Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimabackwardselection.wasp
Title produced by softwareARIMA Backward Selection
Date of computationFri, 23 Dec 2016 14:27:03 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/23/t1482499658n6a0mzwpdq8jq2s.htm/, Retrieved Fri, 01 Nov 2024 03:34:24 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=302936, Retrieved Fri, 01 Nov 2024 03:34:24 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact96
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [ARIMA Backward Selection] [] [2016-12-23 13:27:03] [8e62cbb8023b87d93040197279d31dd8] [Current]
Feedback Forum

Post a new message
Dataseries X:
5731
5461
4594
3770
3551
3094
3020
3081
3041
3087
3455
3225
3177
2551
1680
1599
1846
1990
2238
2089
2230
2468
2675
2989
2868
2564
1583
1435
1297
1266
1607
1819
2039
1817
1833
2442
2157
1870
1057
660
1057
1127
1096
1018
1184
1690
1868
2019
2170
1994
917
566
727
980
1138
1069
1039
1509
1591
2056
1975
1748
738
1039
1038
1054
1689
1726
2101
2325
2155
2190
1725
1404
571
704
1061
1593
2039
1767
1804
1520
1795
2171
1853
1425
835
927
1204
1408
1828
1788
1878
1513
1538
2273
2223
1833
1380
1081
1586
1809
1737
1896
2248
2116
2416
2934
2513
1958
986
1378
2071
2272
2474




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time9 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time9 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302936&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]9 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=302936&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302936&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time9 seconds
R ServerBig Analytics Cloud Computing Center







ARIMA Parameter Estimation and Backward Selection
Iterationar1ar2ar3ma1sar1sar2sma1
Estimates ( 1 )0.686-0.1599-0.016-0.7404-0.0098-0.1409-0.5516
(p-val)(1e-04 )(0.2786 )(0.9141 )(0 )(0.9579 )(0.4484 )(0.0024 )
Estimates ( 2 )0.6864-0.1601-0.0164-0.740-0.1369-0.5604
(p-val)(6e-04 )(0.2 )(0.8892 )(0 )(NA )(0.271 )(0 )
Estimates ( 3 )0.6986-0.16910-0.74990-0.1398-0.5588
(p-val)(1e-04 )(0.1131 )(NA )(0 )(NA )(0.2531 )(0 )
Estimates ( 4 )0.7057-0.14290-0.774600-0.6149
(p-val)(0 )(0.1676 )(NA )(0 )(NA )(NA )(0 )
Estimates ( 5 )0.680600-1.199600-0.611
(p-val)(0 )(NA )(NA )(0 )(NA )(NA )(0 )
Estimates ( 6 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 7 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 8 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 9 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 10 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 11 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 12 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 13 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )

\begin{tabular}{lllllllll}
\hline
ARIMA Parameter Estimation and Backward Selection \tabularnewline
Iteration & ar1 & ar2 & ar3 & ma1 & sar1 & sar2 & sma1 \tabularnewline
Estimates ( 1 ) & 0.686 & -0.1599 & -0.016 & -0.7404 & -0.0098 & -0.1409 & -0.5516 \tabularnewline
(p-val) & (1e-04 ) & (0.2786 ) & (0.9141 ) & (0 ) & (0.9579 ) & (0.4484 ) & (0.0024 ) \tabularnewline
Estimates ( 2 ) & 0.6864 & -0.1601 & -0.0164 & -0.74 & 0 & -0.1369 & -0.5604 \tabularnewline
