Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_decompose.wasp
Title produced by softwareClassical Decomposition
Date of computationFri, 23 Dec 2016 14:42:51 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/23/t1482500593uekzw1ul7v6x58u.htm/, Retrieved Fri, 01 Nov 2024 03:26:53 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=302946, Retrieved Fri, 01 Nov 2024 03:26:53 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact80
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Classical Decomposition] [CP n2671] [2016-12-23 13:42:51] [11b61e09f442d73f657668491c17a736] [Current]
Feedback Forum

Post a new message
Dataseries X:
6258.5
6191
5939.5
5517.5
5382.5
5785
5353.5
5205.5
4915
4691.5
4564.5
4496
4877.5
4703.5
4528.5
4262.5
4077
4291
4357
4191
4025.5
3994.5
3934.5
3989
4565.5
4451
4312.5
4075
4005.5
4376.5
4341
4025.5
3992
3958.5
3907.5
3858.5
4236
4520.5
4333.5
4057.5
4079
4387.5
4235.5
3977.5
4007.5
3921
3936
3730.5
4310
4251.5
4062
3653
3659
3827.5
3726.5
3544
3428.5
3422.5
3401
3263
3801.5
3741
3545
3179.5
3276.5
3409.5
3411.5
3329.5
3184
3091
3162.5
3071
3654.5
3441.5
3189
3114.5
3078
3425
3368
3176
3165
3111
3247.5
3150
3628
3567
3348.5
3228.5
3181.5
3351
3472.5
3418.5
3409
3361
3605.5
3671.5
4297.5
4459.5
4402
4024.5
4116.5
4387
4288
4118.5
4035
4006.5
4143
4279.5
4974.5
5080.5
4845.5
4472.5
4584.5
5047.5
4922.5
4695
4545




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302946&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=302946&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302946&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
16258.5NANA342.049NA
26191NANA332.075NA
35939.5NANA152.873NA
45517.5NANA-115.999NA
55382.5NANA-125.486NA
65785NANA125.587NA
75353.55391.545300.7990.7483-38.04
85205.55108.945181.27-72.332796.5619
949154906.765060.5-153.7388.2378
104691.54738.474949.42-210.946-46.9705
114564.54678.594842.73-164.136-114.093
1244964525.394726.08-200.694-29.3895
134877.54964.364622.31342.049-86.8617
144703.54870.64538.52332.075-167.096
154528.54612.064459.19152.873-83.5608
164262.54277.084393.08-115.999-14.584
1740774212.314337.79-125.486-135.305
18429144164290.42125.587-125.003
1943574347.044256.2990.74839.96002
2041914160.444232.77-72.332730.5619
214025.54059.514213.25-153.738-34.0122
223994.53985.494196.44-210.9469.00863
233934.54021.514185.65-164.136-87.0099
2439893985.544186.23-200.6943.46465
254565.54531.174189.12342.04934.3258
2644514513.644181.56332.075-62.6372
274312.54326.144173.27152.873-13.6441
2840754054.384170.38-115.99920.6244
294005.54042.264167.75-125.486-36.7636
304376.54286.774161.19125.58789.7259
3143414232.774142.0290.7483108.231
324025.54058.854131.19-72.3327-33.3548
3339923981.224134.96-153.73810.7795
343958.53924.164135.1-210.94634.342
353907.53973.34137.44-164.136-65.8016
363858.53940.264140.96-200.694-81.7645
3742364479.074137.02342.049-243.07
384520.54462.74130.62332.07557.8003
394333.54282.144129.27152.87351.3559
404057.54012.354128.35-115.99945.1452
4140794002.494127.98-125.48676.5072
424387.54249.424123.83125.587138.08
434235.54212.334121.5890.748323.1684
443977.54041.134113.46-72.3327-63.6256
454007.53937.24090.94-153.73870.3003
4639213851.824062.77-210.94669.1753
4739363864.284028.42-164.13671.7193
483730.53786.893987.58-200.694-56.3895
4943104285.093943.04342.04924.9091
504251.54235.853903.77332.07515.6545
5140624014.463861.58152.87347.5434
5236533700.693816.69-115.999-47.6881
5336593648.143773.62-125.48610.8614
543827.53857.443731.85125.587-29.9407
553726.53781.943691.1990.7483-55.4358
5635443576.43648.73-72.3327-32.3965
573428.53452.183605.92-153.738-23.6789
583422.53353.73564.65-210.94668.8003
5934013364.843528.98-164.13636.1568
6032633294.933495.62-200.694-31.9312
613801.53807.133465.08342.049-5.63257
