.51[/C][C]-2.507[/C][/ROW]
[ROW][C]49[/C][C] 9[/C][C] 9.805[/C][C]-0.8048[/C][/ROW]
[ROW][C]50[/C][C] 14[/C][C] 13.36[/C][C] 0.6448[/C][/ROW]
[ROW][C]51[/C][C] 15[/C][C] 14.01[/C][C] 0.9857[/C][/ROW]
[ROW][C]52[/C][C] 14[/C][C] 13.76[/C][C] 0.2368[/C][/ROW]
[ROW][C]53[/C][C] 8[/C][C] 11.34[/C][C]-3.343[/C][/ROW]
[ROW][C]54[/C][C] 11[/C][C] 10.82[/C][C] 0.1755[/C][/ROW]
[ROW][C]55[/C][C] 10[/C][C] 12.26[/C][C]-2.256[/C][/ROW]
[ROW][C]56[/C][C] 12[/C][C] 11.33[/C][C] 0.6711[/C][/ROW]
[ROW][C]57[/C][C] 14[/C][C] 11.91[/C][C] 2.088[/C][/ROW]
[ROW][C]58[/C][C] 12[/C][C] 12.24[/C][C]-0.2391[/C][/ROW]
[ROW][C]59[/C][C] 12[/C][C] 12.51[/C][C]-0.5068[/C][/ROW]
[ROW][C]60[/C][C] 14[/C][C] 13.95[/C][C] 0.04967[/C][/ROW]
[ROW][C]61[/C][C] 13[/C][C] 11.63[/C][C] 1.373[/C][/ROW]
[ROW][C]62[/C][C] 13[/C][C] 12.44[/C][C] 0.5572[/C][/ROW]
[ROW][C]63[/C][C] 13[/C][C] 11.35[/C][C] 1.655[/C][/ROW]
[ROW][C]64[/C][C] 12[/C][C] 12.44[/C][C]-0.4428[/C][/ROW]
[ROW][C]65[/C][C] 10[/C][C] 10.06[/C][C]-0.05664[/C][/ROW]
[ROW][C]66[/C][C] 14[/C][C] 12.3[/C][C] 1.697[/C][/ROW]
[ROW][C]67[/C][C] 11[/C][C] 12.24[/C][C]-1.239[/C][/ROW]
[ROW][C]68[/C][C] 10[/C][C] 12.08[/C][C]-2.081[/C][/ROW]
[ROW][C]69[/C][C] 13[/C][C] 11.77[/C][C] 1.233[/C][/ROW]
[ROW][C]70[/C][C] 12[/C][C] 11.52[/C][C] 0.484[/C][/ROW]
[ROW][C]71[/C][C] 12[/C][C] 13.87[/C][C]-1.874[/C][/ROW]
[ROW][C]72[/C][C] 11[/C][C] 12.26[/C][C]-1.256[/C][/ROW]
[ROW][C]73[/C][C] 10[/C][C] 12.26[/C][C]-2.256[/C][/ROW]
[ROW][C]74[/C][C] 14[/C][C] 12.77[/C][C] 1.225[/C][/ROW]
[ROW][C]75[/C][C] 12[/C][C] 11.85[/C][C] 0.1523[/C][/ROW]
[ROW][C]76[/C][C] 13[/C][C] 12.51[/C][C] 0.4932[/C][/ROW]
[ROW][C]77[/C][C] 11[/C][C] 11.77[/C][C]-0.7672[/C][/ROW]
[ROW][C]78[/C][C] 10[/C][C] 10.68[/C][C]-0.6842[/C][/ROW]
[ROW][C]79[/C][C] 14[/C][C] 11.16[/C][C] 2.844[/C][/ROW]
[ROW][C]80[/C][C] 13[/C][C] 12.19[/C][C] 0.8083[/C][/ROW]
[ROW][C]81[/C][C] 7[/C][C] 10.75[/C][C]-3.748[/C][/ROW]
[ROW][C]82[/C][C] 13[/C][C] 12.51[/C][C] 0.4932[/C][/ROW]
[ROW][C]83[/C][C] 13[/C][C] 12.44[/C][C] 0.5572[/C][/ROW]
[ROW][C]84[/C][C] 13[/C][C] 12.44[/C][C] 0.5572[/C][/ROW]
[ROW][C]85[/C][C] 15[/C][C] 12.66[/C][C] 2.336[/C][/ROW]
[ROW][C]86[/C][C] 13[/C][C] 12.87[/C][C] 0.1326[/C][/ROW]
[ROW][C]87[/C][C] 14[/C][C] 12.44[/C][C] 1.557[/C][/ROW]
[ROW][C]88[/C][C] 12[/C][C] 11.78[/C][C] 0.2162[/C][/ROW]
[ROW][C]89[/C][C] 13[/C][C] 11.85[/C][C] 1.152[/C][/ROW]
[ROW][C]90[/C][C] 11[/C][C] 9.789[/C][C] 1.211[/C][/ROW]
[ROW][C]91[/C][C] 12[/C][C] 12.32[/C][C]-0.3196[/C][/ROW]
[ROW][C]92[/C][C] 14[/C][C] 12.19[/C][C] 1.808[/C][/ROW]
[ROW][C]93[/C][C] 13[/C][C] 12.51[/C][C] 0.4932[/C][/ROW]
[ROW][C]94[/C][C] 14[/C][C] 13.67[/C][C] 0.3297[/C][/ROW]
[ROW][C]95[/C][C] 12[/C][C] 11.77[/C][C] 0.2328[/C][/ROW]
[ROW][C]96[/C][C] 12[/C][C] 12.19[/C][C]-0.1917[/C][/ROW]
[ROW][C]97[/C][C] 13[/C][C] 12.6[/C][C] 0.4003[/C][/ROW]
[ROW][C]98[/C][C] 14[/C][C] 12.87[/C][C] 1.133[/C][/ROW]
[ROW][C]99[/C][C] 13[/C][C] 13.54[/C][C]-0.5424[/C][/ROW]
[ROW][C]100[/C][C] 12[/C][C] 11.78[/C][C] 0.2162[/C][/ROW]
[ROW][C]101[/C][C] 13[/C][C] 11.75[/C][C] 1.249[/C][/ROW]
[ROW][C]102[/C][C] 12[/C][C] 12.19[/C][C]-0.1917[/C][/ROW]
[ROW][C]103[/C][C] 10[/C][C] 12.6[/C][C]-2.6[/C][/ROW]
[ROW][C]104[/C][C] 12[/C][C] 11.58[/C][C] 0.42[/C][/ROW]
[ROW][C]105[/C][C] 13[/C][C] 13.12[/C][C]-0.1185[/C][/ROW]
[ROW][C]106[/C][C] 12[/C][C] 12.18[/C][C]-0.1751[/C][/ROW]
[ROW][C]107[/C][C] 13[/C][C] 12.05[/C][C] 0.9481[/C][/ROW]
[ROW][C]108[/C][C] 12[/C][C] 12.26[/C][C]-0.2557[/C][/ROW]
[ROW][C]109[/C][C] 12[/C][C] 12.26[/C][C]-0.2557[/C][/ROW]
[ROW][C]110[/C][C] 12[/C][C] 12.16[/C][C]-0.1628[/C][/ROW]
[ROW][C]111[/C][C] 11[/C][C] 12.26[/C][C]-1.256[/C][/ROW]
[ROW][C]112[/C][C] 12[/C][C] 11.92[/C][C] 0.07601[/C][/ROW]
[ROW][C]113[/C][C] 9[/C][C] 10.67[/C][C]-1.668[/C][/ROW]
[ROW][C]114[/C][C] 14[/C][C] 11.99[/C][C] 2.012[/C][/ROW]
[ROW][C]115[/C][C] 12[/C][C] 11.85[/C][C] 0.1523[/C][/ROW]
[ROW][C]116[/C][C] 13[/C][C] 12[/C][C] 0.9954[/C][/ROW]
[ROW][C]117[/C][C] 13[/C][C] 12.05[/C][C] 0.9524[/C][/ROW]
[ROW][C]118[/C][C] 13[/C][C] 12.85[/C][C] 0.1492[/C][/ROW]
[ROW][C]119[/C][C] 11[/C][C] 12.32[/C][C]-1.32[/C][/ROW]
[ROW][C]120[/C][C] 12[/C][C] 11.99[/C][C] 0.01205[/C][/ROW]
[ROW][C]121[/C][C] 11[/C][C] 11.52[/C][C]-0.516[/C][/ROW]
[ROW][C]122[/C][C] 12[/C][C] 12.26[/C][C]-0.2557[/C][/ROW]
[ROW][C]123[/C][C] 12[/C][C] 12.51[/C][C]-0.5068[/C][/ROW]
[ROW][C]124[/C][C] 13[/C][C] 13.36[/C][C]-0.3552[/C][/ROW]
[ROW][C]125[/C][C] 12[/C][C] 11.85[/C][C] 0.1523[/C][/ROW]
[ROW][C]126[/C][C] 13[/C][C] 11.99[/C][C] 1.012[/C][/ROW]
[ROW][C]127[/C][C] 13[/C][C] 12.19[/C][C] 0.8083[/C][/ROW]
[ROW][C]128[/C][C] 12[/C][C] 11.58[/C][C] 0.42[/C][/ROW]
[ROW][C]129[/C][C] 12[/C][C] 12.05[/C][C]-0.05191[/C][/ROW]
[ROW][C]130[/C][C] 8[/C][C] 9.113[/C][C]-1.113[/C][/ROW]
[ROW][C]131[/C][C] 12[/C][C] 12.24[/C][C]-0.2391[/C][/ROW]
[ROW][C]132[/C][C] 13[/C][C] 12.65[/C][C] 0.353[/C][/ROW]
[ROW][C]133[/C][C] 10[/C][C] 10.86[/C][C]-0.857[/C][/ROW]
[ROW][C]134[/C][C] 8[/C][C] 10.75[/C][C]-2.748[/C][/ROW]
[ROW][C]135[/C][C] 12[/C][C] 11.99[/C][C] 0.01205[/C][/ROW]
[ROW][C]136[/C][C] 13[/C][C] 14.01[/C][C]-1.014[/C][/ROW]
[ROW][C]137[/C][C] 12[/C][C] 13.36[/C][C]-1.355[/C][/ROW]
[ROW][C]138[/C][C] 15[/C][C] 14.28[/C][C] 0.718[/C][/ROW]
[ROW][C]139[/C][C] 14[/C][C] 13.54[/C][C] 0.4576[/C][/ROW]
[ROW][C]140[/C][C] 10[/C][C] 11.92[/C][C]-1.924[/C][/ROW]
[ROW][C]141[/C][C] 11[/C][C] 12.1[/C][C]-1.099[/C][/ROW]