(p-val) & (6e-04 ) & (0.2 ) & (0.8892 ) & (0 ) & (NA ) & (0.271 ) & (0 ) \tabularnewline
Estimates ( 3 ) & 0.6986 & -0.1691 & 0 & -0.7499 & 0 & -0.1398 & -0.5588 \tabularnewline
(p-val) & (1e-04 ) & (0.1131 ) & (NA ) & (0 ) & (NA ) & (0.2531 ) & (0 ) \tabularnewline
Estimates ( 4 ) & 0.7057 & -0.1429 & 0 & -0.7746 & 0 & 0 & -0.6149 \tabularnewline
(p-val) & (0 ) & (0.1676 ) & (NA ) & (0 ) & (NA ) & (NA ) & (0 ) \tabularnewline
Estimates ( 5 ) & 0.6806 & 0 & 0 & -1.1996 & 0 & 0 & -0.611 \tabularnewline
(p-val) & (0 ) & (NA ) & (NA ) & (0 ) & (NA ) & (NA ) & (0 ) \tabularnewline
Estimates ( 6 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 7 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 8 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 9 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 10 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 11 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 12 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 13 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302936&T=1

[TABLE]
[ROW][C]ARIMA Parameter Estimation and Backward Selection[/C][/ROW]
[ROW][C]Iteration[/C][C]ar1[/C][C]ar2[/C][C]ar3[/C][C]ma1[/C][C]sar1[/C][C]sar2[/C][C]sma1[/C][/ROW]
[ROW][C]Estimates ( 1 )[/C][C]0.686[/C][C]-0.1599[/C][C]-0.016[/C][C]-0.7404[/C][C]-0.0098[/C][C]-0.1409[/C][C]-0.5516[/C][/ROW]
[ROW][C](p-val)[/C][C](1e-04 )[/C][C](0.2786 )[/C][C](0.9141 )[/C][C](0 )[/C][C](0.9579 )[/C][C](0.4484 )[/C][C](0.0024 )[/C][/ROW]
[ROW][C]Estimates ( 2 )[/C][C]0.6864[/C][C]-0.1601[/C][C]-0.0164[/C][C]-0.74[/C][C]0[/C][C]-0.1369[/C][C]-0.5604[/C][/ROW]
[ROW][C](p-val)[/C][C](6e-04 )[/C][C](0.2 )[/C][C](0.8892 )[/C][C](0 )[/C][C](NA )[/C][C](0.271 )[/C][C](0 )[/C][/ROW]
[ROW][C]Estimates ( 3 )[/C][C]0.6986[/C][C]-0.1691[/C][C]0[/C][C]-0.7499[/C][C]0[/C][C]-0.1398[/C][C]-0.5588[/C][/ROW]
[ROW][C](p-val)[/C][C](1e-04 )[/C][C](0.1131 )[/C][C](NA )[/C][C](0 )[/C][C](NA )[/C][C](0.2531 )[/C][C](0 )[/C][/ROW]
[ROW][C]Estimates ( 4 )[/C][C]0.7057[/C][C]-0.1429[/C][C]0[/C][C]-0.7746[/C][C]0[/C][C]0[/C][C]-0.6149[/C][/ROW]
[ROW][C](p-val)[/C][C](0 )[/C][C](0.1676 )[/C][C](NA )[/C][C](0 )[/C][C](NA )[/C][C](NA )[/C][C](0 )[/C][/ROW]
[ROW][C]Estimates ( 5 )[/C][C]0.6806[/C][C]0[/C][C]0[/C][C]-1.1996[/C][C]0[/C][C]0[/C][C]-0.611[/C][/ROW]
[ROW][C](p-val)[/C][C](0 )[/C][C](NA )[/C][C](NA )[/C][C](0 )[/C][C](NA )[/C][C](NA )[/C][C](0 )[/C][/ROW]
[ROW][C]Estimates ( 6 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 7 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 8 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 9 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 10 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 11 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 12 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 13 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302936&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302936&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ARIMA Parameter Estimation and Backward Selection
Iterationar1ar2ar3ma1sar1sar2sma1
Estimates ( 1 )0.686-0.1599-0.016-0.7404-0.0098-0.1409-0.5516
(p-val)(1e-04 )(0.2786 )(0.9141 )(0 )(0.9579 )(0.4484 )(0.0024 )