6237413775.13443.02332.075-34.0955
6335453576.773423.9152.873-31.7691
643179.53283.93399.9-115.999-104.396
653276.53250.663376.15-125.48625.8405
663409.53483.793358.21125.587-74.2949
673411.53434.833344.0890.7483-23.3316
683329.53253.153325.48-72.332776.3535
6931843144.433298.17-153.73839.5711
7030913069.683280.62-210.94621.3211
713162.53105.513269.65-164.13656.9901
7230713061.333262.02-200.6949.67298
733654.53602.93260.85342.04951.5966
743441.53584.723252.65332.075-143.221
7531893398.333245.46152.873-209.332
763114.53129.53245.5-115.999-15.0006
7730783124.393249.87-125.486-46.3886
7834253382.293256.71125.58742.7051
7933683349.643258.990.748318.3559
8031763190.693263.02-72.3327-14.6881
8131653121.163274.9-153.73843.842
8231113075.353286.29-210.94635.6545
833247.53131.223295.35-164.136116.282
8431503095.893296.58-200.69454.1105
8536283639.93297.85342.049-11.9034
8635673644.393312.31332.075-77.3872
873348.53485.463332.58152.873-136.957
883228.53237.173353.17-115.999-8.66729
893181.53253.013378.5-125.486-71.5136
9033513540.733415.15125.587-189.732
913472.53555.523464.7790.7483-83.0191
923418.53457.523529.85-72.3327-39.0215
9334093457.23610.94-153.738-48.1997
9433613477.053688-210.946-116.054
953605.53595.993760.12-164.1369.51095
963671.53641.563842.25-200.69429.9438
974297.54261.453919.4342.04936.0549
984459.54314.623982.54332.075144.884
9944024190.664037.79152.873211.335
1004024.53974.774090.77-115.99949.7285
1014116.54014.584140.06-125.486101.924
10243874313.384187.79125.58773.6218
10342884332.084241.3390.7483-44.0816
1044118.54223.084295.42-72.3327-104.584
10540354186.034339.77-153.738-151.033
1064006.54165.974376.92-210.946-159.471
10741434250.954415.08-164.136-107.947
1084279.54261.414462.1-200.69418.0897
1094974.54858.114516.06342.049116.388
1105080.54898.64566.52332.075181.904
1114845.54764.664611.79152.87380.835
1124472.5NANA-115.999NA
1134584.5NANA-125.486NA
1145047.5NANA125.587NA
1154922.5NANA90.7483NA
1164695NANA-72.3327NA
1174545NANA-153.738NA

\begin{tabular}{lllllllll}
\hline
Classical Decomposition by Moving Averages \tabularnewline
t & Observations & Fit & Trend & Seasonal & Random \tabularnewline
1 & 6258.5 & NA & NA & 342.049 & NA \tabularnewline
2 & 6191 & NA & NA & 332.075 & NA \tabularnewline
3 & 5939.5 & NA & NA & 152.873 & NA \tabularnewline
4 & 5517.5 & NA & NA & -115.999 & NA \tabularnewline
5 & 5382.5 & NA & NA & -125.486 & NA \tabularnewline
6 & 5785 & NA & NA & 125.587 & NA \tabularnewline
7 & 5353.5 & 5391.54 & 5300.79 & 90.7483 & -38.04 \tabularnewline
8 & 5205.5 & 5108.94 & 5181.27 & -72.3327 & 96.5619 \tabularnewline
9 & 4915 & 4906.76 & 5060.5 & -153.738 & 8.2378 \tabularnewline
10 & 4691.5 & 4738.47 & 4949.42 & -210.946 & -46.9705 \tabularnewline
11 & 4564.5 & 4678.59 & 4842.73 & -164.136 & -114.093 \tabularnewline
12 & 4496 & 4525.39 & 4726.08 & -200.694 & -29.3895 \tabularnewline
13 & 4877.5 & 4964.36 & 4622.31 & 342.049 & -86.8617 \tabularnewline
14 & 4703.5 & 4870.6 & 4538.52 & 332.075 & -167.096 \tabularnewline
15 & 4528.5 & 4612.06 & 4459.19 & 152.873 & -83.5608 \tabularnewline
16 & 4262.5 & 4277.08 & 4393.08 & -115.999 & -14.584 \tabularnewline
17 & 4077 & 4212.31 & 4337.79 & -125.486 & -135.305 \tabularnewline
18 & 4291 & 4416 & 4290.42 & 125.587 & -125.003 \tabularnewline
19 & 4357 & 4347.04 & 4256.29 & 90.7483 & 9.96002 \tabularnewline
20 & 4191 & 4160.44 & 4232.77 & -72.3327 & 30.5619 \tabularnewline
21 & 4025.5 & 4059.51 & 4213.25 & -153.738 & -34.0122 \tabularnewline
22 & 3994.5 & 3985.49 & 4196.44 & -210.946 & 9.00863 \tabularnewline
23 & 3934.5 & 4021.51 & 4185.65 & -164.136 & -87.0099 \tabularnewline
24 & 3989 & 3985.54 & 4186.23 & -200.694 & 3.46465 \tabularnewline
25 & 4565.5 & 4531.17 & 4189.12 & 342.049 & 34.3258 \tabularnewline