[ROW][C]142[/C][C] 12[/C][C] 12.26[/C][C]-0.2557[/C][/ROW]
[ROW][C]143[/C][C] 10[/C][C] 12.26[/C][C]-2.256[/C][/ROW]
[ROW][C]144[/C][C] 14[/C][C] 12.44[/C][C] 1.557[/C][/ROW]
[ROW][C]145[/C][C] 10[/C][C] 12.44[/C][C]-2.443[/C][/ROW]
[ROW][C]146[/C][C] 15[/C][C] 12.65[/C][C] 2.353[/C][/ROW]
[ROW][C]147[/C][C] 11[/C][C] 11.16[/C][C]-0.1562[/C][/ROW]
[ROW][C]148[/C][C] 12[/C][C] 12.26[/C][C]-0.2557[/C][/ROW]
[ROW][C]149[/C][C] 9[/C][C] 10.48[/C][C]-1.48[/C][/ROW]
[ROW][C]150[/C][C] 12[/C][C] 13.42[/C][C]-1.419[/C][/ROW]
[ROW][C]151[/C][C] 13[/C][C] 11.99[/C][C] 1.012[/C][/ROW]
[ROW][C]152[/C][C] 12[/C][C] 12.19[/C][C]-0.1917[/C][/ROW]
[ROW][C]153[/C][C] 9[/C][C] 11.77[/C][C]-2.767[/C][/ROW]
[ROW][C]154[/C][C] 12[/C][C] 12.19[/C][C]-0.1917[/C][/ROW]
[ROW][C]155[/C][C] 14[/C][C] 12.91[/C][C] 1.085[/C][/ROW]
[ROW][C]156[/C][C] 11[/C][C] 12[/C][C]-1.005[/C][/ROW]
[ROW][C]157[/C][C] 12[/C][C] 10.34[/C][C] 1.66[/C][/ROW]
[ROW][C]158[/C][C] 14[/C][C] 12.19[/C][C] 1.808[/C][/ROW]
[ROW][C]159[/C][C] 12[/C][C] 11.08[/C][C] 0.9244[/C][/ROW]
[ROW][C]160[/C][C] 15[/C][C] 12.32[/C][C] 2.68[/C][/ROW]
[ROW][C]161[/C][C] 11[/C][C] 13.62[/C][C]-2.623[/C][/ROW]
[ROW][C]162[/C][C] 12[/C][C] 12.66[/C][C]-0.6636[/C][/ROW]
[ROW][C]163[/C][C] 12[/C][C] 12.4[/C][C]-0.3959[/C][/ROW]
[ROW][C]164[/C][C] 10[/C][C] 10.94[/C][C]-0.9354[/C][/ROW]
[ROW][C]165[/C][C] 12[/C][C] 12.19[/C][C]-0.1917[/C][/ROW]
[ROW][C]166[/C][C] 11[/C][C] 12.51[/C][C]-1.507[/C][/ROW]
[ROW][C]167[/C][C] 11[/C][C] 10.86[/C][C] 0.1409[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302972&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302972&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 10 10.04-0.04003
2 13 11.82 1.185
3 14 12.51 1.493
4 12 11.58 0.42
5 12 12.51-0.5068
6 13 12.03 0.9651
7 13 11.33 1.671
8 13 11.85 1.152
9 13 13.54-0.5424
10 14 13.54 0.4576
11 14 12.51 1.493
12 12 12.24-0.2391
13 12 11.92 0.07601
14 11 10.68 0.3158
15 12 11.69 0.3105
16 14 11.78 2.216
17 12 11.78 0.2162
18 11 13.5-2.495
19 13 12.51 0.4932
20 13 11.52 1.484
21 12 12.44-0.4428
22 13 12.19 0.8083
23 12 12.26-0.2557
24 13 12.19 0.8083
25 11 11.85-0.8477
26 12 11.77 0.2328
27 12 12.26-0.2557
28 13 11.63 1.373
29 13 12.66 0.3364
30 10 11.16-1.156
31 12 13.54-1.542
32 13 12.6 0.4003
33 13 11.34 1.657
34 10 10.59-0.5914
35 14 13.36 0.6448
36 12 11.85 0.1523
37 10 10.82-0.8245
38 10 11.16-1.156
39 14 12.26 1.744
40 12 12.66-0.6636
41 14 13.54 0.4576
42 10 10.75-0.7482
43 13 13.68-0.6826
44 12 12.4-0.3959
45 12 11.92 0.07601
46 13 12.26 0.7443
47 12 12.43-0.4284
48 10 12.51-2.507
49 9 9.805-0.8048
50 14 13.36 0.6448
51 15 14.01 0.9857
52 14 13.76 0.2368
53 8 11.34-3.343
54 11 10.82 0.1755
55 10 12.26-2.256
56 12 11.33 0.6711
57 14 11.91 2.088
58 12 12.24-0.2391
59 12 12.51-0.5068
60 14 13.95 0.04967
61 13 11.63 1.373
62 13 12.44 0.5572
63 13 11.35 1.655
64 12 12.44-0.4428
65 10 10.06-0.05664
66 14 12.3 1.697
67 11 12.24-1.239
68 10 12.08-2.081
69 13 11.77 1.233
70 12 11.52 0.484
71 12 13.87-1.874
72 11 12.26-1.256
73 10 12.26-2.256
74 14 12.77 1.225
75 12 11.85 0.1523
76 13 12.51 0.4932
77 11 11.77-0.7672
78 10 10.68-0.6842
79 14 11.16 2.844
80 13 12.19 0.8083
81 7 10.75-3.748
82 13 12.51 0.4932
83 13 12.44 0.5572
84 13 12.44 0.5572
85 15 12.66 2.336
86 13 12.87 0.1326
87 14 12.44 1.557
88 12 11.78 0.2162
89 13 11.85 1.152
90 11 9.789 1.211
91 12 12.32-0.3196
92 14 12.19 1.808
93 13 12.51 0.4932
94 14 13.67 0.3297
95 12 11.77 0.2328
96 12 12.19-0.1917
97 13 12.6 0.4003
98 14 12.87 1.133
99 13 13.54-0.5424
100 12 11.78 0.2162
101 13 11.75 1.249
102 12 12.19-0.1917
103 10 12.6-2.6
104 12 11.58 0.42
105 13 13.12-0.1185
106 12 12.18-0.1751
107 13 12.05 0.9481
108 12 12.26-0.2557
109 12 12.26-0.2557
110 12 12.16-0.1628
111 11 12.26-1.256
112 12 11.92 0.07601
113 9 10.67-1.668
114 14 11.99 2.012
115 12 11.85 0.1523
116 13 12 0.9954
117 13 12.05 0.9524
118 13 12.85 0.1492
119 11 12.32-1.32
120 12 11.99 0.01205
121 11 11.52-0.516
122 12 12.26-0.2557
123 12 12.51-0.5068
124 13 13.36-0.3552
125 12 11.85 0.1523
126 13 11.99 1.012
127 13 12.19 0.8083
128 12 11.58 0.42
129 12 12.05-0.05191
130 8 9.113-1.113
131 12 12.24-0.2391
132 13 12.65 0.353
133 10 10.86-0.857
134 8 10.75-2.748
135 12 11.99 0.01205
136 13 14.01-1.014
137 12 13.36-1.355
138 15 14.28 0.718
139 14 13.54 0.4576
140 10 11.92-1.924
141 11 12.1-1.099
142 12 12.26-0.2557
143 10 12.26-2.256
144 14 12.44 1.557
145 10 12.44-2.443
146 15 12.65 2.353
147 11 11.16-0.1562
148 12 12.26-0.2557
149 9 10.48-1.48
150 12 13.42-1.419
151 13 11.99 1.012
152 12 12.19-0.1917
153 9 11.77-2.767
154 12 12.19-0.1917
155 14 12.91 1.085
156 11 12-1.005
157 12 10.34 1.66
158 14 12.19 1.808
159 12 11.08 0.9244
160 15 12.32 2.68
161 11 13.62-2.623
162 12 12.66-0.6636
163 12 12.4-0.3959
164 10 10.94-0.9354
165 12 12.19-0.1917
166 11 12.51-1.507
167 11 10.86 0.1409







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
9 0.3871 0.7742 0.6129
10 0.2515 0.503 0.7485
11 0.2256 0.4511 0.7744
12 0.1351 0.2701 0.8649
13 0.07536 0.1507 0.9246
14 0.06229 0.1246 0.9377
15 0.05181 0.1036 0.9482
16 0.09278 0.1856 0.9072
17 0.0696 0.1392 0.9304
18 0.1438 0.2875 0.8562
19 0.09972 0.1994 0.9003
20 0.1093 0.2186 0.8907
21 0.0866 0.1732 0.9134
22 0.06493 0.1299 0.9351
23 0.05466 0.1093 0.9453
24 0.04001 0.08002 0.96
25 0.08893 0.1779 0.9111
26 0.06465 0.1293 0.9354
27 0.04847 0.09694 0.9515
28 0.0361 0.07219 0.9639
29 0.02724 0.05447 0.9728
30 0.04681 0.09363 0.9532
31 0.06352 0.127 0.9365
