Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimaforecasting.wasp
Title produced by softwareARIMA Forecasting
Date of computationFri, 23 Dec 2016 14:51:44 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/23/t1482501204gg0us95jwng6rmr.htm/, Retrieved Fri, 01 Nov 2024 03:31:15 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=302951, Retrieved Fri, 01 Nov 2024 03:31:15 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact91
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [ARIMA Forecasting] [x] [2016-12-23 13:51:44] [33f2a624cfeb2efbc43d2c77b7c0dad6] [Current]
Feedback Forum

Post a new message
Dataseries X:
4870
4240
3800
3990
3290
4710
4210
4440
5040
5070
4900
4790
3890
3450
4080
3280
3130
3310
3860
4570
5110
4820
4250
4210
3610
3710
2760
2710
2710
3290
2670
3620
4440
3910
4610
3760
3460
3020
3360
2610
2670
2480
2610
3320
2800
3030
3740
3060
3040
2620
3190
2750
2630
3290
2430
2730
3690
2980
2590
3360
2370
2200
2330
2370
2200
2430
2400
2840
2870
3320
3090
2680
2420
2550
2420
2430
2330
2520
2630
2570
2800
2680
2430
2790
2420
2750
2350
2330
2290
2330
2490
2480
2760
2590
2950
2570
2960
2540
2400
2470
2390
2310
2470
2490
2510
2690
3060
2690








































Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center
R Framework error message
Warning: there are blank lines in the 'Data' field.
Please, use NA for missing data - blank lines are simply
 deleted and are NOT treated as missing values.

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
R Framework error message & 
Warning: there are blank lines in the 'Data' field.
Please, use NA for missing data - blank lines are simply
 deleted and are NOT treated as missing values.
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=302951&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [ROW]R Framework error message[/C][C]
Warning: there are blank lines in the 'Data' field.
Please, use NA for missing data - blank lines are simply
 deleted and are NOT treated as missing values.
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=302951&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302951&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center
R Framework error message
Warning: there are blank lines in the 'Data' field.
Please, use NA for missing data - blank lines are simply
 deleted and are NOT treated as missing values.







Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[108])
962570-------
972960-------
982540-------
992400-------
1002470-------
1012390-------
1022310-------
1032470-------
1042490-------
1052510-------
1062690-------
1073060-------
1082690-------
109NA2464.89732110.57712962.1839NA0.18750.02550.1875
110NA2356.17392023.97472818.8352NANA0.21810.0787
111NA2323.21551993.55182783.5106NANA0.37180.0592
112NA2224.16941914.70912652.9455NANA0.13060.0166
113NA2146.08311851.54652552.0535NANA0.11950.0043
114NA2305.53331963.50922791.8453NANA0.49280.0606
115NA2263.11791927.43562740.3831NANA0.19780.0398
116NA2471.50652070.62963064.8698NANA0.47560.2352
117NA2630.47122174.63553328.0875NANA0.63250.4336
118NA2596.71752145.37083288.5729NANA0.39580.3958
119NA2632.83742163.81693361.4527NANA0.12530.4389
120NA2544.71382098.24593232.5382NANA0.33940.3394
121NA2343.92611948.97712939.6239NANANA0.1274
122NA2245.39931875.17962797.7667NANANA0.0573
123NA2215.44731849.27962762.4225NANANA0.0445
124NA2125.19871781.43882633.3498NANANA0.0147