26 & 4451 & 4513.64 & 4181.56 & 332.075 & -62.6372 \tabularnewline
27 & 4312.5 & 4326.14 & 4173.27 & 152.873 & -13.6441 \tabularnewline
28 & 4075 & 4054.38 & 4170.38 & -115.999 & 20.6244 \tabularnewline
29 & 4005.5 & 4042.26 & 4167.75 & -125.486 & -36.7636 \tabularnewline
30 & 4376.5 & 4286.77 & 4161.19 & 125.587 & 89.7259 \tabularnewline
31 & 4341 & 4232.77 & 4142.02 & 90.7483 & 108.231 \tabularnewline
32 & 4025.5 & 4058.85 & 4131.19 & -72.3327 & -33.3548 \tabularnewline
33 & 3992 & 3981.22 & 4134.96 & -153.738 & 10.7795 \tabularnewline
34 & 3958.5 & 3924.16 & 4135.1 & -210.946 & 34.342 \tabularnewline
35 & 3907.5 & 3973.3 & 4137.44 & -164.136 & -65.8016 \tabularnewline
36 & 3858.5 & 3940.26 & 4140.96 & -200.694 & -81.7645 \tabularnewline
37 & 4236 & 4479.07 & 4137.02 & 342.049 & -243.07 \tabularnewline
38 & 4520.5 & 4462.7 & 4130.62 & 332.075 & 57.8003 \tabularnewline
39 & 4333.5 & 4282.14 & 4129.27 & 152.873 & 51.3559 \tabularnewline
40 & 4057.5 & 4012.35 & 4128.35 & -115.999 & 45.1452 \tabularnewline
41 & 4079 & 4002.49 & 4127.98 & -125.486 & 76.5072 \tabularnewline
42 & 4387.5 & 4249.42 & 4123.83 & 125.587 & 138.08 \tabularnewline
43 & 4235.5 & 4212.33 & 4121.58 & 90.7483 & 23.1684 \tabularnewline
44 & 3977.5 & 4041.13 & 4113.46 & -72.3327 & -63.6256 \tabularnewline
45 & 4007.5 & 3937.2 & 4090.94 & -153.738 & 70.3003 \tabularnewline
46 & 3921 & 3851.82 & 4062.77 & -210.946 & 69.1753 \tabularnewline
47 & 3936 & 3864.28 & 4028.42 & -164.136 & 71.7193 \tabularnewline
48 & 3730.5 & 3786.89 & 3987.58 & -200.694 & -56.3895 \tabularnewline
49 & 4310 & 4285.09 & 3943.04 & 342.049 & 24.9091 \tabularnewline
50 & 4251.5 & 4235.85 & 3903.77 & 332.075 & 15.6545 \tabularnewline
51 & 4062 & 4014.46 & 3861.58 & 152.873 & 47.5434 \tabularnewline
52 & 3653 & 3700.69 & 3816.69 & -115.999 & -47.6881 \tabularnewline
53 & 3659 & 3648.14 & 3773.62 & -125.486 & 10.8614 \tabularnewline
54 & 3827.5 & 3857.44 & 3731.85 & 125.587 & -29.9407 \tabularnewline
55 & 3726.5 & 3781.94 & 3691.19 & 90.7483 & -55.4358 \tabularnewline
56 & 3544 & 3576.4 & 3648.73 & -72.3327 & -32.3965 \tabularnewline
57 & 3428.5 & 3452.18 & 3605.92 & -153.738 & -23.6789 \tabularnewline
58 & 3422.5 & 3353.7 & 3564.65 & -210.946 & 68.8003 \tabularnewline
59 & 3401 & 3364.84 & 3528.98 & -164.136 & 36.1568 \tabularnewline
60 & 3263 & 3294.93 & 3495.62 & -200.694 & -31.9312 \tabularnewline
61 & 3801.5 & 3807.13 & 3465.08 & 342.049 & -5.63257 \tabularnewline
62 & 3741 & 3775.1 & 3443.02 & 332.075 & -34.0955 \tabularnewline
63 & 3545 & 3576.77 & 3423.9 & 152.873 & -31.7691 \tabularnewline
64 & 3179.5 & 3283.9 & 3399.9 & -115.999 & -104.396 \tabularnewline
65 & 3276.5 & 3250.66 & 3376.15 & -125.486 & 25.8405 \tabularnewline
66 & 3409.5 & 3483.79 & 3358.21 & 125.587 & -74.2949 \tabularnewline
67 & 3411.5 & 3434.83 & 3344.08 & 90.7483 & -23.3316 \tabularnewline
68 & 3329.5 & 3253.15 & 3325.48 & -72.3327 & 76.3535 \tabularnewline
69 & 3184 & 3144.43 & 3298.17 & -153.738 & 39.5711 \tabularnewline
70 & 3091 & 3069.68 & 3280.62 & -210.946 & 21.3211 \tabularnewline
71 & 3162.5 & 3105.51 & 3269.65 & -164.136 & 56.9901 \tabularnewline
72 & 3071 & 3061.33 & 3262.02 & -200.694 & 9.67298 \tabularnewline
73 & 3654.5 & 3602.9 & 3260.85 & 342.049 & 51.5966 \tabularnewline
74 & 3441.5 & 3584.72 & 3252.65 & 332.075 & -143.221 \tabularnewline
75 & 3189 & 3398.33 & 3245.46 & 152.873 & -209.332 \tabularnewline
76 & 3114.5 & 3129.5 & 3245.5 & -115.999 & -15.0006 \tabularnewline
77 & 3078 & 3124.39 & 3249.87 & -125.486 & -46.3886 \tabularnewline
78 & 3425 & 3382.29 & 3256.71 & 125.587 & 42.7051 \tabularnewline
79 & 3368 & 3349.64 & 3258.9 & 90.7483 & 18.3559 \tabularnewline
80 & 3176 & 3190.69 & 3263.02 & -72.3327 & -14.6881 \tabularnewline