32 0.0505 0.101 0.9495
33 0.04783 0.09566 0.9522
34 0.07354 0.1471 0.9265
35 0.06494 0.1299 0.9351
36 0.04851 0.09702 0.9515
37 0.05011 0.1002 0.9499
38 0.0592 0.1184 0.9408
39 0.07979 0.1596 0.9202
40 0.06424 0.1285 0.9358
41 0.04917 0.09833 0.9508
42 0.05046 0.1009 0.9495
43 0.03908 0.07816 0.9609
44 0.02921 0.05841 0.9708
45 0.0211 0.0422 0.9789
46 0.01687 0.03375 0.9831
47 0.01252 0.02503 0.9875
48 0.04236 0.08471 0.9576
49 0.03536 0.07071 0.9646
50 0.02906 0.05811 0.9709
51 0.02981 0.05963 0.9702
52 0.02248 0.04495 0.9775
53 0.1527 0.3053 0.8473
54 0.1273 0.2546 0.8727
55 0.2104 0.4209 0.7896
56 0.1851 0.3703 0.8149
57 0.2403 0.4807 0.7597
58 0.2049 0.4097 0.7951
59 0.1775 0.355 0.8225
60 0.1479 0.2958 0.8521
61 0.1456 0.2912 0.8544
62 0.1244 0.2488 0.8756
63 0.1357 0.2715 0.8643
64 0.1152 0.2304 0.8848
65 0.09469 0.1894 0.9053
66 0.1261 0.2522 0.8739
67 0.1242 0.2484 0.8758
68 0.1593 0.3185 0.8407
69 0.1646 0.3292 0.8354
70 0.1439 0.2878 0.8561
71 0.2083 0.4165 0.7917
72 0.2132 0.4264 0.7868
73 0.3076 0.6151 0.6924
74 0.3047 0.6093 0.6953
75 0.2716 0.5432 0.7284
76 0.241 0.4819 0.759
77 0.2209 0.4418 0.7791
78 0.2016 0.4033 0.7984
79 0.3694 0.7388 0.6306
80 0.3469 0.6939 0.6531
81 0.722 0.5559 0.278
82 0.689 0.622 0.311
83 0.6575 0.685 0.3425
84 0.625 0.75 0.375
85 0.7264 0.5471 0.2736
86 0.6873 0.6255 0.3127
87 0.7151 0.5698 0.2849
88 0.6836 0.6327 0.3164
89 0.6893 0.6214 0.3107
90 0.6851 0.6298 0.3149
91 0.6471 0.7058 0.3529
92 0.7058 0.5885 0.2942
93 0.6726 0.6547 0.3274
94 0.635 0.73 0.365
95 0.6005 0.799 0.3995
96 0.5573 0.8853 0.4427
97 0.5159 0.9681 0.4841
98 0.5126 0.9748 0.4874
99 0.4732 0.9465 0.5268
100 0.4456 0.8912 0.5544
101 0.4471 0.8943 0.5529
102 0.4055 0.811 0.5945
103 0.5571 0.8859 0.4429
104 0.5246 0.9508 0.4754
105 0.4779 0.9558 0.5221
106 0.4308 0.8616 0.5692
107 0.4089 0.8179 0.5911
108 0.3651 0.7302 0.6349
109 0.3228 0.6455 0.6772
110 0.2864 0.5727 0.7136
111 0.2832 0.5664 0.7168
112 0.2444 0.4888 0.7556
113 0.2596 0.5192 0.7404
114 0.336 0.672 0.664
115 0.3052 0.6104 0.6948
116 0.302 0.6041 0.698
117 0.28 0.5599 0.72
118 0.2397 0.4793 0.7603
119 0.2391 0.4783 0.7609
120 0.2023 0.4046 0.7977
121 0.1726 0.3453 0.8274
122 0.1425 0.285 0.8575
123 0.1185 0.2371 0.8815
124 0.09628 0.1926 0.9037
125 0.08171 0.1634 0.9183
126 0.07971 0.1594 0.9203
127 0.07568 0.1514 0.9243
128 0.07072 0.1414 0.9293
129 0.05457 0.1091 0.9454
130 0.05209 0.1042 0.9479
131 0.03913 0.07825 0.9609
132 0.02912 0.05825 0.9709
133 0.02868 0.05736 0.9713
134 0.07596 0.1519 0.924
135 0.05895 0.1179 0.9411
136 0.05034 0.1007 0.9497
137 0.0406 0.08121 0.9594
138 0.03175 0.06351 0.9682
139 0.04366 0.08732 0.9563
140 0.04313 0.08626 0.9569
141 0.03261 0.06521 0.9674
142 0.02255 0.0451 0.9775
143 0.03849 0.07699 0.9615
144 0.06805 0.1361 0.932
145 0.08892 0.1778 0.9111
146 0.1488 0.2977 0.8512
147 0.1607 0.3213 0.8393
148 0.1188 0.2375 0.8812
149 0.2481 0.4961 0.7519
150 0.193 0.3861 0.807
151 0.1718 0.3437 0.8282
152 0.1242 0.2484 0.8758
153 0.1205 0.2411 0.8795
154 0.08046 0.1609 0.9195
155 0.09224 0.1845 0.9078
156 0.1797 0.3595 0.8203
157 0.2364 0.4728 0.7636
158 0.43 0.8599 0.57

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
9 &  0.3871 &  0.7742 &  0.6129 \tabularnewline
10 &  0.2515 &  0.503 &  0.7485 \tabularnewline
11 &  0.2256 &  0.4511 &  0.7744 \tabularnewline
12 &  0.1351 &  0.2701 &  0.8649 \tabularnewline
13 &  0.07536 &  0.1507 &  0.9246 \tabularnewline
14 &  0.06229 &  0.1246 &  0.9377 \tabularnewline
15 &  0.05181 &  0.1036 &  0.9482 \tabularnewline
16 &  0.09278 &  0.1856 &  0.9072 \tabularnewline
17 &  0.0696 &  0.1392 &  0.9304 \tabularnewline
18 &  0.1438 &  0.2875 &  0.8562 \tabularnewline
19 &  0.09972 &  0.1994 &  0.9003 \tabularnewline
20 &  0.1093 &  0.2186 &  0.8907 \tabularnewline
21 &  0.0866 &  0.1732 &  0.9134 \tabularnewline
22 &  0.06493 &  0.1299 &  0.9351 \tabularnewline
23 &  0.05466 &  0.1093 &  0.9453 \tabularnewline
24 &  0.04001 &  0.08002 &  0.96 \tabularnewline
25 &  0.08893 &  0.1779 &  0.9111 \tabularnewline
26 &  0.06465 &  0.1293 &  0.9354 \tabularnewline
27 &  0.04847 &  0.09694 &  0.9515 \tabularnewline
28 &  0.0361 &  0.07219 &  0.9639 \tabularnewline
29 &  0.02724 &  0.05447 &  0.9728 \tabularnewline
30 &  0.04681 &  0.09363 &  0.9532 \tabularnewline
31 &  0.06352 &  0.127 &  0.9365 \tabularnewline
32 &  0.0505 &  0.101 &  0.9495 \tabularnewline
33 &  0.04783 &  0.09566 &  0.9522 \tabularnewline
34 &  0.07354 &  0.1471 &  0.9265 \tabularnewline
35 &  0.06494 &  0.1299 &  0.9351 \tabularnewline
36 &  0.04851 &  0.09702 &  0.9515 \tabularnewline
37 &  0.05011 &  0.1002 &  0.9499 \tabularnewline
38 &  0.0592 &  0.1184 &  0.9408 \tabularnewline
39 &  0.07979 &  0.1596 &  0.9202 \tabularnewline
40 &  0.06424 &  0.1285 &  0.9358 \tabularnewline
41 &  0.04917 &  0.09833 &  0.9508 \tabularnewline
42 &  0.05046 &  0.1009 &  0.9495 \tabularnewline
43 &  0.03908 &  0.07816 &  0.9609 \tabularnewline
44 &  0.02921 &  0.05841 &  0.9708 \tabularnewline
45 &  0.0211 &  0.0422 &  0.9789 \tabularnewline
46 &  0.01687 &  0.03375 &  0.9831 \tabularnewline
47 &  0.01252 &  0.02503 &  0.9875 \tabularnewline
48 &  0.04236 &  0.08471 &  0.9576 \tabularnewline
49 &  0.03536 &  0.07071 &  0.9646 \tabularnewline
50 &  0.02906 &  0.05811 &  0.9709 \tabularnewline
51 &  0.02981 &  0.05963 &  0.9702 \tabularnewline
52 &  0.02248 &  0.04495 &  0.9775 \tabularnewline
53 &  0.1527 &  0.3053 &  0.8473 \tabularnewline