125NA2053.79551726.79982533.5644NANANA0.0047
126NA2199.36191823.94682769.3692NANANA0.0458
127NA2160.73031792.91032718.4213NANANA0.0314
128NA2349.90171916.30353037.1003NANANA0.166
129NA2493.15492005.17163295.0447NANANA0.3152
130NA2462.81291980.3623256.0417NANANA0.2873
131NA2495.28041996.15083327.2446NANANA0.3232
132NA2415.98591940.27793200.724NANANA0.2469

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast \tabularnewline
time & Y[t] & F[t] & 95% LB & 95% UB & p-value(H0: Y[t] = F[t]) & P(F[t]>Y[t-1]) & P(F[t]>Y[t-s]) & P(F[t]>Y[108]) \tabularnewline
96 & 2570 & - & - & - & - & - & - & - \tabularnewline
97 & 2960 & - & - & - & - & - & - & - \tabularnewline
98 & 2540 & - & - & - & - & - & - & - \tabularnewline
99 & 2400 & - & - & - & - & - & - & - \tabularnewline
100 & 2470 & - & - & - & - & - & - & - \tabularnewline
101 & 2390 & - & - & - & - & - & - & - \tabularnewline
102 & 2310 & - & - & - & - & - & - & - \tabularnewline
103 & 2470 & - & - & - & - & - & - & - \tabularnewline
104 & 2490 & - & - & - & - & - & - & - \tabularnewline
105 & 2510 & - & - & - & - & - & - & - \tabularnewline
106 & 2690 & - & - & - & - & - & - & - \tabularnewline
107 & 3060 & - & - & - & - & - & - & - \tabularnewline
108 & 2690 & - & - & - & - & - & - & - \tabularnewline
109 & NA & 2464.8973 & 2110.5771 & 2962.1839 & NA & 0.1875 & 0.0255 & 0.1875 \tabularnewline
110 & NA & 2356.1739 & 2023.9747 & 2818.8352 & NA & NA & 0.2181 & 0.0787 \tabularnewline
111 & NA & 2323.2155 & 1993.5518 & 2783.5106 & NA & NA & 0.3718 & 0.0592 \tabularnewline
112 & NA & 2224.1694 & 1914.7091 & 2652.9455 & NA & NA & 0.1306 & 0.0166 \tabularnewline
113 & NA & 2146.0831 & 1851.5465 & 2552.0535 & NA & NA & 0.1195 & 0.0043 \tabularnewline
114 & NA & 2305.5333 & 1963.5092 & 2791.8453 & NA & NA & 0.4928 & 0.0606 \tabularnewline
115 & NA & 2263.1179 & 1927.4356 & 2740.3831 & NA & NA & 0.1978 & 0.0398 \tabularnewline
116 & NA & 2471.5065 & 2070.6296 & 3064.8698 & NA & NA & 0.4756 & 0.2352 \tabularnewline
117 & NA & 2630.4712 & 2174.6355 & 3328.0875 & NA & NA & 0.6325 & 0.4336 \tabularnewline
118 & NA & 2596.7175 & 2145.3708 & 3288.5729 & NA & NA & 0.3958 & 0.3958 \tabularnewline
119 & NA & 2632.8374 & 2163.8169 & 3361.4527 & NA & NA & 0.1253 & 0.4389 \tabularnewline
120 & NA & 2544.7138 & 2098.2459 & 3232.5382 & NA & NA & 0.3394 & 0.3394 \tabularnewline
121 & NA & 2343.9261 & 1948.9771 & 2939.6239 & NA & NA & NA & 0.1274 \tabularnewline
122 & NA & 2245.3993 & 1875.1796 & 2797.7667 & NA & NA & NA & 0.0573 \tabularnewline
123 & NA & 2215.4473 & 1849.2796 & 2762.4225 & NA & NA & NA & 0.0445 \tabularnewline
124 & NA & 2125.1987 & 1781.4388 & 2633.3498 & NA & NA & NA & 0.0147 \tabularnewline
125 & NA & 2053.7955 & 1726.7998 & 2533.5644 & NA & NA & NA & 0.0047 \tabularnewline
126 & NA & 2199.3619 & 1823.9468 & 2769.3692 & NA & NA & NA & 0.0458 \tabularnewline
127 & NA & 2160.7303 & 1792.9103 & 2718.4213 & NA & NA & NA & 0.0314 \tabularnewline
128 & NA & 2349.9017 & 1916.3035 & 3037.1003 & NA & NA & NA & 0.166 \tabularnewline
129 & NA & 2493.1549 & 2005.1716 & 3295.0447 & NA & NA & NA & 0.3152 \tabularnewline
130 & NA & 2462.8129 & 1980.362 & 3256.0417 & NA & NA & NA & 0.2873 \tabularnewline
131 & NA & 2495.2804 & 1996.1508 & 3327.2446 & NA & NA & NA & 0.3232 \tabularnewline
132 & NA & 2415.9859 & 1940.2779 & 3200.724 & NA & NA & NA & 0.2469 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302951&T=1