81 & 3165 & 3121.16 & 3274.9 & -153.738 & 43.842 \tabularnewline
82 & 3111 & 3075.35 & 3286.29 & -210.946 & 35.6545 \tabularnewline
83 & 3247.5 & 3131.22 & 3295.35 & -164.136 & 116.282 \tabularnewline
84 & 3150 & 3095.89 & 3296.58 & -200.694 & 54.1105 \tabularnewline
85 & 3628 & 3639.9 & 3297.85 & 342.049 & -11.9034 \tabularnewline
86 & 3567 & 3644.39 & 3312.31 & 332.075 & -77.3872 \tabularnewline
87 & 3348.5 & 3485.46 & 3332.58 & 152.873 & -136.957 \tabularnewline
88 & 3228.5 & 3237.17 & 3353.17 & -115.999 & -8.66729 \tabularnewline
89 & 3181.5 & 3253.01 & 3378.5 & -125.486 & -71.5136 \tabularnewline
90 & 3351 & 3540.73 & 3415.15 & 125.587 & -189.732 \tabularnewline
91 & 3472.5 & 3555.52 & 3464.77 & 90.7483 & -83.0191 \tabularnewline
92 & 3418.5 & 3457.52 & 3529.85 & -72.3327 & -39.0215 \tabularnewline
93 & 3409 & 3457.2 & 3610.94 & -153.738 & -48.1997 \tabularnewline
94 & 3361 & 3477.05 & 3688 & -210.946 & -116.054 \tabularnewline
95 & 3605.5 & 3595.99 & 3760.12 & -164.136 & 9.51095 \tabularnewline
96 & 3671.5 & 3641.56 & 3842.25 & -200.694 & 29.9438 \tabularnewline
97 & 4297.5 & 4261.45 & 3919.4 & 342.049 & 36.0549 \tabularnewline
98 & 4459.5 & 4314.62 & 3982.54 & 332.075 & 144.884 \tabularnewline
99 & 4402 & 4190.66 & 4037.79 & 152.873 & 211.335 \tabularnewline
100 & 4024.5 & 3974.77 & 4090.77 & -115.999 & 49.7285 \tabularnewline
101 & 4116.5 & 4014.58 & 4140.06 & -125.486 & 101.924 \tabularnewline
102 & 4387 & 4313.38 & 4187.79 & 125.587 & 73.6218 \tabularnewline
103 & 4288 & 4332.08 & 4241.33 & 90.7483 & -44.0816 \tabularnewline
104 & 4118.5 & 4223.08 & 4295.42 & -72.3327 & -104.584 \tabularnewline
105 & 4035 & 4186.03 & 4339.77 & -153.738 & -151.033 \tabularnewline
106 & 4006.5 & 4165.97 & 4376.92 & -210.946 & -159.471 \tabularnewline
107 & 4143 & 4250.95 & 4415.08 & -164.136 & -107.947 \tabularnewline
108 & 4279.5 & 4261.41 & 4462.1 & -200.694 & 18.0897 \tabularnewline
109 & 4974.5 & 4858.11 & 4516.06 & 342.049 & 116.388 \tabularnewline
110 & 5080.5 & 4898.6 & 4566.52 & 332.075 & 181.904 \tabularnewline
111 & 4845.5 & 4764.66 & 4611.79 & 152.873 & 80.835 \tabularnewline
112 & 4472.5 & NA & NA & -115.999 & NA \tabularnewline
113 & 4584.5 & NA & NA & -125.486 & NA \tabularnewline
114 & 5047.5 & NA & NA & 125.587 & NA \tabularnewline
115 & 4922.5 & NA & NA & 90.7483 & NA \tabularnewline
116 & 4695 & NA & NA & -72.3327 & NA \tabularnewline
117 & 4545 & NA & NA & -153.738 & NA \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302946&T=1

[TABLE]
[ROW][C]Classical Decomposition by Moving Averages[/C][/ROW]
[ROW][C]t[/C][C]Observations[/C][C]Fit[/C][C]Trend[/C][C]Seasonal[/C][C]Random[/C][/ROW]
[ROW][C]1[/C][C]6258.5[/C][C]NA[/C][C]NA[/C][C]342.049[/C][C]NA[/C][/ROW]
[ROW][C]2[/C][C]6191[/C][C]NA[/C][C]NA[/C][C]332.075[/C][C]NA[/C][/ROW]
[ROW][C]3[/C][C]5939.5[/C][C]NA[/C][C]NA[/C][C]152.873[/C][C]NA[/C][/ROW]
[ROW][C]4[/C][C]5517.5[/C][C]NA[/C][C]NA[/C][C]-115.999[/C][C]NA[/C][/ROW]
[ROW][C]5[/C][C]5382.5[/C][C]NA[/C][C]NA[/C][C]-125.486[/C][C]NA[/C][/ROW]
[ROW][C]6[/C][C]5785[/C][C]NA[/C][C]NA[/C][C]125.587[/C][C]NA[/C][/ROW]
[ROW][C]7[/C][C]5353.5[/C][C]5391.54[/C][C]5300.79[/C][C]90.7483[/C][C]-38.04[/C][/ROW]
[ROW][C]8[/C][C]5205.5[/C][C]5108.94[/C][C]5181.27[/C][C]-72.3327[/C][C]96.5619[/C][/ROW]
[ROW][C]9[/C][C]4915[/C][C]4906.76[/C][C]5060.5[/C][C]-153.738[/C][C]8.2378[/C][/ROW]
[ROW][C]10[/C][C]4691.5[/C][C]4738.47[/C][C]4949.42[/C][C]-210.946[/C][C]-46.9705[/C][/ROW]
[ROW][C]11[/C][C]4564.5[/C][C]4678.59[/C][C]4842.73[/C][C]-164.136[/C][C]-114.093[/C][/ROW]
[ROW][C]12[/C][C]4496[/C][C]4525.39[/C][C]4726.08[/C][C]-200.694[/C][C]-29.3895[/C][/ROW]
[ROW][C]13[/C][C]4877.5[/C][C]4964.36[/C][C]4622.31[/C][C]342.049[/C][C]-86.8617[/C][/ROW]
[ROW][C]14[/C][C]4703.5[/C][C]4870.6[/C][C]4538.52[/C][C]332.075[/C][C]-167.096[/C][/ROW]