54 &  0.1273 &  0.2546 &  0.8727 \tabularnewline
55 &  0.2104 &  0.4209 &  0.7896 \tabularnewline
56 &  0.1851 &  0.3703 &  0.8149 \tabularnewline
57 &  0.2403 &  0.4807 &  0.7597 \tabularnewline
58 &  0.2049 &  0.4097 &  0.7951 \tabularnewline
59 &  0.1775 &  0.355 &  0.8225 \tabularnewline
60 &  0.1479 &  0.2958 &  0.8521 \tabularnewline
61 &  0.1456 &  0.2912 &  0.8544 \tabularnewline
62 &  0.1244 &  0.2488 &  0.8756 \tabularnewline
63 &  0.1357 &  0.2715 &  0.8643 \tabularnewline
64 &  0.1152 &  0.2304 &  0.8848 \tabularnewline
65 &  0.09469 &  0.1894 &  0.9053 \tabularnewline
66 &  0.1261 &  0.2522 &  0.8739 \tabularnewline
67 &  0.1242 &  0.2484 &  0.8758 \tabularnewline
68 &  0.1593 &  0.3185 &  0.8407 \tabularnewline
69 &  0.1646 &  0.3292 &  0.8354 \tabularnewline
70 &  0.1439 &  0.2878 &  0.8561 \tabularnewline
71 &  0.2083 &  0.4165 &  0.7917 \tabularnewline
72 &  0.2132 &  0.4264 &  0.7868 \tabularnewline
73 &  0.3076 &  0.6151 &  0.6924 \tabularnewline
74 &  0.3047 &  0.6093 &  0.6953 \tabularnewline
75 &  0.2716 &  0.5432 &  0.7284 \tabularnewline
76 &  0.241 &  0.4819 &  0.759 \tabularnewline
77 &  0.2209 &  0.4418 &  0.7791 \tabularnewline
78 &  0.2016 &  0.4033 &  0.7984 \tabularnewline
79 &  0.3694 &  0.7388 &  0.6306 \tabularnewline
80 &  0.3469 &  0.6939 &  0.6531 \tabularnewline
81 &  0.722 &  0.5559 &  0.278 \tabularnewline
82 &  0.689 &  0.622 &  0.311 \tabularnewline
83 &  0.6575 &  0.685 &  0.3425 \tabularnewline
84 &  0.625 &  0.75 &  0.375 \tabularnewline
85 &  0.7264 &  0.5471 &  0.2736 \tabularnewline
86 &  0.6873 &  0.6255 &  0.3127 \tabularnewline
87 &  0.7151 &  0.5698 &  0.2849 \tabularnewline
88 &  0.6836 &  0.6327 &  0.3164 \tabularnewline
89 &  0.6893 &  0.6214 &  0.3107 \tabularnewline
90 &  0.6851 &  0.6298 &  0.3149 \tabularnewline
91 &  0.6471 &  0.7058 &  0.3529 \tabularnewline
92 &  0.7058 &  0.5885 &  0.2942 \tabularnewline
93 &  0.6726 &  0.6547 &  0.3274 \tabularnewline
94 &  0.635 &  0.73 &  0.365 \tabularnewline
95 &  0.6005 &  0.799 &  0.3995 \tabularnewline
96 &  0.5573 &  0.8853 &  0.4427 \tabularnewline
97 &  0.5159 &  0.9681 &  0.4841 \tabularnewline
98 &  0.5126 &  0.9748 &  0.4874 \tabularnewline
99 &  0.4732 &  0.9465 &  0.5268 \tabularnewline
100 &  0.4456 &  0.8912 &  0.5544 \tabularnewline
101 &  0.4471 &  0.8943 &  0.5529 \tabularnewline
102 &  0.4055 &  0.811 &  0.5945 \tabularnewline
103 &  0.5571 &  0.8859 &  0.4429 \tabularnewline
104 &  0.5246 &  0.9508 &  0.4754 \tabularnewline
105 &  0.4779 &  0.9558 &  0.5221 \tabularnewline
106 &  0.4308 &  0.8616 &  0.5692 \tabularnewline
107 &  0.4089 &  0.8179 &  0.5911 \tabularnewline
108 &  0.3651 &  0.7302 &  0.6349 \tabularnewline
109 &  0.3228 &  0.6455 &  0.6772 \tabularnewline
110 &  0.2864 &  0.5727 &  0.7136 \tabularnewline
111 &  0.2832 &  0.5664 &  0.7168 \tabularnewline
112 &  0.2444 &  0.4888 &  0.7556 \tabularnewline
113 &  0.2596 &  0.5192 &  0.7404 \tabularnewline
114 &  0.336 &  0.672 &  0.664 \tabularnewline
115 &  0.3052 &  0.6104 &  0.6948 \tabularnewline
116 &  0.302 &  0.6041 &  0.698 \tabularnewline
117 &  0.28 &  0.5599 &  0.72 \tabularnewline
118 &  0.2397 &  0.4793 &  0.7603 \tabularnewline
119 &  0.2391 &  0.4783 &  0.7609 \tabularnewline
120 &  0.2023 &  0.4046 &  0.7977 \tabularnewline
121 &  0.1726 &  0.3453 &  0.8274 \tabularnewline
122 &  0.1425 &  0.285 &  0.8575 \tabularnewline
123 &  0.1185 &  0.2371 &  0.8815 \tabularnewline
124 &  0.09628 &  0.1926 &  0.9037 \tabularnewline
125 &  0.08171 &  0.1634 &  0.9183 \tabularnewline
126 &  0.07971 &  0.1594 &  0.9203 \tabularnewline
127 &  0.07568 &  0.1514 &  0.9243 \tabularnewline
128 &  0.07072 &  0.1414 &  0.9293 \tabularnewline
129 &  0.05457 &  0.1091 &  0.9454 \tabularnewline
130 &  0.05209 &  0.1042 &  0.9479 \tabularnewline
131 &  0.03913 &  0.07825 &  0.9609 \tabularnewline
132 &  0.02912 &  0.05825 &  0.9709 \tabularnewline
133 &  0.02868 &  0.05736 &  0.9713 \tabularnewline
134 &  0.07596 &  0.1519 &  0.924 \tabularnewline
135 &  0.05895 &  0.1179 &  0.9411 \tabularnewline
136 &  0.05034 &  0.1007 &  0.9497 \tabularnewline
137 &  0.0406 &  0.08121 &  0.9594 \tabularnewline
138 &  0.03175 &  0.06351 &  0.9682 \tabularnewline
139 &  0.04366 &  0.08732 &  0.9563 \tabularnewline
140 &  0.04313 &  0.08626 &  0.9569 \tabularnewline
141 &  0.03261 &  0.06521 &  0.9674 \tabularnewline
142 &  0.02255 &  0.0451 &  0.9775 \tabularnewline
143 &  0.03849 &  0.07699 &  0.9615 \tabularnewline
144 &  0.06805 &  0.1361 &  0.932 \tabularnewline
145 &  0.08892 &  0.1778 &  0.9111 \tabularnewline
146 &  0.1488 &  0.2977 &  0.8512 \tabularnewline
147 &  0.1607 &  0.3213 &  0.8393 \tabularnewline
148 &  0.1188 &  0.2375 &  0.8812 \tabularnewline
149 &  0.2481 &  0.4961 &  0.7519 \tabularnewline
150 &  0.193 &  0.3861 &  0.807 \tabularnewline
151 &  0.1718 &  0.3437 &  0.8282 \tabularnewline
152 &  0.1242 &  0.2484 &  0.8758 \tabularnewline
153 &  0.1205 &  0.2411 &  0.8795 \tabularnewline
154 &  0.08046 &  0.1609 &  0.9195 \tabularnewline
155 &  0.09224 &  0.1845 &  0.9078 \tabularnewline
156 &  0.1797 &  0.3595 &  0.8203 \tabularnewline
157 &  0.2364 &  0.4728 &  0.7636 \tabularnewline
158 &  0.43 &  0.8599 &  0.57 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302972&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]9[/C][C] 0.3871[/C][C] 0.7742[/C][C] 0.6129[/C][/ROW]
[ROW][C]10[/C][C] 0.2515[/C][C] 0.503[/C][C] 0.7485[/C][/ROW]