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast[/C][/ROW]
[ROW][C]time[/C][C]Y[t][/C][C]F[t][/C][C]95% LB[/C][C]95% UB[/C][C]p-value(H0: Y[t] = F[t])[/C][C]P(F[t]>Y[t-1])[/C][C]P(F[t]>Y[t-s])[/C][C]P(F[t]>Y[108])[/C][/ROW]
[ROW][C]96[/C][C]2570[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]97[/C][C]2960[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]98[/C][C]2540[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]99[/C][C]2400[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]100[/C][C]2470[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]101[/C][C]2390[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]102[/C][C]2310[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]103[/C][C]2470[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]104[/C][C]2490[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]105[/C][C]2510[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]106[/C][C]2690[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]107[/C][C]3060[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]108[/C][C]2690[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]109[/C][C]NA[/C][C]2464.8973[/C][C]2110.5771[/C][C]2962.1839[/C][C]NA[/C][C]0.1875[/C][C]0.0255[/C][C]0.1875[/C][/ROW]
[ROW][C]110[/C][C]NA[/C][C]2356.1739[/C][C]2023.9747[/C][C]2818.8352[/C][C]NA[/C][C]NA[/C][C]0.2181[/C][C]0.0787[/C][/ROW]
[ROW][C]111[/C][C]NA[/C][C]2323.2155[/C][C]1993.5518[/C][C]2783.5106[/C][C]NA[/C][C]NA[/C][C]0.3718[/C][C]0.0592[/C][/ROW]
[ROW][C]112[/C][C]NA[/C][C]2224.1694[/C][C]1914.7091[/C][C]2652.9455[/C][C]NA[/C][C]NA[/C][C]0.1306[/C][C]0.0166[/C][/ROW]
[ROW][C]113[/C][C]NA[/C][C]2146.0831[/C][C]1851.5465[/C][C]2552.0535[/C][C]NA[/C][C]NA[/C][C]0.1195[/C][C]0.0043[/C][/ROW]
[ROW][C]114[/C][C]NA[/C][C]2305.5333[/C][C]1963.5092[/C][C]2791.8453[/C][C]NA[/C][C]NA[/C][C]0.4928[/C][C]0.0606[/C][/ROW]
[ROW][C]115[/C][C]NA[/C][C]2263.1179[/C][C]1927.4356[/C][C]2740.3831[/C][C]NA[/C][C]NA[/C][C]0.1978[/C][C]0.0398[/C][/ROW]
[ROW][C]116[/C][C]NA[/C][C]2471.5065[/C][C]2070.6296[/C][C]3064.8698[/C][C]NA[/C][C]NA[/C][C]0.4756[/C][C]0.2352[/C][/ROW]
[ROW][C]117[/C][C]NA[/C][C]2630.4712[/C][C]2174.6355[/C][C]3328.0875[/C][C]NA[/C][C]NA[/C][C]0.6325[/C][C]0.4336[/C][/ROW]
[ROW][C]118[/C][C]NA[/C][C]2596.7175[/C][C]2145.3708[/C][C]3288.5729[/C][C]NA[/C][C]NA[/C][C]0.3958[/C][C]0.3958[/C][/ROW]
[ROW][C]119[/C][C]NA[/C][C]2632.8374[/C][C]2163.8169[/C][C]3361.4527[/C][C]NA[/C][C]NA[/C][C]0.1253[/C][C]0.4389[/C][/ROW]
[ROW][C]120[/C][C]NA[/C][C]2544.7138[/C][C]2098.2459[/C][C]3232.5382[/C][C]NA[/C][C]NA[/C][C]0.3394[/C][C]0.3394[/C][/ROW]
[ROW][C]121[/C][C]NA[/C][C]2343.9261[/C][C]1948.9771[/C][C]2939.6239[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.1274[/C][/ROW]
[ROW][C]122[/C][C]NA[/C][C]2245.3993[/C][C]1875.1796[/C][C]2797.7667[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.0573[/C][/ROW]
[ROW][C]123[/C][C]NA[/C][C]2215.4473[/C][C]1849.2796[/C][C]2762.4225[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.0445[/C][/ROW]
[ROW][C]124[/C][C]NA[/C][C]2125.1987[/C][C]1781.4388[/C][C]2633.3498[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.0147[/C][/ROW]
[ROW][C]125[/C][C]NA[/C][C]2053.7955[/C][C]1726.7998[/C][C]2533.5644[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.0047[/C][/ROW]