[ROW][C]15[/C][C]4528.5[/C][C]4612.06[/C][C]4459.19[/C][C]152.873[/C][C]-83.5608[/C][/ROW]
[ROW][C]16[/C][C]4262.5[/C][C]4277.08[/C][C]4393.08[/C][C]-115.999[/C][C]-14.584[/C][/ROW]
[ROW][C]17[/C][C]4077[/C][C]4212.31[/C][C]4337.79[/C][C]-125.486[/C][C]-135.305[/C][/ROW]
[ROW][C]18[/C][C]4291[/C][C]4416[/C][C]4290.42[/C][C]125.587[/C][C]-125.003[/C][/ROW]
[ROW][C]19[/C][C]4357[/C][C]4347.04[/C][C]4256.29[/C][C]90.7483[/C][C]9.96002[/C][/ROW]
[ROW][C]20[/C][C]4191[/C][C]4160.44[/C][C]4232.77[/C][C]-72.3327[/C][C]30.5619[/C][/ROW]
[ROW][C]21[/C][C]4025.5[/C][C]4059.51[/C][C]4213.25[/C][C]-153.738[/C][C]-34.0122[/C][/ROW]
[ROW][C]22[/C][C]3994.5[/C][C]3985.49[/C][C]4196.44[/C][C]-210.946[/C][C]9.00863[/C][/ROW]
[ROW][C]23[/C][C]3934.5[/C][C]4021.51[/C][C]4185.65[/C][C]-164.136[/C][C]-87.0099[/C][/ROW]
[ROW][C]24[/C][C]3989[/C][C]3985.54[/C][C]4186.23[/C][C]-200.694[/C][C]3.46465[/C][/ROW]
[ROW][C]25[/C][C]4565.5[/C][C]4531.17[/C][C]4189.12[/C][C]342.049[/C][C]34.3258[/C][/ROW]
[ROW][C]26[/C][C]4451[/C][C]4513.64[/C][C]4181.56[/C][C]332.075[/C][C]-62.6372[/C][/ROW]
[ROW][C]27[/C][C]4312.5[/C][C]4326.14[/C][C]4173.27[/C][C]152.873[/C][C]-13.6441[/C][/ROW]
[ROW][C]28[/C][C]4075[/C][C]4054.38[/C][C]4170.38[/C][C]-115.999[/C][C]20.6244[/C][/ROW]
[ROW][C]29[/C][C]4005.5[/C][C]4042.26[/C][C]4167.75[/C][C]-125.486[/C][C]-36.7636[/C][/ROW]
[ROW][C]30[/C][C]4376.5[/C][C]4286.77[/C][C]4161.19[/C][C]125.587[/C][C]89.7259[/C][/ROW]
[ROW][C]31[/C][C]4341[/C][C]4232.77[/C][C]4142.02[/C][C]90.7483[/C][C]108.231[/C][/ROW]
[ROW][C]32[/C][C]4025.5[/C][C]4058.85[/C][C]4131.19[/C][C]-72.3327[/C][C]-33.3548[/C][/ROW]
[ROW][C]33[/C][C]3992[/C][C]3981.22[/C][C]4134.96[/C][C]-153.738[/C][C]10.7795[/C][/ROW]
[ROW][C]34[/C][C]3958.5[/C][C]3924.16[/C][C]4135.1[/C][C]-210.946[/C][C]34.342[/C][/ROW]
[ROW][C]35[/C][C]3907.5[/C][C]3973.3[/C][C]4137.44[/C][C]-164.136[/C][C]-65.8016[/C][/ROW]
[ROW][C]36[/C][C]3858.5[/C][C]3940.26[/C][C]4140.96[/C][C]-200.694[/C][C]-81.7645[/C][/ROW]
[ROW][C]37[/C][C]4236[/C][C]4479.07[/C][C]4137.02[/C][C]342.049[/C][C]-243.07[/C][/ROW]
[ROW][C]38[/C][C]4520.5[/C][C]4462.7[/C][C]4130.62[/C][C]332.075[/C][C]57.8003[/C][/ROW]
[ROW][C]39[/C][C]4333.5[/C][C]4282.14[/C][C]4129.27[/C][C]152.873[/C][C]51.3559[/C][/ROW]
[ROW][C]40[/C][C]4057.5[/C][C]4012.35[/C][C]4128.35[/C][C]-115.999[/C][C]45.1452[/C][/ROW]
[ROW][C]41[/C][C]4079[/C][C]4002.49[/C][C]4127.98[/C][C]-125.486[/C][C]76.5072[/C][/ROW]
[ROW][C]42[/C][C]4387.5[/C][C]4249.42[/C][C]4123.83[/C][C]125.587[/C][C]138.08[/C][/ROW]
[ROW][C]43[/C][C]4235.5[/C][C]4212.33[/C][C]4121.58[/C][C]90.7483[/C][C]23.1684[/C][/ROW]
[ROW][C]44[/C][C]3977.5[/C][C]4041.13[/C][C]4113.46[/C][C]-72.3327[/C][C]-63.6256[/C][/ROW]
[ROW][C]45[/C][C]4007.5[/C][C]3937.2[/C][C]4090.94[/C][C]-153.738[/C][C]70.3003[/C][/ROW]
[ROW][C]46[/C][C]3921[/C][C]3851.82[/C][C]4062.77[/C][C]-210.946[/C][C]69.1753[/C][/ROW]
[ROW][C]47[/C][C]3936[/C][C]3864.28[/C][C]4028.42[/C][C]-164.136[/C][C]71.7193[/C][/ROW]
[ROW][C]48[/C][C]3730.5[/C][C]3786.89[/C][C]3987.58[/C][C]-200.694[/C][C]-56.3895[/C][/ROW]
[ROW][C]49[/C][C]4310[/C][C]4285.09[/C][C]3943.04[/C][C]342.049[/C][C]24.9091[/C][/ROW]
[ROW][C]50[/C][C]4251.5[/C][C]4235.85[/C][C]3903.77[/C][C]332.075[/C][C]15.6545[/C][/ROW]
[ROW][C]51[/C][C]4062[/C][C]4014.46[/C][C]3861.58[/C][C]152.873[/C][C]47.5434[/C][/ROW]
[ROW][C]52[/C][C]3653[/C][C]3700.69[/C][C]3816.69[/C][C]-115.999[/C][C]-47.6881[/C][/ROW]
[ROW][C]53[/C][C]3659[/C][C]3648.14[/C][C]3773.62[/C][C]-125.486[/C][C]10.8614[/C][/ROW]
[ROW][C]54[/C][C]3827.5[/C][C]3857.44[/C][C]3731.85[/C][C]125.587[/C][C]-29.9407[/C][/ROW]
[ROW][C]55[/C][C]3726.5[/C][C]3781.94[/C][C]3691.19[/C][C]90.7483[/C][C]-55.4358[/C][/ROW]
[ROW][C]56[/C][C]3544[/C][C]3576.4[/C][C]3648.73[/C][C]-72.3327[/C][C]-32.3965[/C][/ROW]
