Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_pairs.wasp
Title produced by softwareKendall tau Correlation Matrix
Date of computationFri, 23 Dec 2016 14:11:18 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/23/t1482498700gvl1ueyjp5jq0ul.htm/, Retrieved Fri, 01 Nov 2024 03:31:15 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=302930, Retrieved Fri, 01 Nov 2024 03:31:15 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact105
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Kendall tau Correlation Matrix] [geslacht en gw] [2016-12-23 13:11:18] [8263efc94e08b372ab727a2b95bd56b1] [Current]
Feedback Forum

Post a new message
Dataseries X:
0	3	3
1	2	4
1	3	4
1	2	3
0	3	3
1	3	4
1	3	3
1	3	3
0	3	3
0	3	3
0	3	4
0	3	3
0	4	5
0	3	4
0	3	4
1	2	3
0	3	5
1	3	2
1	3	2
1	3	3
0	3	3
1	3	3
1	3	3
0	3	4
0	2	4
0	3	4
0	3	4
0	4	2
0	3	4
0	3	3
1	2	3
0	3	4
0	2	2
1	3	4
0	3	4
0	3	3
1	3	3
0	4	4
0	3	3
1	2	4
1	3	3
1	3	3
1	3	4
1	3	4
1	2	3
1	3	3
1	3	3
1	2	3
0	1	1
1	3	3
0	3	4
1	3	4
1	1	2
0	3	4
1	3	4
0	3	3
0	3	5
1	3	3
0	3	2
1	3	3
1	2	4
1	3	3
1	3	3
0	3	4
1	2	3
0	3	4
1	3	3
0	3	5
1	3	4
1	2	4
1	3	4
1	3	3
0	3	5
1	3	4
0	3	4
1	2	4
0	3	4
1	3	3
1	3	3
0	3	4
0	3	4
0	3	4
1	3	3
1	3	4
1	3	3
1	3	3
1	3	3
0	3	4
1	3	3
0	3	3
0	3	3
0	3	3
0	3	3
1	3	4
1	3	3
1	2	3
0	5	5
1	3	3
1	3	3
0	4	4
0	3	4
1	3	4
1	3	4
1	3	4
1	3	3
0	3	4
0	3	4
0	3	3
1	3	3
1	3	3
1	3	3
0	4	4
0	3	3
1	2	3
0	3	4
0	3	3
1	3	3
0	3	4
0	3	3
0	3	3
1	3	3
1	3	3
1	3	3
1	3	4
1	3	3
0	3	4
0	3	4
1	3	3
1	3	3
1	3	4
0	3	3
1	2	4
0	3	4
0	3	3
0	4	5
1	2	4
0	2	4
0	3	3
0	2	3
0	3	3
1	3	4
0	3	4
1	3	3
1	3	3
1	3	3
1	2	3
0	3	3
0	3	4
0	3	4
0	3	3
1	3	2
1	2	2
1	3	3
1	3	3
0	3	4
1	3	3
0	3	4
1	3	2
0	3	4
0	3	3
0	3	3
0	3	3
0	2	3
1	3	3
1	3	3
0	3	4




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time0 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time0 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302930&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]0 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=302930&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302930&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time0 seconds
R ServerBig Analytics Cloud Computing Center







Correlations for all pairs of data series (method=spearman)
geslachtGW3GW4
geslacht1-0.258-0.292
GW3-0.25810.184
GW4-0.2920.1841

\begin{tabular}{lllllllll}
\hline
Correlations for all pairs of data series (method=spearman) \tabularnewline
  & geslacht & GW3 & GW4 \tabularnewline
geslacht & 1 & -0.258 & -0.292 \tabularnewline
GW3 & -0.258 & 1 & 0.184 \tabularnewline
GW4 & -0.292 & 0.184 & 1 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302930&T=1

[TABLE]
[ROW][C]Correlations for all pairs of data series (method=spearman)[/C][/ROW]
[ROW][C] [/C][C]geslacht[/C][C]GW3[/C][C]GW4[/C][/ROW]
[ROW][C]geslacht[/C][C]1[/C][C]-0.258[/C][C]-0.292[/C][/ROW]
[ROW][C]GW3[/C][C]-0.258[/C][C]1[/C][C]0.184[/C][/ROW]
[ROW][C]GW4[/C][C]-0.292[/C][C]0.184[/C][C]1[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302930&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302930&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Correlations for all pairs of data series (method=spearman)
geslachtGW3GW4
geslacht1-0.258-0.292
GW3-0.25810.184
GW4-0.2920.1841