[ROW][C]126[/C][C]NA[/C][C]2199.3619[/C][C]1823.9468[/C][C]2769.3692[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.0458[/C][/ROW]
[ROW][C]127[/C][C]NA[/C][C]2160.7303[/C][C]1792.9103[/C][C]2718.4213[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.0314[/C][/ROW]
[ROW][C]128[/C][C]NA[/C][C]2349.9017[/C][C]1916.3035[/C][C]3037.1003[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.166[/C][/ROW]
[ROW][C]129[/C][C]NA[/C][C]2493.1549[/C][C]2005.1716[/C][C]3295.0447[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.3152[/C][/ROW]
[ROW][C]130[/C][C]NA[/C][C]2462.8129[/C][C]1980.362[/C][C]3256.0417[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.2873[/C][/ROW]
[ROW][C]131[/C][C]NA[/C][C]2495.2804[/C][C]1996.1508[/C][C]3327.2446[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.3232[/C][/ROW]
[ROW][C]132[/C][C]NA[/C][C]2415.9859[/C][C]1940.2779[/C][C]3200.724[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.2469[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302951&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302951&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[108])
962570-------
972960-------
982540-------
992400-------
1002470-------
1012390-------
1022310-------
1032470-------
1042490-------
1052510-------
1062690-------
1073060-------
1082690-------
109NA2464.89732110.57712962.1839NA0.18750.02550.1875
110NA2356.17392023.97472818.8352NANA0.21810.0787
111NA2323.21551993.55182783.5106NANA0.37180.0592
112NA2224.16941914.70912652.9455NANA0.13060.0166
113NA2146.08311851.54652552.0535NANA0.11950.0043
114NA2305.53331963.50922791.8453NANA0.49280.0606
115NA2263.11791927.43562740.3831NANA0.19780.0398
116NA2471.50652070.62963064.8698NANA0.47560.2352
117NA2630.47122174.63553328.0875NANA0.63250.4336
118NA2596.71752145.37083288.5729NANA0.39580.3958
119NA2632.83742163.81693361.4527NANA0.12530.4389
120NA2544.71382098.24593232.5382NANA0.33940.3394
121NA2343.92611948.97712939.6239NANANA0.1274
122NA2245.39931875.17962797.7667NANANA0.0573
123NA2215.44731849.27962762.4225NANANA0.0445
124NA2125.19871781.43882633.3498NANANA0.0147
125NA2053.79551726.79982533.5644NANANA0.0047
126NA2199.36191823.94682769.3692NANANA0.0458
127NA2160.73031792.91032718.4213NANANA0.0314
128NA2349.90171916.30353037.1003NANANA0.166
129NA2493.15492005.17163295.0447NANANA0.3152
130NA2462.81291980.3623256.0417NANANA0.2873
131NA2495.28041996.15083327.2446NANANA0.3232
132NA2415.98591940.27793200.724NANANA0.2469







Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPEsMAPESq.EMSERMSEScaledEMASE
1090.1029NANANANA00NANA
1100.1002NANANANANANANANA
1110.1011NANANANANANANANA
1120.0984NANANANANANANANA
1130.0965NANANANANANANANA
1140.1076NANANANANANANANA
1150.1076NANANANANANANANA
1160.1225NANANANANANANANA
1170.1353NANANANANANANANA
1180.1359NANANANANANANANA
1190.1412NANANANANANANANA
1200.1379NANANANANANANANA
1210.1297NANANANANANANANA
1220.1255NANANANANANANANA
1230.126NANANANANANANANA
1240.122NANANANANANANANA
1250.1192NANANANANANANANA
1260.1322NANANANANANANANA
1270.1317NANANANANANANANA
1280.1492NANANANANANANANA
1290.1641NANANANANANANANA
1300.1643NANANANANANANANA
1310.1701NANANANANANANANA
1320.1657NANANANANANANANA

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast Performance \tabularnewline
time & % S.E. & PE & MAPE & sMAPE & Sq.E & MSE & RMSE & ScaledE & MASE \tabularnewline
109 & 0.1029 & NA & NA & NA & NA & 0 & 0 & NA & NA \tabularnewline