[ROW][C]57[/C][C]3428.5[/C][C]3452.18[/C][C]3605.92[/C][C]-153.738[/C][C]-23.6789[/C][/ROW]
[ROW][C]58[/C][C]3422.5[/C][C]3353.7[/C][C]3564.65[/C][C]-210.946[/C][C]68.8003[/C][/ROW]
[ROW][C]59[/C][C]3401[/C][C]3364.84[/C][C]3528.98[/C][C]-164.136[/C][C]36.1568[/C][/ROW]
[ROW][C]60[/C][C]3263[/C][C]3294.93[/C][C]3495.62[/C][C]-200.694[/C][C]-31.9312[/C][/ROW]
[ROW][C]61[/C][C]3801.5[/C][C]3807.13[/C][C]3465.08[/C][C]342.049[/C][C]-5.63257[/C][/ROW]
[ROW][C]62[/C][C]3741[/C][C]3775.1[/C][C]3443.02[/C][C]332.075[/C][C]-34.0955[/C][/ROW]
[ROW][C]63[/C][C]3545[/C][C]3576.77[/C][C]3423.9[/C][C]152.873[/C][C]-31.7691[/C][/ROW]
[ROW][C]64[/C][C]3179.5[/C][C]3283.9[/C][C]3399.9[/C][C]-115.999[/C][C]-104.396[/C][/ROW]
[ROW][C]65[/C][C]3276.5[/C][C]3250.66[/C][C]3376.15[/C][C]-125.486[/C][C]25.8405[/C][/ROW]
[ROW][C]66[/C][C]3409.5[/C][C]3483.79[/C][C]3358.21[/C][C]125.587[/C][C]-74.2949[/C][/ROW]
[ROW][C]67[/C][C]3411.5[/C][C]3434.83[/C][C]3344.08[/C][C]90.7483[/C][C]-23.3316[/C][/ROW]
[ROW][C]68[/C][C]3329.5[/C][C]3253.15[/C][C]3325.48[/C][C]-72.3327[/C][C]76.3535[/C][/ROW]
[ROW][C]69[/C][C]3184[/C][C]3144.43[/C][C]3298.17[/C][C]-153.738[/C][C]39.5711[/C][/ROW]
[ROW][C]70[/C][C]3091[/C][C]3069.68[/C][C]3280.62[/C][C]-210.946[/C][C]21.3211[/C][/ROW]
[ROW][C]71[/C][C]3162.5[/C][C]3105.51[/C][C]3269.65[/C][C]-164.136[/C][C]56.9901[/C][/ROW]
[ROW][C]72[/C][C]3071[/C][C]3061.33[/C][C]3262.02[/C][C]-200.694[/C][C]9.67298[/C][/ROW]
[ROW][C]73[/C][C]3654.5[/C][C]3602.9[/C][C]3260.85[/C][C]342.049[/C][C]51.5966[/C][/ROW]
[ROW][C]74[/C][C]3441.5[/C][C]3584.72[/C][C]3252.65[/C][C]332.075[/C][C]-143.221[/C][/ROW]
[ROW][C]75[/C][C]3189[/C][C]3398.33[/C][C]3245.46[/C][C]152.873[/C][C]-209.332[/C][/ROW]
[ROW][C]76[/C][C]3114.5[/C][C]3129.5[/C][C]3245.5[/C][C]-115.999[/C][C]-15.0006[/C][/ROW]
[ROW][C]77[/C][C]3078[/C][C]3124.39[/C][C]3249.87[/C][C]-125.486[/C][C]-46.3886[/C][/ROW]
[ROW][C]78[/C][C]3425[/C][C]3382.29[/C][C]3256.71[/C][C]125.587[/C][C]42.7051[/C][/ROW]
[ROW][C]79[/C][C]3368[/C][C]3349.64[/C][C]3258.9[/C][C]90.7483[/C][C]18.3559[/C][/ROW]
[ROW][C]80[/C][C]3176[/C][C]3190.69[/C][C]3263.02[/C][C]-72.3327[/C][C]-14.6881[/C][/ROW]
[ROW][C]81[/C][C]3165[/C][C]3121.16[/C][C]3274.9[/C][C]-153.738[/C][C]43.842[/C][/ROW]
[ROW][C]82[/C][C]3111[/C][C]3075.35[/C][C]3286.29[/C][C]-210.946[/C][C]35.6545[/C][/ROW]
[ROW][C]83[/C][C]3247.5[/C][C]3131.22[/C][C]3295.35[/C][C]-164.136[/C][C]116.282[/C][/ROW]
[ROW][C]84[/C][C]3150[/C][C]3095.89[/C][C]3296.58[/C][C]-200.694[/C][C]54.1105[/C][/ROW]
[ROW][C]85[/C][C]3628[/C][C]3639.9[/C][C]3297.85[/C][C]342.049[/C][C]-11.9034[/C][/ROW]
[ROW][C]86[/C][C]3567[/C][C]3644.39[/C][C]3312.31[/C][C]332.075[/C][C]-77.3872[/C][/ROW]
[ROW][C]87[/C][C]3348.5[/C][C]3485.46[/C][C]3332.58[/C][C]152.873[/C][C]-136.957[/C][/ROW]
[ROW][C]88[/C][C]3228.5[/C][C]3237.17[/C][C]3353.17[/C][C]-115.999[/C][C]-8.66729[/C][/ROW]
[ROW][C]89[/C][C]3181.5[/C][C]3253.01[/C][C]3378.5[/C][C]-125.486[/C][C]-71.5136[/C][/ROW]
[ROW][C]90[/C][C]3351[/C][C]3540.73[/C][C]3415.15[/C][C]125.587[/C][C]-189.732[/C][/ROW]
[ROW][C]91[/C][C]3472.5[/C][C]3555.52[/C][C]3464.77[/C][C]90.7483[/C][C]-83.0191[/C][/ROW]
[ROW][C]92[/C][C]3418.5[/C][C]3457.52[/C][C]3529.85[/C][C]-72.3327[/C][C]-39.0215[/C][/ROW]
[ROW][C]93[/C][C]3409[/C][C]3457.2[/C][C]3610.94[/C][C]-153.738[/C][C]-48.1997[/C][/ROW]
[ROW][C]94[/C][C]3361[/C][C]3477.05[/C][C]3688[/C][C]-210.946[/C][C]-116.054[/C][/ROW]
[ROW][C]95[/C][C]3605.5[/C][C]3595.99[/C][C]3760.12[/C][C]-164.136[/C][C]9.51095[/C][/ROW]
[ROW][C]96[/C][C]3671.5[/C][C]3641.56[/C][C]3842.25[/C][C]-200.694[/C][C]29.9438[/C][/ROW]
[ROW][C]97[/C][C]4297.5[/C][C]4261.45[/C][C]3919.4[/C][C]342.049[/C][C]36.0549[/C][/ROW]