Estimates ( 2 )0.6864-0.1601-0.0164-0.740-0.1369-0.5604
(p-val)(6e-04 )(0.2 )(0.8892 )(0 )(NA )(0.271 )(0 )
Estimates ( 3 )0.6986-0.16910-0.74990-0.1398-0.5588
(p-val)(1e-04 )(0.1131 )(NA )(0 )(NA )(0.2531 )(0 )
Estimates ( 4 )0.7057-0.14290-0.774600-0.6149
(p-val)(0 )(0.1676 )(NA )(0 )(NA )(NA )(0 )
Estimates ( 5 )0.680600-1.199600-0.611
(p-val)(0 )(NA )(NA )(0 )(NA )(NA )(0 )
Estimates ( 6 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 7 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 8 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 9 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 10 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 11 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 12 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 13 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )







Estimated ARIMA Residuals
Value
-0.119674416544362
-1.2450549365719
-1.23244433471217
1.30790827126443
1.20948241281955
1.80559083537745
1.44157342401413
-0.0612599385511935
1.17312952359567
1.0427017874741
0.100662442465355
1.90947079978085
0.0256403875064649
0.786773497633863
-0.79187319808136
0.6617995940124
-0.974598824964366
0.139688820853106
1.11523800679395
1.16578819604624
0.917183625813945
-1.02774403878696
-0.495313819428477
2.04914536794034
-0.816825738918989
0.314804229995915
-0.656108916619367
-1.73496248880003
2.65425437405061
0.427849967948113
-0.900143397335664
-0.529695971421035
0.38726438057771
2.54127152178279
0.407492867067053
-0.0740884912076537
1.60220963412373
0.821175279293522
-1.41526058292817
-0.67212500056963
0.167468962489227
1.52558066788428
0.43563170466575
-0.113544652800771
-0.662682391908132
1.66538064369683
-0.208976532793211
1.29384301051877
0.00386049365663801
0.351210754315221
-1.12274804323334
4.22475303823733
-1.01004066067026
0.0176686572492463
2.93068542227433
0.654810601551035
1.88053980862705
-0.102722439253246
-0.596158155665421
-0.987458624780075
-1.80693330399875
-0.8716713132348
-1.06995498649081
1.05473522848653
1.36505705645487
2.43950476595327
0.701505084745527
-0.421885237652541
-0.181009416535983
-2.47614318853498
1.06896972089709
0.255347879826023
-0.53285317401478
-0.804852425583787
1.52492365314007
0.404028401347959
0.507192257644832
-0.0509858295551438
0.383926818577598
0.434619003257549
-0.042291314201279
-1.84789561783062
-0.475598836698206
1.65122533982314
0.665612478635599
0.107510777662284
2.62813955602553
-1.64187168609857
1.68223631451145
-0.0880786076704655
-1.93529012079269
1.0970156409052
0.708376005580569
-0.0144862691526715
0.945708656929019
0.0436411692136322
-0.503107268247707
-0.495866542906712
-1.41632854989571
2.47950071525069
1.03789264432948
-0.0567835563599925
0.124933932183552

\begin{tabular}{lllllllll}
\hline
Estimated ARIMA Residuals \tabularnewline
Value \tabularnewline
-0.119674416544362 \tabularnewline
-1.2450549365719 \tabularnewline
-1.23244433471217 \tabularnewline
1.30790827126443 \tabularnewline
1.20948241281955 \tabularnewline
1.80559083537745 \tabularnewline
1.44157342401413 \tabularnewline
-0.0612599385511935 \tabularnewline
1.17312952359567 \tabularnewline
1.0427017874741 \tabularnewline