Correlations for all pairs of data series with p-values
pairPearson rSpearman rhoKendall tau
geslacht;GW3-0.2436-0.2575-0.2522
p-value(0.0016)(8e-04)(9e-04)
geslacht;GW4-0.2764-0.2917-0.2801
p-value(3e-04)(1e-04)(2e-04)
GW3;GW40.29860.18430.1752
p-value(1e-04)(0.0174)(0.0167)

\begin{tabular}{lllllllll}
\hline
Correlations for all pairs of data series with p-values \tabularnewline
pair & Pearson r & Spearman rho & Kendall tau \tabularnewline
geslacht;GW3 & -0.2436 & -0.2575 & -0.2522 \tabularnewline
p-value & (0.0016) & (8e-04) & (9e-04) \tabularnewline
geslacht;GW4 & -0.2764 & -0.2917 & -0.2801 \tabularnewline
p-value & (3e-04) & (1e-04) & (2e-04) \tabularnewline
GW3;GW4 & 0.2986 & 0.1843 & 0.1752 \tabularnewline
p-value & (1e-04) & (0.0174) & (0.0167) \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302930&T=2

[TABLE]
[ROW][C]Correlations for all pairs of data series with p-values[/C][/ROW]
[ROW][C]pair[/C][C]Pearson r[/C][C]Spearman rho[/C][C]Kendall tau[/C][/ROW]
[ROW][C]geslacht;GW3[/C][C]-0.2436[/C][C]-0.2575[/C][C]-0.2522[/C][/ROW]
[ROW][C]p-value[/C][C](0.0016)[/C][C](8e-04)[/C][C](9e-04)[/C][/ROW]
[ROW][C]geslacht;GW4[/C][C]-0.2764[/C][C]-0.2917[/C][C]-0.2801[/C][/ROW]
[ROW][C]p-value[/C][C](3e-04)[/C][C](1e-04)[/C][C](2e-04)[/C][/ROW]
[ROW][C]GW3;GW4[/C][C]0.2986[/C][C]0.1843[/C][C]0.1752[/C][/ROW]
[ROW][C]p-value[/C][C](1e-04)[/C][C](0.0174)[/C][C](0.0167)[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302930&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302930&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Correlations for all pairs of data series with p-values
pairPearson rSpearman rhoKendall tau
geslacht;GW3-0.2436-0.2575-0.2522
p-value(0.0016)(8e-04)(9e-04)
geslacht;GW4-0.2764-0.2917-0.2801
p-value(3e-04)(1e-04)(2e-04)
GW3;GW40.29860.18430.1752
p-value(1e-04)(0.0174)(0.0167)







Meta Analysis of Correlation Tests
Number of significant by total number of Correlations
Type I errorPearson rSpearman rhoKendall tau
0.0110.670.67
0.02111
0.03111
0.04111
0.05111
0.06111
0.07111
0.08111
0.09111
0.1111

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Correlation Tests \tabularnewline
Number of significant by total number of Correlations \tabularnewline
Type I error & Pearson r & Spearman rho & Kendall tau \tabularnewline
0.01 & 1 & 0.67 & 0.67 \tabularnewline
0.02 & 1 & 1 & 1 \tabularnewline
0.03 & 1 & 1 & 1 \tabularnewline
0.04 & 1 & 1 & 1 \tabularnewline
0.05 & 1 & 1 & 1 \tabularnewline
0.06 & 1 & 1 & 1 \tabularnewline
0.07 & 1 & 1 & 1 \tabularnewline
0.08 & 1 & 1 & 1 \tabularnewline
0.09 & 1 & 1 & 1 \tabularnewline
0.1 & 1 & 1 & 1 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302930&T=3

[TABLE]
[ROW][C]Meta Analysis of Correlation Tests[/C][/ROW]
[ROW][C]Number of significant by total number of Correlations[/C][/ROW]
[ROW][C]Type I error[/C][C]Pearson r[/C][C]Spearman rho[/C][C]Kendall tau[/C][/ROW]
[ROW][C]0.01[/C][C]1[/C][C]0.67[/C][C]0.67[/C][/ROW]
[ROW][C]0.02[/C][C]1[/C][C]1[/C][C]1[/C][/ROW]
[ROW][C]0.03[/C][C]1[/C][C]1[/C][C]1[/C][/ROW]
[ROW][C]0.04[/C][C]1[/C][C]1[/C][C]1[/C][/ROW]
[ROW][C]0.05[/C][C]1[/C][C]1[/C][C]1[/C][/ROW]
[ROW][C]0.06[/C][C]1[/C][C]1[/C][C]1[/C][/ROW]
[ROW][C]0.07[/C][C]1[/C][C]1[/C][C]1[/C][/ROW]
[ROW][C]0.08[/C][C]1[/C][C]1[/C][C]1[/C][/ROW]
[ROW][C]0.09[/C][C]1[/C][C]1[/C][C]1[/C][/ROW]
[ROW][C]0.1[/C][C]1[/C][C]1[/C][C]1[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302930&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302930&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Correlation Tests
Number of significant by total number of Correlations
Type I errorPearson rSpearman rhoKendall tau
0.0110.670.67
0.02111
0.03111
0.04111
0.05111
0.06111
0.07111
0.08111
0.09111
0.1111