[ROW][C]98[/C][C]4459.5[/C][C]4314.62[/C][C]3982.54[/C][C]332.075[/C][C]144.884[/C][/ROW]
[ROW][C]99[/C][C]4402[/C][C]4190.66[/C][C]4037.79[/C][C]152.873[/C][C]211.335[/C][/ROW]
[ROW][C]100[/C][C]4024.5[/C][C]3974.77[/C][C]4090.77[/C][C]-115.999[/C][C]49.7285[/C][/ROW]
[ROW][C]101[/C][C]4116.5[/C][C]4014.58[/C][C]4140.06[/C][C]-125.486[/C][C]101.924[/C][/ROW]
[ROW][C]102[/C][C]4387[/C][C]4313.38[/C][C]4187.79[/C][C]125.587[/C][C]73.6218[/C][/ROW]
[ROW][C]103[/C][C]4288[/C][C]4332.08[/C][C]4241.33[/C][C]90.7483[/C][C]-44.0816[/C][/ROW]
[ROW][C]104[/C][C]4118.5[/C][C]4223.08[/C][C]4295.42[/C][C]-72.3327[/C][C]-104.584[/C][/ROW]
[ROW][C]105[/C][C]4035[/C][C]4186.03[/C][C]4339.77[/C][C]-153.738[/C][C]-151.033[/C][/ROW]
[ROW][C]106[/C][C]4006.5[/C][C]4165.97[/C][C]4376.92[/C][C]-210.946[/C][C]-159.471[/C][/ROW]
[ROW][C]107[/C][C]4143[/C][C]4250.95[/C][C]4415.08[/C][C]-164.136[/C][C]-107.947[/C][/ROW]
[ROW][C]108[/C][C]4279.5[/C][C]4261.41[/C][C]4462.1[/C][C]-200.694[/C][C]18.0897[/C][/ROW]
[ROW][C]109[/C][C]4974.5[/C][C]4858.11[/C][C]4516.06[/C][C]342.049[/C][C]116.388[/C][/ROW]
[ROW][C]110[/C][C]5080.5[/C][C]4898.6[/C][C]4566.52[/C][C]332.075[/C][C]181.904[/C][/ROW]
[ROW][C]111[/C][C]4845.5[/C][C]4764.66[/C][C]4611.79[/C][C]152.873[/C][C]80.835[/C][/ROW]
[ROW][C]112[/C][C]4472.5[/C][C]NA[/C][C]NA[/C][C]-115.999[/C][C]NA[/C][/ROW]
[ROW][C]113[/C][C]4584.5[/C][C]NA[/C][C]NA[/C][C]-125.486[/C][C]NA[/C][/ROW]
[ROW][C]114[/C][C]5047.5[/C][C]NA[/C][C]NA[/C][C]125.587[/C][C]NA[/C][/ROW]
[ROW][C]115[/C][C]4922.5[/C][C]NA[/C][C]NA[/C][C]90.7483[/C][C]NA[/C][/ROW]
[ROW][C]116[/C][C]4695[/C][C]NA[/C][C]NA[/C][C]-72.3327[/C][C]NA[/C][/ROW]
[ROW][C]117[/C][C]4545[/C][C]NA[/C][C]NA[/C][C]-153.738[/C][C]NA[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302946&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302946&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
16258.5NANA342.049NA
26191NANA332.075NA
35939.5NANA152.873NA
45517.5NANA-115.999NA
55382.5NANA-125.486NA
65785NANA125.587NA
75353.55391.545300.7990.7483-38.04
85205.55108.945181.27-72.332796.5619
949154906.765060.5-153.7388.2378
104691.54738.474949.42-210.946-46.9705
114564.54678.594842.73-164.136-114.093
1244964525.394726.08-200.694-29.3895
134877.54964.364622.31342.049-86.8617
144703.54870.64538.52332.075-167.096
154528.54612.064459.19152.873-83.5608
164262.54277.084393.08-115.999-14.584
1740774212.314337.79-125.486-135.305
18429144164290.42125.587-125.003
1943574347.044256.2990.74839.96002
2041914160.444232.77-72.332730.5619
214025.54059.514213.25-153.738-34.0122
223994.53985.494196.44-210.9469.00863
233934.54021.514185.65-164.136-87.0099
2439893985.544186.23-200.6943.46465
254565.54531.174189.12342.04934.3258
2644514513.644181.56332.075-62.6372
274312.54326.144173.27152.873-13.6441
2840754054.384170.38-115.99920.6244
294005.54042.264167.75-125.486-36.7636
304376.54286.774161.19125.58789.7259
3143414232.774142.0290.7483108.231
324025.54058.854131.19-72.3327-33.3548
3339923981.224134.96-153.73810.7795
343958.53924.164135.1-210.94634.342
353907.53973.34137.44-164.136-65.8016
363858.53940.264140.96-200.694-81.7645
3742364479.074137.02342.049-243.07
384520.54462.74130.62332.07557.8003
394333.54282.144129.27152.87351.3559
404057.54012.354128.35-115.99945.1452
4140794002.494127.98-125.48676.5072
424387.54249.424123.83125.587138.08
434235.54212.334121.5890.748323.1684
443977.54041.134113.46-72.3327-63.6256
454007.53937.24090.94-153.73870.3003
4639213851.824062.77-210.94669.1753
4739363864.284028.42-164.13671.7193
483730.53786.893987.58-200.694-56.3895
4943104285.093943.04342.04924.9091
504251.54235.853903.77332.07515.6545
5140624014.463861.58152.87347.5434
5236533700.693816.69-115.999-47.6881
5336593648.143773.62-125.48610.8614
543827.53857.443731.85125.587-29.9407