0.100662442465355 \tabularnewline
1.90947079978085 \tabularnewline
0.0256403875064649 \tabularnewline
0.786773497633863 \tabularnewline
-0.79187319808136 \tabularnewline
0.6617995940124 \tabularnewline
-0.974598824964366 \tabularnewline
0.139688820853106 \tabularnewline
1.11523800679395 \tabularnewline
1.16578819604624 \tabularnewline
0.917183625813945 \tabularnewline
-1.02774403878696 \tabularnewline
-0.495313819428477 \tabularnewline
2.04914536794034 \tabularnewline
-0.816825738918989 \tabularnewline
0.314804229995915 \tabularnewline
-0.656108916619367 \tabularnewline
-1.73496248880003 \tabularnewline
2.65425437405061 \tabularnewline
0.427849967948113 \tabularnewline
-0.900143397335664 \tabularnewline
-0.529695971421035 \tabularnewline
0.38726438057771 \tabularnewline
2.54127152178279 \tabularnewline
0.407492867067053 \tabularnewline
-0.0740884912076537 \tabularnewline
1.60220963412373 \tabularnewline
0.821175279293522 \tabularnewline
-1.41526058292817 \tabularnewline
-0.67212500056963 \tabularnewline
0.167468962489227 \tabularnewline
1.52558066788428 \tabularnewline
0.43563170466575 \tabularnewline
-0.113544652800771 \tabularnewline
-0.662682391908132 \tabularnewline
1.66538064369683 \tabularnewline
-0.208976532793211 \tabularnewline
1.29384301051877 \tabularnewline
0.00386049365663801 \tabularnewline
0.351210754315221 \tabularnewline
-1.12274804323334 \tabularnewline
4.22475303823733 \tabularnewline
-1.01004066067026 \tabularnewline
0.0176686572492463 \tabularnewline
2.93068542227433 \tabularnewline
0.654810601551035 \tabularnewline
1.88053980862705 \tabularnewline
-0.102722439253246 \tabularnewline
-0.596158155665421 \tabularnewline
-0.987458624780075 \tabularnewline
-1.80693330399875 \tabularnewline
-0.8716713132348 \tabularnewline
-1.06995498649081 \tabularnewline
1.05473522848653 \tabularnewline
1.36505705645487 \tabularnewline
2.43950476595327 \tabularnewline
0.701505084745527 \tabularnewline
-0.421885237652541 \tabularnewline
-0.181009416535983 \tabularnewline
-2.47614318853498 \tabularnewline
1.06896972089709 \tabularnewline
0.255347879826023 \tabularnewline
-0.53285317401478 \tabularnewline
-0.804852425583787 \tabularnewline
1.52492365314007 \tabularnewline
0.404028401347959 \tabularnewline
0.507192257644832 \tabularnewline
-0.0509858295551438 \tabularnewline
0.383926818577598 \tabularnewline
0.434619003257549 \tabularnewline
-0.042291314201279 \tabularnewline
-1.84789561783062 \tabularnewline
-0.475598836698206 \tabularnewline
1.65122533982314 \tabularnewline
0.665612478635599 \tabularnewline
0.107510777662284 \tabularnewline
2.62813955602553 \tabularnewline
-1.64187168609857 \tabularnewline
1.68223631451145 \tabularnewline
-0.0880786076704655 \tabularnewline
-1.93529012079269 \tabularnewline
1.0970156409052 \tabularnewline
0.708376005580569 \tabularnewline
-0.0144862691526715 \tabularnewline
0.945708656929019 \tabularnewline
0.0436411692136322 \tabularnewline
-0.503107268247707 \tabularnewline
-0.495866542906712 \tabularnewline
-1.41632854989571 \tabularnewline
2.47950071525069 \tabularnewline
1.03789264432948 \tabularnewline
-0.0567835563599925 \tabularnewline
0.124933932183552 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302936&T=2

[TABLE]
