Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_autocorrelation.wasp
Title produced by software(Partial) Autocorrelation Function
Date of computationFri, 23 Dec 2016 14:57:56 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/23/t14825014968dbh19nbm83uta1.htm/, Retrieved Fri, 01 Nov 2024 03:41:07 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=302955, Retrieved Fri, 01 Nov 2024 03:41:07 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact109
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [(Partial) Autocorrelation Function] [ACF N2671] [2016-12-23 13:57:56] [11b61e09f442d73f657668491c17a736] [Current]
Feedback Forum

Post a new message
Dataseries X:
6258.5
6191
5939.5
5517.5
5382.5
5785
5353.5
5205.5
4915
4691.5
4564.5
4496
4877.5
4703.5
4528.5
4262.5
4077
4291
4357
4191
4025.5
3994.5
3934.5
3989
4565.5
4451
4312.5
4075
4005.5
4376.5
4341
4025.5
3992
3958.5
3907.5
3858.5
4236
4520.5
4333.5
4057.5
4079
4387.5
4235.5
3977.5
4007.5
3921
3936
3730.5
4310
4251.5
4062
3653
3659
3827.5
3726.5
3544
3428.5
3422.5
3401
3263
3801.5
3741
3545
3179.5
3276.5
3409.5
3411.5
3329.5
3184
3091
3162.5
3071
3654.5
3441.5
3189
3114.5
3078
3425
3368
3176
3165
3111
3247.5
3150
3628
3567
3348.5
3228.5
3181.5
3351
3472.5
3418.5
3409
3361
3605.5
3671.5
4297.5
4459.5
4402
4024.5
4116.5
4387
4288
4118.5
4035
4006.5
4143
4279.5
4974.5
5080.5
4845.5
4472.5
4584.5
5047.5
4922.5
4695
4545




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302955&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=302955&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302955&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Autocorrelation Function
Time lag kACF(k)T-STATP-value
1-0.218072-2.22390.014158
20.0061750.0630.474956
30.1260481.28540.100746
4-0.049889-0.50880.305995
50.2334942.38120.009538
6-0.019659-0.20050.420747
7-0.045879-0.46790.320426
8-0.046774-0.4770.31718
9-0.121796-1.24210.108501
100.097520.99450.161141
110.0391620.39940.345217
12-0.263576-2.6880.004186
130.0610280.62240.267532
14-0.062313-0.63550.263258
150.0896330.91410.181393
160.0533070.54360.29393
17-0.084048-0.85710.196673
180.0198160.20210.420121
19-0.101408-1.03420.151729
200.2238722.28310.012231

\begin{tabular}{lllllllll}
\hline
Autocorrelation Function \tabularnewline
Time lag k & ACF(k) & T-STAT & P-value \tabularnewline
1 & -0.218072 & -2.2239 & 0.014158 \tabularnewline
2 & 0.006175 & 0.063 & 0.474956 \tabularnewline
3 & 0.126048 & 1.2854 & 0.100746 \tabularnewline
4 & -0.049889 & -0.5088 & 0.305995 \tabularnewline
5 & 0.233494 & 2.3812 & 0.009538 \tabularnewline
6 & -0.019659 & -0.2005 & 0.420747 \tabularnewline
7 & -0.045879 & -0.4679 & 0.320426 \tabularnewline
8 & -0.046774 & -0.477 & 0.31718 \tabularnewline
9 & -0.121796 & -1.2421 & 0.108501 \tabularnewline
10 & 0.09752 & 0.9945 & 0.161141 \tabularnewline
11 & 0.039162 & 0.3994 & 0.345217 \tabularnewline
12 & -0.263576 & -2.688 & 0.004186 \tabularnewline
13 & 0.061028 & 0.6224 & 0.267532 \tabularnewline
14 & -0.062313 & -0.6355 & 0.263258 \tabularnewline
15 & 0.089633 & 0.9141 & 0.181393 \tabularnewline
16 & 0.053307 & 0.5436 & 0.29393 \tabularnewline
17 & -0.084048 & -0.8571 & 0.196673 \tabularnewline
18 & 0.019816 & 0.2021 & 0.420121 \tabularnewline
19 & -0.101408 & -1.0342 & 0.151729 \tabularnewline
20 & 0.223872 & 2.2831 & 0.012231 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302955&T=1