Parameters (Session):
par1 = spearman ;
Parameters (R input):
par1 = spearman ;
R code (references can be found in the software module):
panel.tau <- function(x, y, digits=2, prefix='', cex.cor)
{
usr <- par('usr'); on.exit(par(usr))
par(usr = c(0, 1, 0, 1))
rr <- cor.test(x, y, method=par1)
r <- round(rr$p.value,2)
txt <- format(c(r, 0.123456789), digits=digits)[1]
txt <- paste(prefix, txt, sep='')
if(missing(cex.cor)) cex <- 0.5/strwidth(txt)
text(0.5, 0.5, txt, cex = cex)
}
panel.hist <- function(x, ...)
{
usr <- par('usr'); on.exit(par(usr))
par(usr = c(usr[1:2], 0, 1.5) )
h <- hist(x, plot = FALSE)
breaks <- h$breaks; nB <- length(breaks)
y <- h$counts; y <- y/max(y)
rect(breaks[-nB], 0, breaks[-1], y, col='grey', ...)
}
x <- na.omit(x)
y <- t(na.omit(t(y)))
bitmap(file='test1.png')
pairs(t(y),diag.panel=panel.hist, upper.panel=panel.smooth, lower.panel=panel.tau, main=main)
dev.off()
load(file='createtable')
n <- length(y[,1])
print(n)
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,paste('Correlations for all pairs of data series (method=',par1,')',sep=''),n+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,' ',header=TRUE)
for (i in 1:n) {
a<-table.element(a,dimnames(t(x))[[2]][i],header=TRUE)
}
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,dimnames(t(x))[[2]][i],header=TRUE)
for (j in 1:n) {
r <- cor.test(y[i,],y[j,],method=par1)
a<-table.element(a,round(r$estimate,3))
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
ncorrs <- (n*n -n)/2
mycorrs <- array(0, dim=c(10,3))
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Correlations for all pairs of data series with p-values',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'pair',1,TRUE)
a<-table.element(a,'Pearson r',1,TRUE)
a<-table.element(a,'Spearman rho',1,TRUE)
a<-table.element(a,'Kendall tau',1,TRUE)
a<-table.row.end(a)
cor.test(y[1,],y[2,],method=par1)
for (i in 1:(n-1))
{
for (j in (i+1):n)
{
a<-table.row.start(a)
dum <- paste(dimnames(t(x))[[2]][i],';',dimnames(t(x))[[2]][j],sep='')
a<-table.element(a,dum,header=TRUE)
rp <- cor.test(y[i,],y[j,],method='pearson')
a<-table.element(a,round(rp$estimate,4))
rs <- cor.test(y[i,],y[j,],method='spearman')
a<-table.element(a,round(rs$estimate,4))
rk <- cor.test(y[i,],y[j,],method='kendall')
a<-table.element(a,round(rk$estimate,4))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=T)
a<-table.element(a,paste('(',round(rp$p.value,4),')',sep=''))
a<-table.element(a,paste('(',round(rs$p.value,4),')',sep=''))
a<-table.element(a,paste('(',round(rk$p.value,4),')',sep=''))
a<-table.row.end(a)
for (iii in 1:10) {
iiid100 <- iii / 100
if (rp$p.value < iiid100) mycorrs[iii, 1] = mycorrs[iii, 1] + 1
if (rs$p.value < iiid100) mycorrs[iii, 2] = mycorrs[iii, 2] + 1
if (rk$p.value < iiid100) mycorrs[iii, 3] = mycorrs[iii, 3] + 1
}
}
}
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Correlation Tests',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Number of significant by total number of Correlations',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Type I error',1,TRUE)
a<-table.element(a,'Pearson r',1,TRUE)
a<-table.element(a,'Spearman rho',1,TRUE)
a<-table.element(a,'Kendall tau',1,TRUE)
a<-table.row.end(a)
for (iii in 1:10) {
iiid100 <- iii / 100
a<-table.row.start(a)
a<-table.element(a,round(iiid100,2),header=T)
a<-table.element(a,round(mycorrs[iii,1]/ncorrs,2))
a<-table.element(a,round(mycorrs[iii,2]/ncorrs,2))
a<-table.element(a,round(mycorrs[iii,3]/ncorrs,2))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')