[ROW][C]Estimated ARIMA Residuals[/C][/ROW]
[ROW][C]Value[/C][/ROW]
[ROW][C]-0.119674416544362[/C][/ROW]
[ROW][C]-1.2450549365719[/C][/ROW]
[ROW][C]-1.23244433471217[/C][/ROW]
[ROW][C]1.30790827126443[/C][/ROW]
[ROW][C]1.20948241281955[/C][/ROW]
[ROW][C]1.80559083537745[/C][/ROW]
[ROW][C]1.44157342401413[/C][/ROW]
[ROW][C]-0.0612599385511935[/C][/ROW]
[ROW][C]1.17312952359567[/C][/ROW]
[ROW][C]1.0427017874741[/C][/ROW]
[ROW][C]0.100662442465355[/C][/ROW]
[ROW][C]1.90947079978085[/C][/ROW]
[ROW][C]0.0256403875064649[/C][/ROW]
[ROW][C]0.786773497633863[/C][/ROW]
[ROW][C]-0.79187319808136[/C][/ROW]
[ROW][C]0.6617995940124[/C][/ROW]
[ROW][C]-0.974598824964366[/C][/ROW]
[ROW][C]0.139688820853106[/C][/ROW]
[ROW][C]1.11523800679395[/C][/ROW]
[ROW][C]1.16578819604624[/C][/ROW]
[ROW][C]0.917183625813945[/C][/ROW]
[ROW][C]-1.02774403878696[/C][/ROW]
[ROW][C]-0.495313819428477[/C][/ROW]
[ROW][C]2.04914536794034[/C][/ROW]
[ROW][C]-0.816825738918989[/C][/ROW]
[ROW][C]0.314804229995915[/C][/ROW]
[ROW][C]-0.656108916619367[/C][/ROW]
[ROW][C]-1.73496248880003[/C][/ROW]
[ROW][C]2.65425437405061[/C][/ROW]
[ROW][C]0.427849967948113[/C][/ROW]
[ROW][C]-0.900143397335664[/C][/ROW]
[ROW][C]-0.529695971421035[/C][/ROW]
[ROW][C]0.38726438057771[/C][/ROW]
[ROW][C]2.54127152178279[/C][/ROW]
[ROW][C]0.407492867067053[/C][/ROW]
[ROW][C]-0.0740884912076537[/C][/ROW]
[ROW][C]1.60220963412373[/C][/ROW]
[ROW][C]0.821175279293522[/C][/ROW]
[ROW][C]-1.41526058292817[/C][/ROW]
[ROW][C]-0.67212500056963[/C][/ROW]
[ROW][C]0.167468962489227[/C][/ROW]
[ROW][C]1.52558066788428[/C][/ROW]
[ROW][C]0.43563170466575[/C][/ROW]
[ROW][C]-0.113544652800771[/C][/ROW]
[ROW][C]-0.662682391908132[/C][/ROW]
[ROW][C]1.66538064369683[/C][/ROW]
[ROW][C]-0.208976532793211[/C][/ROW]
[ROW][C]1.29384301051877[/C][/ROW]
[ROW][C]0.00386049365663801[/C][/ROW]
[ROW][C]0.351210754315221[/C][/ROW]
[ROW][C]-1.12274804323334[/C][/ROW]
[ROW][C]4.22475303823733[/C][/ROW]
[ROW][C]-1.01004066067026[/C][/ROW]
[ROW][C]0.0176686572492463[/C][/ROW]
[ROW][C]2.93068542227433[/C][/ROW]
[ROW][C]0.654810601551035[/C][/ROW]
[ROW][C]1.88053980862705[/C][/ROW]
[ROW][C]-0.102722439253246[/C][/ROW]
[ROW][C]-0.596158155665421[/C][/ROW]
[ROW][C]-0.987458624780075[/C][/ROW]
[ROW][C]-1.80693330399875[/C][/ROW]
[ROW][C]-0.8716713132348[/C][/ROW]
[ROW][C]-1.06995498649081[/C][/ROW]
[ROW][C]1.05473522848653[/C][/ROW]
[ROW][C]1.36505705645487[/C][/ROW]
[ROW][C]2.43950476595327[/C][/ROW]
[ROW][C]0.701505084745527[/C][/ROW]
[ROW][C]-0.421885237652541[/C][/ROW]
[ROW][C]-0.181009416535983[/C][/ROW]
[ROW][C]-2.47614318853498[/C][/ROW]
[ROW][C]1.06896972089709[/C][/ROW]
[ROW][C]0.255347879826023[/C][/ROW]
[ROW][C]-0.53285317401478[/C][/ROW]
[ROW][C]-0.804852425583787[/C][/ROW]
[ROW][C]1.52492365314007[/C][/ROW]
[ROW][C]0.404028401347959[/C][/ROW]
[ROW][C]0.507192257644832[/C][/ROW]
[ROW][C]-0.0509858295551438[/C][/ROW]
[ROW][C]0.383926818577598[/C][/ROW]
[ROW][C]0.434619003257549[/C][/ROW]
[ROW][C]-0.042291314201279[/C][/ROW]
[ROW][C]-1.84789561783062[/C][/ROW]
[ROW][C]-0.475598836698206[/C][/ROW]
[ROW][C]1.65122533982314[/C][/ROW]
[ROW][C]0.665612478635599[/C][/ROW]
[ROW][C]0.107510777662284[/C][/ROW]
[ROW][C]2.62813955602553[/C][/ROW]