[ROW][C]11[/C][C] 0.2256[/C][C] 0.4511[/C][C] 0.7744[/C][/ROW]
[ROW][C]12[/C][C] 0.1351[/C][C] 0.2701[/C][C] 0.8649[/C][/ROW]
[ROW][C]13[/C][C] 0.07536[/C][C] 0.1507[/C][C] 0.9246[/C][/ROW]
[ROW][C]14[/C][C] 0.06229[/C][C] 0.1246[/C][C] 0.9377[/C][/ROW]
[ROW][C]15[/C][C] 0.05181[/C][C] 0.1036[/C][C] 0.9482[/C][/ROW]
[ROW][C]16[/C][C] 0.09278[/C][C] 0.1856[/C][C] 0.9072[/C][/ROW]
[ROW][C]17[/C][C] 0.0696[/C][C] 0.1392[/C][C] 0.9304[/C][/ROW]
[ROW][C]18[/C][C] 0.1438[/C][C] 0.2875[/C][C] 0.8562[/C][/ROW]
[ROW][C]19[/C][C] 0.09972[/C][C] 0.1994[/C][C] 0.9003[/C][/ROW]
[ROW][C]20[/C][C] 0.1093[/C][C] 0.2186[/C][C] 0.8907[/C][/ROW]
[ROW][C]21[/C][C] 0.0866[/C][C] 0.1732[/C][C] 0.9134[/C][/ROW]
[ROW][C]22[/C][C] 0.06493[/C][C] 0.1299[/C][C] 0.9351[/C][/ROW]
[ROW][C]23[/C][C] 0.05466[/C][C] 0.1093[/C][C] 0.9453[/C][/ROW]
[ROW][C]24[/C][C] 0.04001[/C][C] 0.08002[/C][C] 0.96[/C][/ROW]
[ROW][C]25[/C][C] 0.08893[/C][C] 0.1779[/C][C] 0.9111[/C][/ROW]
[ROW][C]26[/C][C] 0.06465[/C][C] 0.1293[/C][C] 0.9354[/C][/ROW]
[ROW][C]27[/C][C] 0.04847[/C][C] 0.09694[/C][C] 0.9515[/C][/ROW]
[ROW][C]28[/C][C] 0.0361[/C][C] 0.07219[/C][C] 0.9639[/C][/ROW]
[ROW][C]29[/C][C] 0.02724[/C][C] 0.05447[/C][C] 0.9728[/C][/ROW]
[ROW][C]30[/C][C] 0.04681[/C][C] 0.09363[/C][C] 0.9532[/C][/ROW]
[ROW][C]31[/C][C] 0.06352[/C][C] 0.127[/C][C] 0.9365[/C][/ROW]
[ROW][C]32[/C][C] 0.0505[/C][C] 0.101[/C][C] 0.9495[/C][/ROW]
[ROW][C]33[/C][C] 0.04783[/C][C] 0.09566[/C][C] 0.9522[/C][/ROW]
[ROW][C]34[/C][C] 0.07354[/C][C] 0.1471[/C][C] 0.9265[/C][/ROW]
[ROW][C]35[/C][C] 0.06494[/C][C] 0.1299[/C][C] 0.9351[/C][/ROW]
[ROW][C]36[/C][C] 0.04851[/C][C] 0.09702[/C][C] 0.9515[/C][/ROW]
[ROW][C]37[/C][C] 0.05011[/C][C] 0.1002[/C][C] 0.9499[/C][/ROW]
[ROW][C]38[/C][C] 0.0592[/C][C] 0.1184[/C][C] 0.9408[/C][/ROW]
[ROW][C]39[/C][C] 0.07979[/C][C] 0.1596[/C][C] 0.9202[/C][/ROW]
[ROW][C]40[/C][C] 0.06424[/C][C] 0.1285[/C][C] 0.9358[/C][/ROW]
[ROW][C]41[/C][C] 0.04917[/C][C] 0.09833[/C][C] 0.9508[/C][/ROW]
[ROW][C]42[/C][C] 0.05046[/C][C] 0.1009[/C][C] 0.9495[/C][/ROW]
[ROW][C]43[/C][C] 0.03908[/C][C] 0.07816[/C][C] 0.9609[/C][/ROW]
[ROW][C]44[/C][C] 0.02921[/C][C] 0.05841[/C][C] 0.9708[/C][/ROW]
[ROW][C]45[/C][C] 0.0211[/C][C] 0.0422[/C][C] 0.9789[/C][/ROW]
[ROW][C]46[/C][C] 0.01687[/C][C] 0.03375[/C][C] 0.9831[/C][/ROW]
[ROW][C]47[/C][C] 0.01252[/C][C] 0.02503[/C][C] 0.9875[/C][/ROW]
[ROW][C]48[/C][C] 0.04236[/C][C] 0.08471[/C][C] 0.9576[/C][/ROW]
[ROW][C]49[/C][C] 0.03536[/C][C] 0.07071[/C][C] 0.9646[/C][/ROW]
[ROW][C]50[/C][C] 0.02906[/C][C] 0.05811[/C][C] 0.9709[/C][/ROW]
[ROW][C]51[/C][C] 0.02981[/C][C] 0.05963[/C][C] 0.9702[/C][/ROW]
[ROW][C]52[/C][C] 0.02248[/C][C] 0.04495[/C][C] 0.9775[/C][/ROW]
[ROW][C]53[/C][C] 0.1527[/C][C] 0.3053[/C][C] 0.8473[/C][/ROW]
[ROW][C]54[/C][C] 0.1273[/C][C] 0.2546[/C][C] 0.8727[/C][/ROW]
[ROW][C]55[/C][C] 0.2104[/C][C] 0.4209[/C][C] 0.7896[/C][/ROW]
[ROW][C]56[/C][C] 0.1851[/C][C] 0.3703[/C][C] 0.8149[/C][/ROW]
[ROW][C]57[/C][C] 0.2403[/C][C] 0.4807[/C][C] 0.7597[/C][/ROW]
[ROW][C]58[/C][C] 0.2049[/C][C] 0.4097[/C][C] 0.7951[/C][/ROW]
[ROW][C]59[/C][C] 0.1775[/C][C] 0.355[/C][C] 0.8225[/C][/ROW]
[ROW][C]60[/C][C] 0.1479[/C][C] 0.2958[/C][C] 0.8521[/C][/ROW]
[ROW][C]61[/C][C] 0.1456[/C][C] 0.2912[/C][C] 0.8544[/C][/ROW]
[ROW][C]62[/C][C] 0.1244[/C][C] 0.2488[/C][C] 0.8756[/C][/ROW]
[ROW][C]63[/C][C] 0.1357[/C][C] 0.2715[/C][C] 0.8643[/C][/ROW]
[ROW][C]64[/C][C] 0.1152[/C][C] 0.2304[/C][C] 0.8848[/C][/ROW]
[ROW][C]65[/C][C] 0.09469[/C][C] 0.1894[/C][C] 0.9053[/C][/ROW]
[ROW][C]66[/C][C] 0.1261[/C][C] 0.2522[/C][C] 0.8739[/C][/ROW]
[ROW][C]67[/C][C] 0.1242[/C][C] 0.2484[/C][C] 0.8758[/C][/ROW]
[ROW][C]68[/C][C] 0.1593[/C][C] 0.3185[/C][C] 0.8407[/C][/ROW]
[ROW][C]69[/C][C] 0.1646[/C][C] 0.3292[/C][C] 0.8354[/C][/ROW]
[ROW][C]70[/C][C] 0.1439[/C][C] 0.2878[/C][C] 0.8561[/C][/ROW]
[ROW][C]71[/C][C] 0.2083[/C][C] 0.4165[/C][C] 0.7917[/C][/ROW]
[ROW][C]72[/C][C] 0.2132[/C][C] 0.4264[/C][C] 0.7868[/C][/ROW]
[ROW][C]73[/C][C] 0.3076[/C][C] 0.6151[/C][C] 0.6924[/C][/ROW]
[ROW][C]74[/C][C] 0.3047[/C][C] 0.6093[/C][C] 0.6953[/C][/ROW]
[ROW][C]75[/C][C] 0.2716[/C][C] 0.5432[/C][C] 0.7284[/C][/ROW]
[ROW][C]76[/C][C] 0.241[/C][C] 0.4819[/C][C] 0.759[/C][/ROW]
[ROW][C]77[/C][C] 0.2209[/C][C] 0.4418[/C][C] 0.7791[/C][/ROW]
[ROW][C]78[/C][C] 0.2016[/C][C] 0.4033[/C][C] 0.7984[/C][/ROW]
[ROW][C]79[/C][C] 0.3694[/C][C] 0.7388[/C][C] 0.6306[/C][/ROW]
[ROW][C]80[/C][C] 0.3469[/C][C] 0.6939[/C][C] 0.6531[/C][/ROW]
[ROW][C]81[/C][C] 0.722[/C][C] 0.5559[/C][C] 0.278[/C][/ROW]
[ROW][C]82[/C][C] 0.689[/C][C] 0.622[/C][C] 0.311[/C][/ROW]
[ROW][C]83[/C][C] 0.6575[/C][C] 0.685[/C][C] 0.3425[/C][/ROW]
[ROW][C]84[/C][C] 0.625[/C][C] 0.75[/C][C] 0.375[/C][/ROW]
[ROW][C]85[/C][C] 0.7264[/C][C] 0.5471[/C][C] 0.2736[/C][/ROW]
[ROW][C]86[/C][C] 0.6873[/C][C] 0.6255[/C][C] 0.3127[/C][/ROW]
[ROW][C]87[/C][C] 0.7151[/C][C] 0.5698[/C][C] 0.2849[/C][/ROW]
[ROW][C]88[/C][C] 0.6836[/C][C] 0.6327[/C][C] 0.3164[/C][/ROW]
[ROW][C]89[/C][C] 0.6893[/C][C] 0.6214[/C][C] 0.3107[/C][/ROW]
[ROW][C]90[/C][C] 0.6851[/C][C] 0.6298[/C][C] 0.3149[/C][/ROW]
[ROW][C]91[/C][C] 0.6471[/C][C] 0.7058[/C][C] 0.3529[/C][/ROW]
[ROW][C]92[/C][C] 0.7058[/C][C] 0.5885[/C][C] 0.2942[/C][/ROW]
[ROW][C]93[/C][C] 0.6726[/C][C] 0.6547[/C][C] 0.3274[/C][/ROW]
[ROW][C]94[/C][C] 0.635[/C][C] 0.73[/C][C] 0.365[/C][/ROW]
[ROW][C]95[/C][C] 0.6005[/C][C] 0.799[/C][C] 0.3995[/C][/ROW]
[ROW][C]96[/C][C] 0.5573[/C][C] 0.8853[/C][C] 0.4427[/C][/ROW]