110 & 0.1002 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
111 & 0.1011 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
112 & 0.0984 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
113 & 0.0965 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
114 & 0.1076 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
115 & 0.1076 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
116 & 0.1225 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
117 & 0.1353 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
118 & 0.1359 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
119 & 0.1412 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
120 & 0.1379 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
121 & 0.1297 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
122 & 0.1255 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
123 & 0.126 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
124 & 0.122 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
125 & 0.1192 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
126 & 0.1322 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
127 & 0.1317 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
128 & 0.1492 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
129 & 0.1641 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
130 & 0.1643 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
131 & 0.1701 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
132 & 0.1657 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302951&T=2

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast Performance[/C][/ROW]
[ROW][C]time[/C][C]% S.E.[/C][C]PE[/C][C]MAPE[/C][C]sMAPE[/C][C]Sq.E[/C][C]MSE[/C][C]RMSE[/C][C]ScaledE[/C][C]MASE[/C][/ROW]
[ROW][C]109[/C][C]0.1029[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0[/C][C]0[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]110[/C][C]0.1002[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]111[/C][C]0.1011[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]112[/C][C]0.0984[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]113[/C][C]0.0965[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]114[/C][C]0.1076[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]115[/C][C]0.1076[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]116[/C][C]0.1225[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]117[/C][C]0.1353[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]118[/C][C]0.1359[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]119[/C][C]0.1412[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]120[/C][C]0.1379[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]121[/C][C]0.1297[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]122[/C][C]0.1255[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]123[/C][C]0.126[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]124[/C][C]0.122[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]125[/C][C]0.1192[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]126[/C][C]0.1322[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]127[/C][C]0.1317[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]128[/C][C]0.1492[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]129[/C][C]0.1641[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]130[/C][C]0.1643[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]131[/C][C]0.1701[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]132[/C][C]0.1657[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302951&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302951&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPEsMAPESq.EMSERMSEScaledEMASE