[ROW][C]-1.64187168609857[/C][/ROW]
[ROW][C]1.68223631451145[/C][/ROW]
[ROW][C]-0.0880786076704655[/C][/ROW]
[ROW][C]-1.93529012079269[/C][/ROW]
[ROW][C]1.0970156409052[/C][/ROW]
[ROW][C]0.708376005580569[/C][/ROW]
[ROW][C]-0.0144862691526715[/C][/ROW]
[ROW][C]0.945708656929019[/C][/ROW]
[ROW][C]0.0436411692136322[/C][/ROW]
[ROW][C]-0.503107268247707[/C][/ROW]
[ROW][C]-0.495866542906712[/C][/ROW]
[ROW][C]-1.41632854989571[/C][/ROW]
[ROW][C]2.47950071525069[/C][/ROW]
[ROW][C]1.03789264432948[/C][/ROW]
[ROW][C]-0.0567835563599925[/C][/ROW]
[ROW][C]0.124933932183552[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302936&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302936&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimated ARIMA Residuals
Value
-0.119674416544362
-1.2450549365719
-1.23244433471217
1.30790827126443
1.20948241281955
1.80559083537745
1.44157342401413
-0.0612599385511935
1.17312952359567
1.0427017874741
0.100662442465355
1.90947079978085
0.0256403875064649
0.786773497633863
-0.79187319808136
0.6617995940124
-0.974598824964366
0.139688820853106
1.11523800679395
1.16578819604624
0.917183625813945
-1.02774403878696
-0.495313819428477
2.04914536794034
-0.816825738918989
0.314804229995915
-0.656108916619367
-1.73496248880003
2.65425437405061
0.427849967948113
-0.900143397335664
-0.529695971421035
0.38726438057771
2.54127152178279
0.407492867067053
-0.0740884912076537
1.60220963412373
0.821175279293522
-1.41526058292817
-0.67212500056963
0.167468962489227
1.52558066788428
0.43563170466575
-0.113544652800771
-0.662682391908132
1.66538064369683
-0.208976532793211
1.29384301051877
0.00386049365663801
0.351210754315221
-1.12274804323334
4.22475303823733
-1.01004066067026
0.0176686572492463
2.93068542227433
0.654810601551035
1.88053980862705
-0.102722439253246
-0.596158155665421
-0.987458624780075
-1.80693330399875
-0.8716713132348
-1.06995498649081
1.05473522848653
1.36505705645487
2.43950476595327
0.701505084745527
-0.421885237652541
-0.181009416535983
-2.47614318853498
1.06896972089709
0.255347879826023
-0.53285317401478
-0.804852425583787
1.52492365314007
0.404028401347959
0.507192257644832
-0.0509858295551438
0.383926818577598
0.434619003257549
-0.042291314201279
-1.84789561783062
-0.475598836698206
1.65122533982314
0.665612478635599
0.107510777662284
2.62813955602553
-1.64187168609857
1.68223631451145
-0.0880786076704655
-1.93529012079269
1.0970156409052
0.708376005580569
-0.0144862691526715
0.945708656929019
0.0436411692136322
-0.503107268247707
-0.495866542906712
-1.41632854989571
2.47950071525069
1.03789264432948
-0.0567835563599925
0.124933932183552



Parameters (Session):
par1 = TRUE ; par2 = 0.4 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = 3 ; par7 = 1 ; par8 = 2 ; par9 = 1 ;
Parameters (R input):
par1 = TRUE ; par2 = 0.4 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = 3 ; par7 = 1 ; par8 = 2 ; par9 = 1 ;
R code (references can be found in the software module):
library(lattice)
if (par1 == 'TRUE') par1 <- TRUE
if (par1 == 'FALSE') par1 <- FALSE
par2 <- as.numeric(par2) #Box-Cox lambda transformation parameter
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #degree (p) of the non-seasonal AR(p) polynomial