[ROW][C]97[/C][C] 0.5159[/C][C] 0.9681[/C][C] 0.4841[/C][/ROW]
[ROW][C]98[/C][C] 0.5126[/C][C] 0.9748[/C][C] 0.4874[/C][/ROW]
[ROW][C]99[/C][C] 0.4732[/C][C] 0.9465[/C][C] 0.5268[/C][/ROW]
[ROW][C]100[/C][C] 0.4456[/C][C] 0.8912[/C][C] 0.5544[/C][/ROW]
[ROW][C]101[/C][C] 0.4471[/C][C] 0.8943[/C][C] 0.5529[/C][/ROW]
[ROW][C]102[/C][C] 0.4055[/C][C] 0.811[/C][C] 0.5945[/C][/ROW]
[ROW][C]103[/C][C] 0.5571[/C][C] 0.8859[/C][C] 0.4429[/C][/ROW]
[ROW][C]104[/C][C] 0.5246[/C][C] 0.9508[/C][C] 0.4754[/C][/ROW]
[ROW][C]105[/C][C] 0.4779[/C][C] 0.9558[/C][C] 0.5221[/C][/ROW]
[ROW][C]106[/C][C] 0.4308[/C][C] 0.8616[/C][C] 0.5692[/C][/ROW]
[ROW][C]107[/C][C] 0.4089[/C][C] 0.8179[/C][C] 0.5911[/C][/ROW]
[ROW][C]108[/C][C] 0.3651[/C][C] 0.7302[/C][C] 0.6349[/C][/ROW]
[ROW][C]109[/C][C] 0.3228[/C][C] 0.6455[/C][C] 0.6772[/C][/ROW]
[ROW][C]110[/C][C] 0.2864[/C][C] 0.5727[/C][C] 0.7136[/C][/ROW]
[ROW][C]111[/C][C] 0.2832[/C][C] 0.5664[/C][C] 0.7168[/C][/ROW]
[ROW][C]112[/C][C] 0.2444[/C][C] 0.4888[/C][C] 0.7556[/C][/ROW]
[ROW][C]113[/C][C] 0.2596[/C][C] 0.5192[/C][C] 0.7404[/C][/ROW]
[ROW][C]114[/C][C] 0.336[/C][C] 0.672[/C][C] 0.664[/C][/ROW]
[ROW][C]115[/C][C] 0.3052[/C][C] 0.6104[/C][C] 0.6948[/C][/ROW]
[ROW][C]116[/C][C] 0.302[/C][C] 0.6041[/C][C] 0.698[/C][/ROW]
[ROW][C]117[/C][C] 0.28[/C][C] 0.5599[/C][C] 0.72[/C][/ROW]
[ROW][C]118[/C][C] 0.2397[/C][C] 0.4793[/C][C] 0.7603[/C][/ROW]
[ROW][C]119[/C][C] 0.2391[/C][C] 0.4783[/C][C] 0.7609[/C][/ROW]
[ROW][C]120[/C][C] 0.2023[/C][C] 0.4046[/C][C] 0.7977[/C][/ROW]
[ROW][C]121[/C][C] 0.1726[/C][C] 0.3453[/C][C] 0.8274[/C][/ROW]
[ROW][C]122[/C][C] 0.1425[/C][C] 0.285[/C][C] 0.8575[/C][/ROW]
[ROW][C]123[/C][C] 0.1185[/C][C] 0.2371[/C][C] 0.8815[/C][/ROW]
[ROW][C]124[/C][C] 0.09628[/C][C] 0.1926[/C][C] 0.9037[/C][/ROW]
[ROW][C]125[/C][C] 0.08171[/C][C] 0.1634[/C][C] 0.9183[/C][/ROW]
[ROW][C]126[/C][C] 0.07971[/C][C] 0.1594[/C][C] 0.9203[/C][/ROW]
[ROW][C]127[/C][C] 0.07568[/C][C] 0.1514[/C][C] 0.9243[/C][/ROW]
[ROW][C]128[/C][C] 0.07072[/C][C] 0.1414[/C][C] 0.9293[/C][/ROW]
[ROW][C]129[/C][C] 0.05457[/C][C] 0.1091[/C][C] 0.9454[/C][/ROW]
[ROW][C]130[/C][C] 0.05209[/C][C] 0.1042[/C][C] 0.9479[/C][/ROW]
[ROW][C]131[/C][C] 0.03913[/C][C] 0.07825[/C][C] 0.9609[/C][/ROW]
[ROW][C]132[/C][C] 0.02912[/C][C] 0.05825[/C][C] 0.9709[/C][/ROW]
[ROW][C]133[/C][C] 0.02868[/C][C] 0.05736[/C][C] 0.9713[/C][/ROW]
[ROW][C]134[/C][C] 0.07596[/C][C] 0.1519[/C][C] 0.924[/C][/ROW]
[ROW][C]135[/C][C] 0.05895[/C][C] 0.1179[/C][C] 0.9411[/C][/ROW]
[ROW][C]136[/C][C] 0.05034[/C][C] 0.1007[/C][C] 0.9497[/C][/ROW]
[ROW][C]137[/C][C] 0.0406[/C][C] 0.08121[/C][C] 0.9594[/C][/ROW]
[ROW][C]138[/C][C] 0.03175[/C][C] 0.06351[/C][C] 0.9682[/C][/ROW]
[ROW][C]139[/C][C] 0.04366[/C][C] 0.08732[/C][C] 0.9563[/C][/ROW]
[ROW][C]140[/C][C] 0.04313[/C][C] 0.08626[/C][C] 0.9569[/C][/ROW]
[ROW][C]141[/C][C] 0.03261[/C][C] 0.06521[/C][C] 0.9674[/C][/ROW]
[ROW][C]142[/C][C] 0.02255[/C][C] 0.0451[/C][C] 0.9775[/C][/ROW]
[ROW][C]143[/C][C] 0.03849[/C][C] 0.07699[/C][C] 0.9615[/C][/ROW]
[ROW][C]144[/C][C] 0.06805[/C][C] 0.1361[/C][C] 0.932[/C][/ROW]
[ROW][C]145[/C][C] 0.08892[/C][C] 0.1778[/C][C] 0.9111[/C][/ROW]
[ROW][C]146[/C][C] 0.1488[/C][C] 0.2977[/C][C] 0.8512[/C][/ROW]
[ROW][C]147[/C][C] 0.1607[/C][C] 0.3213[/C][C] 0.8393[/C][/ROW]
[ROW][C]148[/C][C] 0.1188[/C][C] 0.2375[/C][C] 0.8812[/C][/ROW]
[ROW][C]149[/C][C] 0.2481[/C][C] 0.4961[/C][C] 0.7519[/C][/ROW]
[ROW][C]150[/C][C] 0.193[/C][C] 0.3861[/C][C] 0.807[/C][/ROW]
[ROW][C]151[/C][C] 0.1718[/C][C] 0.3437[/C][C] 0.8282[/C][/ROW]
[ROW][C]152[/C][C] 0.1242[/C][C] 0.2484[/C][C] 0.8758[/C][/ROW]
[ROW][C]153[/C][C] 0.1205[/C][C] 0.2411[/C][C] 0.8795[/C][/ROW]
[ROW][C]154[/C][C] 0.08046[/C][C] 0.1609[/C][C] 0.9195[/C][/ROW]
[ROW][C]155[/C][C] 0.09224[/C][C] 0.1845[/C][C] 0.9078[/C][/ROW]
[ROW][C]156[/C][C] 0.1797[/C][C] 0.3595[/C][C] 0.8203[/C][/ROW]
[ROW][C]157[/C][C] 0.2364[/C][C] 0.4728[/C][C] 0.7636[/C][/ROW]
[ROW][C]158[/C][C] 0.43[/C][C] 0.8599[/C][C] 0.57[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302972&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302972&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
9 0.3871 0.7742 0.6129
10 0.2515 0.503 0.7485
11 0.2256 0.4511 0.7744
12 0.1351 0.2701 0.8649
13 0.07536 0.1507 0.9246
14 0.06229 0.1246 0.9377
15 0.05181 0.1036 0.9482
16 0.09278 0.1856 0.9072
17 0.0696 0.1392 0.9304
18 0.1438 0.2875 0.8562
19 0.09972 0.1994 0.9003
20 0.1093 0.2186 0.8907
21 0.0866 0.1732 0.9134
22 0.06493 0.1299 0.9351
23 0.05466 0.1093 0.9453
24 0.04001 0.08002 0.96
25 0.08893 0.1779 0.9111
26 0.06465 0.1293 0.9354
27 0.04847 0.09694 0.9515
28 0.0361 0.07219 0.9639
29 0.02724 0.05447 0.9728
30 0.04681 0.09363 0.9532
31 0.06352 0.127 0.9365
32 0.0505 0.101 0.9495
33 0.04783 0.09566 0.9522
34 0.07354 0.1471 0.9265
35 0.06494 0.1299 0.9351
36 0.04851 0.09702 0.9515
37 0.05011 0.1002 0.9499
38 0.0592 0.1184 0.9408
39 0.07979 0.1596 0.9202
40 0.06424 0.1285 0.9358
41 0.04917 0.09833 0.9508
42 0.05046 0.1009 0.9495
43 0.03908 0.07816 0.9609
44 0.02921 0.05841 0.9708
45 0.0211 0.0422 0.9789
46 0.01687 0.03375 0.9831
47 0.01252 0.02503 0.9875
48 0.04236 0.08471 0.9576
49 0.03536 0.07071 0.9646
50 0.02906 0.05811 0.9709
51 0.02981 0.05963 0.9702
52 0.02248 0.04495 0.9775
53 0.1527 0.3053 0.8473
54 0.1273 0.2546 0.8727
55 0.2104 0.4209 0.7896
56 0.1851 0.3703 0.8149
57 0.2403 0.4807 0.7597
58 0.2049 0.4097 0.7951
59 0.1775 0.355 0.8225
60 0.1479 0.2958 0.8521