1090.1029NANANANA00NANA
1100.1002NANANANANANANANA
1110.1011NANANANANANANANA
1120.0984NANANANANANANANA
1130.0965NANANANANANANANA
1140.1076NANANANANANANANA
1150.1076NANANANANANANANA
1160.1225NANANANANANANANA
1170.1353NANANANANANANANA
1180.1359NANANANANANANANA
1190.1412NANANANANANANANA
1200.1379NANANANANANANANA
1210.1297NANANANANANANANA
1220.1255NANANANANANANANA
1230.126NANANANANANANANA
1240.122NANANANANANANANA
1250.1192NANANANANANANANA
1260.1322NANANANANANANANA
1270.1317NANANANANANANANA
1280.1492NANANANANANANANA
1290.1641NANANANANANANANA
1300.1643NANANANANANANANA
1310.1701NANANANANANANANA
1320.1657NANANANANANANANA



Parameters (Session):
par1 = 0 ; par2 = -1.0 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = 0 ; par7 = 1 ; par8 = 0 ; par9 = 1 ; par10 = FALSE ;
Parameters (R input):
par1 = 0 ; par2 = -1.0 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = 0 ; par7 = 1 ; par8 = 0 ; par9 = 1 ; par10 = FALSE ;
R code (references can be found in the software module):
par10 <- 'FALSE'
par9 <- '1'
par8 <- '0'
par7 <- '1'
par6 <- '0'
par5 <- '12'
par4 <- '1'
par3 <- '1'
par2 <- '-1.0'
par1 <- '12'
par1 <- as.numeric(par1) #cut off periods
par2 <- as.numeric(par2) #lambda
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #p
par7 <- as.numeric(par7) #q
par8 <- as.numeric(par8) #P
par9 <- as.numeric(par9) #Q
if (par10 == 'TRUE') par10 <- TRUE
if (par10 == 'FALSE') par10 <- FALSE
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
lx <- length(x)
first <- lx - 2*par1
nx <- lx - par1
nx1 <- nx + 1
fx <- lx - nx
if (fx < 1) {
fx <- par5*2
nx1 <- lx + fx - 1
first <- lx - 2*fx
}
first <- 1
if (fx < 3) fx <- round(lx/10,0)
(arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML'))
(forecast <- predict(arima.out,fx))
(lb <- forecast$pred - 1.96 * forecast$se)
(ub <- forecast$pred + 1.96 * forecast$se)
if (par2 == 0) {
x <- exp(x)
forecast$pred <- exp(forecast$pred)
lb <- exp(lb)
ub <- exp(ub)
}
if (par2 != 0) {
x <- x^(1/par2)
forecast$pred <- forecast$pred^(1/par2)
lb <- lb^(1/par2)
ub <- ub^(1/par2)
}
if (par2 < 0) {
olb <- lb
lb <- ub
ub <- olb
}
(actandfor <- c(x[1:nx], forecast$pred))
(perc.se <- (ub-forecast$pred)/1.96/forecast$pred)
bitmap(file='test1.png')
opar <- par(mar=c(4,4,2,2),las=1)
ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub))
plot(x,ylim=ylim,type='n',xlim=c(first,lx))
usr <- par('usr')
rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon')
rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender')
abline(h= (-3:3)*2 , col ='gray', lty =3)
polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA)
lines(nx1:lx, lb , lty=2)
lines(nx1:lx, ub , lty=2)
lines(x, lwd=2)
lines(nx1:lx, forecast$pred , lwd=2 , col ='white')
box()
par(opar)
dev.off()
prob.dec <- array(NA, dim=fx)
prob.sdec <- array(NA, dim=fx)
prob.ldec <- array(NA, dim=fx)
prob.pval <- array(NA, dim=fx)
perf.pe <- array(0, dim=fx)
perf.spe <- array(0, dim=fx)
perf.scalederr <- array(0, dim=fx)
perf.mase <- array(0, dim=fx)
perf.mase1 <- array(0, dim=fx)
perf.mape <- array(0, dim=fx)
perf.smape <- array(0, dim=fx)
perf.mape1 <- array(0, dim=fx)
perf.smape1 <- array(0,dim=fx)