[TABLE]
[ROW][C]Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]ACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]-0.218072[/C][C]-2.2239[/C][C]0.014158[/C][/ROW]
[ROW][C]2[/C][C]0.006175[/C][C]0.063[/C][C]0.474956[/C][/ROW]
[ROW][C]3[/C][C]0.126048[/C][C]1.2854[/C][C]0.100746[/C][/ROW]
[ROW][C]4[/C][C]-0.049889[/C][C]-0.5088[/C][C]0.305995[/C][/ROW]
[ROW][C]5[/C][C]0.233494[/C][C]2.3812[/C][C]0.009538[/C][/ROW]
[ROW][C]6[/C][C]-0.019659[/C][C]-0.2005[/C][C]0.420747[/C][/ROW]
[ROW][C]7[/C][C]-0.045879[/C][C]-0.4679[/C][C]0.320426[/C][/ROW]
[ROW][C]8[/C][C]-0.046774[/C][C]-0.477[/C][C]0.31718[/C][/ROW]
[ROW][C]9[/C][C]-0.121796[/C][C]-1.2421[/C][C]0.108501[/C][/ROW]
[ROW][C]10[/C][C]0.09752[/C][C]0.9945[/C][C]0.161141[/C][/ROW]
[ROW][C]11[/C][C]0.039162[/C][C]0.3994[/C][C]0.345217[/C][/ROW]
[ROW][C]12[/C][C]-0.263576[/C][C]-2.688[/C][C]0.004186[/C][/ROW]
[ROW][C]13[/C][C]0.061028[/C][C]0.6224[/C][C]0.267532[/C][/ROW]
[ROW][C]14[/C][C]-0.062313[/C][C]-0.6355[/C][C]0.263258[/C][/ROW]
[ROW][C]15[/C][C]0.089633[/C][C]0.9141[/C][C]0.181393[/C][/ROW]
[ROW][C]16[/C][C]0.053307[/C][C]0.5436[/C][C]0.29393[/C][/ROW]
[ROW][C]17[/C][C]-0.084048[/C][C]-0.8571[/C][C]0.196673[/C][/ROW]
[ROW][C]18[/C][C]0.019816[/C][C]0.2021[/C][C]0.420121[/C][/ROW]
[ROW][C]19[/C][C]-0.101408[/C][C]-1.0342[/C][C]0.151729[/C][/ROW]
[ROW][C]20[/C][C]0.223872[/C][C]2.2831[/C][C]0.012231[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302955&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302955&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Autocorrelation Function
Time lag kACF(k)T-STATP-value
1-0.218072-2.22390.014158
20.0061750.0630.474956
30.1260481.28540.100746
4-0.049889-0.50880.305995
50.2334942.38120.009538
6-0.019659-0.20050.420747
7-0.045879-0.46790.320426
8-0.046774-0.4770.31718
9-0.121796-1.24210.108501
100.097520.99450.161141
110.0391620.39940.345217
12-0.263576-2.6880.004186
130.0610280.62240.267532
14-0.062313-0.63550.263258
150.0896330.91410.181393
160.0533070.54360.29393
17-0.084048-0.85710.196673
180.0198160.20210.420121
19-0.101408-1.03420.151729
200.2238722.28310.012231







Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
1-0.218072-2.22390.014158
2-0.043447-0.44310.329317
30.1241041.26560.104239
40.0056310.05740.477159
50.2401092.44860.008006
60.0750250.76510.22297
7-0.029875-0.30470.380615
8-0.140069-1.42840.078082
9-0.202057-2.06060.020919
10-0.029129-0.29710.383506
110.0885010.90250.184428
12-0.187514-1.91230.029296
130.0022940.02340.490692
14-0.00218-0.02220.491155
150.1375811.40310.081789
160.0823420.83970.201493
170.0450290.45920.323522
18-0.023184-0.23640.406782
19-0.148208-1.51140.066856
200.1032941.05340.1473

\begin{tabular}{lllllllll}
\hline
Partial Autocorrelation Function \tabularnewline
Time lag k & PACF(k) & T-STAT & P-value \tabularnewline
1 & -0.218072 & -2.2239 & 0.014158 \tabularnewline
2 & -0.043447 & -0.4431 & 0.329317 \tabularnewline
3 & 0.124104 & 1.2656 & 0.104239 \tabularnewline
4 & 0.005631 & 0.0574 & 0.477159 \tabularnewline
5 & 0.240109 & 2.4486 & 0.008006 \tabularnewline
6 & 0.075025 & 0.7651 & 0.22297 \tabularnewline
7 & -0.029875 & -0.3047 & 0.380615 \tabularnewline
8 & -0.140069 & -1.4284 & 0.078082 \tabularnewline
9 & -0.202057 & -2.0606 & 0.020919 \tabularnewline
10 & -0.029129 & -0.2971 & 0.383506 \tabularnewline
11 & 0.088501 & 0.9025 & 0.184428 \tabularnewline
12 & -0.187514 & -1.9123 & 0.029296 \tabularnewline
13 & 0.002294 & 0.0234 & 0.490692 \tabularnewline
14 & -0.00218 & -0.0222 & 0.491155 \tabularnewline
15 & 0.137581 & 1.4031 & 0.081789 \tabularnewline
16 & 0.082342 & 0.8397 & 0.201493 \tabularnewline
17 & 0.045029 & 0.4592 & 0.323522 \tabularnewline
18 & -0.023184 & -0.2364 & 0.406782 \tabularnewline
19 & -0.148208 & -1.5114 & 0.066856 \tabularnewline
20 & 0.103294 & 1.0534 & 0.1473 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302955&T=2