61 0.1456 0.2912 0.8544
62 0.1244 0.2488 0.8756
63 0.1357 0.2715 0.8643
64 0.1152 0.2304 0.8848
65 0.09469 0.1894 0.9053
66 0.1261 0.2522 0.8739
67 0.1242 0.2484 0.8758
68 0.1593 0.3185 0.8407
69 0.1646 0.3292 0.8354
70 0.1439 0.2878 0.8561
71 0.2083 0.4165 0.7917
72 0.2132 0.4264 0.7868
73 0.3076 0.6151 0.6924
74 0.3047 0.6093 0.6953
75 0.2716 0.5432 0.7284
76 0.241 0.4819 0.759
77 0.2209 0.4418 0.7791
78 0.2016 0.4033 0.7984
79 0.3694 0.7388 0.6306
80 0.3469 0.6939 0.6531
81 0.722 0.5559 0.278
82 0.689 0.622 0.311
83 0.6575 0.685 0.3425
84 0.625 0.75 0.375
85 0.7264 0.5471 0.2736
86 0.6873 0.6255 0.3127
87 0.7151 0.5698 0.2849
88 0.6836 0.6327 0.3164
89 0.6893 0.6214 0.3107
90 0.6851 0.6298 0.3149
91 0.6471 0.7058 0.3529
92 0.7058 0.5885 0.2942
93 0.6726 0.6547 0.3274
94 0.635 0.73 0.365
95 0.6005 0.799 0.3995
96 0.5573 0.8853 0.4427
97 0.5159 0.9681 0.4841
98 0.5126 0.9748 0.4874
99 0.4732 0.9465 0.5268
100 0.4456 0.8912 0.5544
101 0.4471 0.8943 0.5529
102 0.4055 0.811 0.5945
103 0.5571 0.8859 0.4429
104 0.5246 0.9508 0.4754
105 0.4779 0.9558 0.5221
106 0.4308 0.8616 0.5692
107 0.4089 0.8179 0.5911
108 0.3651 0.7302 0.6349
109 0.3228 0.6455 0.6772
110 0.2864 0.5727 0.7136
111 0.2832 0.5664 0.7168
112 0.2444 0.4888 0.7556
113 0.2596 0.5192 0.7404
114 0.336 0.672 0.664
115 0.3052 0.6104 0.6948
116 0.302 0.6041 0.698
117 0.28 0.5599 0.72
118 0.2397 0.4793 0.7603
119 0.2391 0.4783 0.7609
120 0.2023 0.4046 0.7977
121 0.1726 0.3453 0.8274
122 0.1425 0.285 0.8575
123 0.1185 0.2371 0.8815
124 0.09628 0.1926 0.9037
125 0.08171 0.1634 0.9183
126 0.07971 0.1594 0.9203
127 0.07568 0.1514 0.9243
128 0.07072 0.1414 0.9293
129 0.05457 0.1091 0.9454
130 0.05209 0.1042 0.9479
131 0.03913 0.07825 0.9609
132 0.02912 0.05825 0.9709
133 0.02868 0.05736 0.9713
134 0.07596 0.1519 0.924
135 0.05895 0.1179 0.9411
136 0.05034 0.1007 0.9497
137 0.0406 0.08121 0.9594
138 0.03175 0.06351 0.9682
139 0.04366 0.08732 0.9563
140 0.04313 0.08626 0.9569
141 0.03261 0.06521 0.9674
142 0.02255 0.0451 0.9775
143 0.03849 0.07699 0.9615
144 0.06805 0.1361 0.932
145 0.08892 0.1778 0.9111
146 0.1488 0.2977 0.8512
147 0.1607 0.3213 0.8393
148 0.1188 0.2375 0.8812
149 0.2481 0.4961 0.7519
150 0.193 0.3861 0.807
151 0.1718 0.3437 0.8282
152 0.1242 0.2484 0.8758
153 0.1205 0.2411 0.8795
154 0.08046 0.1609 0.9195
155 0.09224 0.1845 0.9078
156 0.1797 0.3595 0.8203
157 0.2364 0.4728 0.7636
158 0.43 0.8599 0.57







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level0 0OK
5% type I error level50.0333333OK
10% type I error level280.186667NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 0 &  0 & OK \tabularnewline
5% type I error level & 5 & 0.0333333 & OK \tabularnewline
10% type I error level & 28 & 0.186667 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302972&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]0[/C][C] 0[/C][C]OK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]5[/C][C]0.0333333[/C][C]OK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]28[/C][C]0.186667[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302972&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302972&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level0 0OK
5% type I error level50.0333333OK
10% type I error level280.186667NOK







Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 2.1245, df1 = 2, df2 = 159, p-value = 0.1229
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.4452, df1 = 10, df2 = 151, p-value = 0.1657
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.72336, df1 = 2, df2 = 159, p-value = 0.4867

\begin{tabular}{lllllllll}
\hline
Ramsey RESET F-Test for powers (2 and 3) of fitted values \tabularnewline
> reset_test_fitted
	RESET test
data:  mylm
RESET = 2.1245, df1 = 2, df2 = 159, p-value = 0.1229
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of regressors \tabularnewline
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.4452, df1 = 10, df2 = 151, p-value = 0.1657
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of principal components \tabularnewline
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.72336, df1 = 2, df2 = 159, p-value = 0.4867
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=302972&T=7

[TABLE]
[ROW][C]Ramsey RESET F-Test for powers (2 and 3) of fitted values[/C][/ROW]
[ROW][C]
> reset_test_fitted
	RESET test
data:  mylm
RESET = 2.1245, df1 = 2, df2 = 159, p-value = 0.1229
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of regressors[/C][/ROW] [ROW][C]
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.4452, df1 = 10, df2 = 151, p-value = 0.1657
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of principal components[/C][/ROW] [ROW][C]
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.72336, df1 = 2, df2 = 159, p-value = 0.4867
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=302972&T=7

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302972&T=7

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 2.1245, df1 = 2, df2 = 159, p-value = 0.1229
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.4452, df1 = 10, df2 = 151, p-value = 0.1657
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.72336, df1 = 2, df2 = 159, p-value = 0.4867







Variance Inflation Factors (Multicollinearity)
> vif
     SK1      SK2      SK4      SK5      SK6 
1.103463 1.116462 1.048985 1.040552 1.020741 

\begin{tabular}{lllllllll}
\hline
Variance Inflation Factors (Multicollinearity) \tabularnewline