perf.se <- array(0, dim=fx)
perf.mse <- array(0, dim=fx)
perf.mse1 <- array(0, dim=fx)
perf.rmse <- array(0, dim=fx)
perf.scaleddenom <- 0
for (i in 2:fx) {
perf.scaleddenom = perf.scaleddenom + abs(x[nx+i] - x[nx+i-1])
}
perf.scaleddenom = perf.scaleddenom / (fx-1)
for (i in 1:fx) {
locSD <- (ub[i] - forecast$pred[i]) / 1.96
perf.scalederr[i] = (x[nx+i] - forecast$pred[i]) / perf.scaleddenom
perf.pe[i] = (x[nx+i] - forecast$pred[i]) / x[nx+i]
perf.spe[i] = 2*(x[nx+i] - forecast$pred[i]) / (x[nx+i] + forecast$pred[i])
perf.se[i] = (x[nx+i] - forecast$pred[i])^2
prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD)
prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD)
prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD)
prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD)
}
perf.mape[1] = abs(perf.pe[1])
perf.smape[1] = abs(perf.spe[1])
perf.mape1[1] = perf.mape[1]
perf.smape1[1] = perf.smape[1]
perf.mse[1] = perf.se[1]
perf.mase[1] = abs(perf.scalederr[1])
perf.mase1[1] = perf.mase[1]
for (i in 2:fx) {
perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i])
perf.mape1[i] = perf.mape[i] / i
perf.smape[i] = perf.smape[i-1] + abs(perf.spe[i])
perf.smape1[i] = perf.smape[i] / i
perf.mse[i] = perf.mse[i-1] + perf.se[i]
perf.mse1[i] = perf.mse[i] / i
perf.mase[i] = perf.mase[i-1] + abs(perf.scalederr[i])
perf.mase1[i] = perf.mase[i] / i
}
perf.rmse = sqrt(perf.mse1)
bitmap(file='test2.png')
plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub)))
dum <- forecast$pred
dum[1:par1] <- x[(nx+1):lx]
lines(dum, lty=1)
lines(ub,lty=3)
lines(lb,lty=3)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'Y[t]',1,header=TRUE)
a<-table.element(a,'F[t]',1,header=TRUE)
a<-table.element(a,'95% LB',1,header=TRUE)
a<-table.element(a,'95% UB',1,header=TRUE)
a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE)
mylab <- paste('P(F[t]>Y[',nx,sep='')
mylab <- paste(mylab,'])',sep='')
a<-table.element(a,mylab,1,header=TRUE)
a<-table.row.end(a)
for (i in (nx-par5):nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.row.end(a)
}
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(x[nx+i],4))
a<-table.element(a,round(forecast$pred[i],4))
a<-table.element(a,round(lb[i],4))
a<-table.element(a,round(ub[i],4))
a<-table.element(a,round((1-prob.pval[i]),4))
a<-table.element(a,round((1-prob.dec[i]),4))
a<-table.element(a,round((1-prob.sdec[i]),4))
a<-table.element(a,round((1-prob.ldec[i]),4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',10,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'% S.E.',1,header=TRUE)
a<-table.element(a,'PE',1,header=TRUE)
a<-table.element(a,'MAPE',1,header=TRUE)
a<-table.element(a,'sMAPE',1,header=TRUE)
a<-table.element(a,'Sq.E',1,header=TRUE)
a<-table.element(a,'MSE',1,header=TRUE)
a<-table.element(a,'RMSE',1,header=TRUE)
a<-table.element(a,'ScaledE',1,header=TRUE)
a<-table.element(a,'MASE',1,header=TRUE)
a<-table.row.end(a)
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(perc.se[i],4))
a<-table.element(a,round(perf.pe[i],4))
a<-table.element(a,round(perf.mape1[i],4))
a<-table.element(a,round(perf.smape1[i],4))
a<-table.element(a,round(perf.se[i],4))
a<-table.element(a,round(perf.mse1[i],4))
a<-table.element(a,round(perf.rmse[i],4))
a<-table.element(a,round(perf.scalederr[i],4))
a<-table.element(a,round(perf.mase1[i],4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')