553726.53781.943691.1990.7483-55.4358
5635443576.43648.73-72.3327-32.3965
573428.53452.183605.92-153.738-23.6789
583422.53353.73564.65-210.94668.8003
5934013364.843528.98-164.13636.1568
6032633294.933495.62-200.694-31.9312
613801.53807.133465.08342.049-5.63257
6237413775.13443.02332.075-34.0955
6335453576.773423.9152.873-31.7691
643179.53283.93399.9-115.999-104.396
653276.53250.663376.15-125.48625.8405
663409.53483.793358.21125.587-74.2949
673411.53434.833344.0890.7483-23.3316
683329.53253.153325.48-72.332776.3535
6931843144.433298.17-153.73839.5711
7030913069.683280.62-210.94621.3211
713162.53105.513269.65-164.13656.9901
7230713061.333262.02-200.6949.67298
733654.53602.93260.85342.04951.5966
743441.53584.723252.65332.075-143.221
7531893398.333245.46152.873-209.332
763114.53129.53245.5-115.999-15.0006
7730783124.393249.87-125.486-46.3886
7834253382.293256.71125.58742.7051
7933683349.643258.990.748318.3559
8031763190.693263.02-72.3327-14.6881
8131653121.163274.9-153.73843.842
8231113075.353286.29-210.94635.6545
833247.53131.223295.35-164.136116.282
8431503095.893296.58-200.69454.1105
8536283639.93297.85342.049-11.9034
8635673644.393312.31332.075-77.3872
873348.53485.463332.58152.873-136.957
883228.53237.173353.17-115.999-8.66729
893181.53253.013378.5-125.486-71.5136
9033513540.733415.15125.587-189.732
913472.53555.523464.7790.7483-83.0191
923418.53457.523529.85-72.3327-39.0215
9334093457.23610.94-153.738-48.1997
9433613477.053688-210.946-116.054
953605.53595.993760.12-164.1369.51095
963671.53641.563842.25-200.69429.9438
974297.54261.453919.4342.04936.0549
984459.54314.623982.54332.075144.884
9944024190.664037.79152.873211.335
1004024.53974.774090.77-115.99949.7285
1014116.54014.584140.06-125.486101.924
10243874313.384187.79125.58773.6218
10342884332.084241.3390.7483-44.0816
1044118.54223.084295.42-72.3327-104.584
10540354186.034339.77-153.738-151.033
1064006.54165.974376.92-210.946-159.471
10741434250.954415.08-164.136-107.947
1084279.54261.414462.1-200.69418.0897
1094974.54858.114516.06342.049116.388
1105080.54898.64566.52332.075181.904
1114845.54764.664611.79152.87380.835
1124472.5NANA-115.999NA
1134584.5NANA-125.486NA
1145047.5NANA125.587NA
1154922.5NANA90.7483NA
1164695NANA-72.3327NA
1174545NANA-153.738NA



Parameters (Session):
par1 = 12 ;
Parameters (R input):
par1 = additive ; par2 = 12 ;
R code (references can be found in the software module):
par2 <- as.numeric(par2)
x <- ts(x,freq=par2)
m <- decompose(x,type=par1)
m$figure
bitmap(file='test1.png')
plot(m)
dev.off()
mylagmax <- length(x)/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(as.numeric(m$trend),na.action=na.pass,lag.max = mylagmax,main='Trend')
acf(as.numeric(m$seasonal),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(as.numeric(m$random),na.action=na.pass,lag.max = mylagmax,main='Random')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
spectrum(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
spectrum(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
cpgram(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
cpgram(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Classical Decomposition by Moving Averages',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observations',header=TRUE)
a<-table.element(a,'Fit',header=TRUE)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Random',header=TRUE)
a<-table.row.end(a)
for (i in 1:length(m$trend)) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
if (par1 == 'additive') a<-table.element(a,signif(m$trend[i]+m$seasonal[i],6)) else a<-table.element(a,signif(m$trend[i]*m$seasonal[i],6))
a<-table.element(a,signif(m$trend[i],6))
a<-table.element(a,signif(m$seasonal[i],6))
a<-table.element(a,signif(m$random[i],6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')