par7 <- as.numeric(par7) #degree (q) of the non-seasonal MA(q) polynomial
par8 <- as.numeric(par8) #degree (P) of the seasonal AR(P) polynomial
par9 <- as.numeric(par9) #degree (Q) of the seasonal MA(Q) polynomial
armaGR <- function(arima.out, names, n){
try1 <- arima.out$coef
try2 <- sqrt(diag(arima.out$var.coef))
try.data.frame <- data.frame(matrix(NA,ncol=4,nrow=length(names)))
dimnames(try.data.frame) <- list(names,c('coef','std','tstat','pv'))
try.data.frame[,1] <- try1
for(i in 1:length(try2)) try.data.frame[which(rownames(try.data.frame)==names(try2)[i]),2] <- try2[i]
try.data.frame[,3] <- try.data.frame[,1] / try.data.frame[,2]
try.data.frame[,4] <- round((1-pt(abs(try.data.frame[,3]),df=n-(length(try2)+1)))*2,5)
vector <- rep(NA,length(names))
vector[is.na(try.data.frame[,4])] <- 0
maxi <- which.max(try.data.frame[,4])
continue <- max(try.data.frame[,4],na.rm=TRUE) > .05
vector[maxi] <- 0
list(summary=try.data.frame,next.vector=vector,continue=continue)
}
arimaSelect <- function(series, order=c(13,0,0), seasonal=list(order=c(2,0,0),period=12), include.mean=F){
nrc <- order[1]+order[3]+seasonal$order[1]+seasonal$order[3]
coeff <- matrix(NA, nrow=nrc*2, ncol=nrc)
pval <- matrix(NA, nrow=nrc*2, ncol=nrc)
mylist <- rep(list(NULL), nrc)
names <- NULL
if(order[1] > 0) names <- paste('ar',1:order[1],sep='')
if(order[3] > 0) names <- c( names , paste('ma',1:order[3],sep='') )
if(seasonal$order[1] > 0) names <- c(names, paste('sar',1:seasonal$order[1],sep=''))
if(seasonal$order[3] > 0) names <- c(names, paste('sma',1:seasonal$order[3],sep=''))
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML')
mylist[[1]] <- arima.out
last.arma <- armaGR(arima.out, names, length(series))
mystop <- FALSE
i <- 1
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- 2
aic <- arima.out$aic
while(!mystop){
mylist[[i]] <- arima.out
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML', fixed=last.arma$next.vector)
aic <- c(aic, arima.out$aic)
last.arma <- armaGR(arima.out, names, length(series))
mystop <- !last.arma$continue
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- i+1
}
list(coeff, pval, mylist, aic=aic)
}
arimaSelectplot <- function(arimaSelect.out,noms,choix){
noms <- names(arimaSelect.out[[3]][[1]]$coef)
coeff <- arimaSelect.out[[1]]
k <- min(which(is.na(coeff[,1])))-1
coeff <- coeff[1:k,]
pval <- arimaSelect.out[[2]][1:k,]
aic <- arimaSelect.out$aic[1:k]
coeff[coeff==0] <- NA
n <- ncol(coeff)
if(missing(choix)) choix <- k
layout(matrix(c(1,1,1,2,
3,3,3,2,
3,3,3,4,
5,6,7,7),nr=4),
widths=c(10,35,45,15),
heights=c(30,30,15,15))
couleurs <- rainbow(75)[1:50]#(50)
ticks <- pretty(coeff)
par(mar=c(1,1,3,1))
plot(aic,k:1-.5,type='o',pch=21,bg='blue',cex=2,axes=F,lty=2,xpd=NA)
points(aic[choix],k-choix+.5,pch=21,cex=4,bg=2,xpd=NA)
title('aic',line=2)
par(mar=c(3,0,0,0))
plot(0,axes=F,xlab='',ylab='',xlim=range(ticks),ylim=c(.1,1))
rect(xleft = min(ticks) + (0:49)/50*(max(ticks)-min(ticks)),
xright = min(ticks) + (1:50)/50*(max(ticks)-min(ticks)),
ytop = rep(1,50),
ybottom= rep(0,50),col=couleurs,border=NA)
axis(1,ticks)
rect(xleft=min(ticks),xright=max(ticks),ytop=1,ybottom=0)
text(mean(coeff,na.rm=T),.5,'coefficients',cex=2,font=2)
par(mar=c(1,1,3,1))