> vif
     SK1      SK2      SK4      SK5      SK6 
1.103463 1.116462 1.048985 1.040552 1.020741 
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=302972&T=8

[TABLE]
[ROW][C]Variance Inflation Factors (Multicollinearity)[/C][/ROW]
[ROW][C]
> vif
     SK1      SK2      SK4      SK5      SK6 
1.103463 1.116462 1.048985 1.040552 1.020741 
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=302972&T=8

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302972&T=8

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variance Inflation Factors (Multicollinearity)
> vif
     SK1      SK2      SK4      SK5      SK6 
1.103463 1.116462 1.048985 1.040552 1.020741 



Parameters (Session):
Parameters (R input):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ;
R code (references can be found in the software module):
par5 <- '0'
par4 <- '0'
par3 <- 'No Linear Trend'
par2 <- 'Do not include Seasonal Dummies'
par1 <- '1'
library(lattice)
library(lmtest)
library(car)
library(MASS)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
mywarning <- ''
par1 <- as.numeric(par1)
if(is.na(par1)) {
par1 <- 1
mywarning = 'Warning: you did not specify the column number of the endogenous series! The first column was selected by default.'
}
if (par4=='') par4 <- 0
par4 <- as.numeric(par4)
if (par5=='') par5 <- 0
par5 <- as.numeric(par5)
x <- na.omit(t(y))
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'Seasonal Differences (s=12)'){
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'First and Seasonal Differences (s=12)'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if(par4 > 0) {
x2 <- array(0, dim=c(n-par4,par4), dimnames=list(1:(n-par4), paste(colnames(x)[par1],'(t-',1:par4,')',sep='')))
for (i in 1:(n-par4)) {
for (j in 1:par4) {
x2[i,j] <- x[i+par4-j,par1]
}
}
x <- cbind(x[(par4+1):n,], x2)
n <- n - par4
}
if(par5 > 0) {
x2 <- array(0, dim=c(n-par5*12,par5), dimnames=list(1:(n-par5*12), paste(colnames(x)[par1],'(t-',1:par5,'s)',sep='')))
for (i in 1:(n-par5*12)) {
for (j in 1:par5) {
x2[i,j] <- x[i+par5*12-j*12,par1]
}
}
x <- cbind(x[(par5*12+1):n,], x2)
n <- n - par5*12
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
(k <- length(x[n,]))
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
print(x)
(k <- length(x[n,]))
head(x)
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
sresid <- studres(mylm)
hist(sresid, freq=FALSE, main='Distribution of Studentized Residuals')
xfit<-seq(min(sresid),max(sresid),length=40)
yfit<-dnorm(xfit)
lines(xfit, yfit)
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqPlot(mylm, main='QQ Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
print(z)
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, mywarning)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Multiple Linear Regression - Ordinary Least Squares', 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,formatC(signif(mysum$coefficients[i,1],5),format='g',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,2],5),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,3],4),format='e',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4],4),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4]/2,4),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a,formatC(signif(sqrt(mysum$r.squared),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$adj.r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a,formatC(signif(mysum$fstatistic[1],6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a,formatC(signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a,formatC(signif(mysum$sigma,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a,formatC(signif(sum(myerror*myerror),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
myr <- as.numeric(mysum$resid)
myr
if(n < 200) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,formatC(signif(x[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(x[i]-mysum$resid[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$resid[i],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,1],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,2],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,3],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,formatC(signif(numsignificant1/numgqtests,6),format='g',flag=' '))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
}
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of fitted values',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_fitted <- resettest(mylm,power=2:3,type='fitted')
a<-table.element(a,paste('
',RC.texteval('reset_test_fitted'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of regressors',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_regressors <- resettest(mylm,power=2:3,type='regressor')
a<-table.element(a,paste('
',RC.texteval('reset_test_regressors'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of principal components',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_principal_components <- resettest(mylm,power=2:3,type='princomp')
a<-table.element(a,paste('
',RC.texteval('reset_test_principal_components'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable8.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variance Inflation Factors (Multicollinearity)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
vif <- vif(mylm)
a<-table.element(a,paste('
',RC.texteval('vif'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable9.tab')