[TABLE]
[ROW][C]Partial Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]PACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]-0.218072[/C][C]-2.2239[/C][C]0.014158[/C][/ROW]
[ROW][C]2[/C][C]-0.043447[/C][C]-0.4431[/C][C]0.329317[/C][/ROW]
[ROW][C]3[/C][C]0.124104[/C][C]1.2656[/C][C]0.104239[/C][/ROW]
[ROW][C]4[/C][C]0.005631[/C][C]0.0574[/C][C]0.477159[/C][/ROW]
[ROW][C]5[/C][C]0.240109[/C][C]2.4486[/C][C]0.008006[/C][/ROW]
[ROW][C]6[/C][C]0.075025[/C][C]0.7651[/C][C]0.22297[/C][/ROW]
[ROW][C]7[/C][C]-0.029875[/C][C]-0.3047[/C][C]0.380615[/C][/ROW]
[ROW][C]8[/C][C]-0.140069[/C][C]-1.4284[/C][C]0.078082[/C][/ROW]
[ROW][C]9[/C][C]-0.202057[/C][C]-2.0606[/C][C]0.020919[/C][/ROW]
[ROW][C]10[/C][C]-0.029129[/C][C]-0.2971[/C][C]0.383506[/C][/ROW]
[ROW][C]11[/C][C]0.088501[/C][C]0.9025[/C][C]0.184428[/C][/ROW]
[ROW][C]12[/C][C]-0.187514[/C][C]-1.9123[/C][C]0.029296[/C][/ROW]
[ROW][C]13[/C][C]0.002294[/C][C]0.0234[/C][C]0.490692[/C][/ROW]
[ROW][C]14[/C][C]-0.00218[/C][C]-0.0222[/C][C]0.491155[/C][/ROW]
[ROW][C]15[/C][C]0.137581[/C][C]1.4031[/C][C]0.081789[/C][/ROW]
[ROW][C]16[/C][C]0.082342[/C][C]0.8397[/C][C]0.201493[/C][/ROW]
[ROW][C]17[/C][C]0.045029[/C][C]0.4592[/C][C]0.323522[/C][/ROW]
[ROW][C]18[/C][C]-0.023184[/C][C]-0.2364[/C][C]0.406782[/C][/ROW]
[ROW][C]19[/C][C]-0.148208[/C][C]-1.5114[/C][C]0.066856[/C][/ROW]
[ROW][C]20[/C][C]0.103294[/C][C]1.0534[/C][C]0.1473[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302955&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302955&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
1-0.218072-2.22390.014158
2-0.043447-0.44310.329317
30.1241041.26560.104239
40.0056310.05740.477159
50.2401092.44860.008006
60.0750250.76510.22297
7-0.029875-0.30470.380615
8-0.140069-1.42840.078082
9-0.202057-2.06060.020919
10-0.029129-0.29710.383506
110.0885010.90250.184428
12-0.187514-1.91230.029296
130.0022940.02340.490692
14-0.00218-0.02220.491155
150.1375811.40310.081789
160.0823420.83970.201493
170.0450290.45920.323522
18-0.023184-0.23640.406782
19-0.148208-1.51140.066856
200.1032941.05340.1473



Parameters (Session):
par1 = 12 ;
Parameters (R input):
par1 = Default ; par2 = -0.9 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ; par8 = ;
R code (references can be found in the software module):
par8 <- ''
par7 <- '0.95'
par6 <- 'White Noise'
par5 <- '12'
par4 <- '1'
par3 <- '0'
par2 <- '-0.9'
par1 <- 'Default'
if (par1 == 'Default') {
par1 = 10*log10(length(x))
} else {
par1 <- as.numeric(par1)
}
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
par4 <- as.numeric(par4)
par5 <- as.numeric(par5)
if (par6 == 'White Noise') par6 <- 'white' else par6 <- 'ma'
par7 <- as.numeric(par7)
if (par8 != '') par8 <- as.numeric(par8)
x <- na.omit(x)
ox <- x
if (par8 == '') {
if (par2 == 0) {
x <- log(x)
} else {
x <- (x ^ par2 - 1) / par2
}
} else {
x <- log(x,base=par8)
}
if (par3 > 0) x <- diff(x,lag=1,difference=par3)
if (par4 > 0) x <- diff(x,lag=par5,difference=par4)
bitmap(file='picts.png')
op <- par(mfrow=c(2,1))
plot(ox,type='l',main='Original Time Series',xlab='time',ylab='value')
if (par8=='') {
mytitle <- paste('Working Time Series (lambda=',par2,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(lambda=',par2,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
} else {
mytitle <- paste('Working Time Series (base=',par8,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(base=',par8,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
}
plot(x,type='l', main=mytitle,xlab='time',ylab='value')
par(op)
dev.off()
bitmap(file='pic1.png')
racf <- acf(x, par1, main='Autocorrelation', xlab='time lag', ylab='ACF', ci.type=par6, ci=par7, sub=mysub)
dev.off()
bitmap(file='pic2.png')
rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF',sub=mysub)
dev.off()
(myacf <- c(racf$acf))
(mypacf <- c(rpacf$acf))
lengthx <- length(x)
sqrtn <- sqrt(lengthx)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'ACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 2:(par1+1)) {
a<-table.row.start(a)
a<-table.element(a,i-1,header=TRUE)
a<-table.element(a,round(myacf[i],6))
mytstat <- myacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Partial Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'PACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:par1) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,round(mypacf[i],6))
mytstat <- mypacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')