image(1:n,1:k,t(coeff[k:1,]),axes=F,col=couleurs,zlim=range(ticks))
for(i in 1:n) for(j in 1:k) if(!is.na(coeff[j,i])) {
if(pval[j,i]<.01) symb = 'green'
else if( (pval[j,i]<.05) & (pval[j,i]>=.01)) symb = 'orange'
else if( (pval[j,i]<.1) & (pval[j,i]>=.05)) symb = 'red'
else symb = 'black'
polygon(c(i+.5 ,i+.2 ,i+.5 ,i+.5),
c(k-j+0.5,k-j+0.5,k-j+0.8,k-j+0.5),
col=symb)
if(j==choix) {
rect(xleft=i-.5,
xright=i+.5,
ybottom=k-j+1.5,
ytop=k-j+.5,
lwd=4)
text(i,
k-j+1,
round(coeff[j,i],2),
cex=1.2,
font=2)
}
else{
rect(xleft=i-.5,xright=i+.5,ybottom=k-j+1.5,ytop=k-j+.5)
text(i,k-j+1,round(coeff[j,i],2),cex=1.2,font=1)
}
}
axis(3,1:n,noms)
par(mar=c(0.5,0,0,0.5))
plot(0,axes=F,xlab='',ylab='',type='n',xlim=c(0,8),ylim=c(-.2,.8))
cols <- c('green','orange','red','black')
niv <- c('0','0.01','0.05','0.1')
for(i in 0:3){
polygon(c(1+2*i ,1+2*i ,1+2*i-.5 ,1+2*i),
c(.4 ,.7 , .4 , .4),
col=cols[i+1])
text(2*i,0.5,niv[i+1],cex=1.5)
}
text(8,.5,1,cex=1.5)
text(4,0,'p-value',cex=2)
box()
residus <- arimaSelect.out[[3]][[choix]]$res
par(mar=c(1,2,4,1))
acf(residus,main='')
title('acf',line=.5)
par(mar=c(1,2,4,1))
pacf(residus,main='')
title('pacf',line=.5)
par(mar=c(2,2,4,1))
qqnorm(residus,main='')
title('qq-norm',line=.5)
qqline(residus)
residus
}
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
(selection <- arimaSelect(x, order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5)))
bitmap(file='test1.png')
resid <- arimaSelectplot(selection)
dev.off()
resid
bitmap(file='test2.png')
acf(resid,length(resid)/2, main='Residual Autocorrelation Function')
dev.off()
bitmap(file='test3.png')
pacf(resid,length(resid)/2, main='Residual Partial Autocorrelation Function')
dev.off()
bitmap(file='test4.png')
cpgram(resid, main='Residual Cumulative Periodogram')
dev.off()
bitmap(file='test5.png')
hist(resid, main='Residual Histogram', xlab='values of Residuals')
dev.off()
bitmap(file='test6.png')
densityplot(~resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test7.png')
qqnorm(resid, main='Residual Normal Q-Q Plot')
qqline(resid)
dev.off()
ncols <- length(selection[[1]][1,])
nrows <- length(selection[[2]][,1])-1
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'ARIMA Parameter Estimation and Backward Selection', ncols+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Iteration', header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,names(selection[[3]][[1]]$coef)[i],header=TRUE)
}
a<-table.row.end(a)
for (j in 1:nrows) {
a<-table.row.start(a)
mydum <- 'Estimates ('
mydum <- paste(mydum,j)
mydum <- paste(mydum,')')
a<-table.element(a,mydum, header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,round(selection[[1]][j,i],4))
}
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'(p-val)', header=TRUE)
for (i in 1:ncols) {
mydum <- '('
mydum <- paste(mydum,round(selection[[2]][j,i],4),sep='')
mydum <- paste(mydum,')')
a<-table.element(a,mydum)
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimated ARIMA Residuals', 1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Value', 1,TRUE)
a<-table.row.end(a)
for (i in (par4*par5+par3):length(resid)) {
a<-table.row.start(a)
a<-table.element(a,resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')