Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimaforecasting.wasp
Title produced by softwareARIMA Forecasting
Date of computationFri, 23 Dec 2016 12:07:14 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/23/t1482491255zgrkmqcwz8wekxi.htm/, Retrieved Fri, 01 Nov 2024 03:46:51 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=302865, Retrieved Fri, 01 Nov 2024 03:46:51 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact117
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [ARIMA Forecasting] [ARIMA Forecasting...] [2016-12-23 11:07:14] [55eb8f21ed24cda91766c505eb72bb6f] [Current]
Feedback Forum

Post a new message
Dataseries X:
3949.9
4010.65
4381.8
4238.25
4178.1
4702.25
3944.1
4208.5
4743.45
4948.25
4735.45
4843.15
4757.75
5227.15
5739.65
4981.45
5020.05
5149.15
4513.35
4762.55
4990.45
4963.35
5010
4983.3
4924.7
5175.25
5470.3
4969.4
5020.5
5519.2
4510.75
4934.45
5430.65
5254.7
4897.8
5305.7
5055.7
5409
5683
5125.55
4965.2
5373.3
4556.1
4714.25
5513.85
5258.45
5111.4
5422.25
4753.3
5455.5
5909.15
5524.4
5477.8
5907.75
5072.55
5171
5871.4
5812.45
5692.2
5838.1
5438.2
6041.05
6335.6
5891.8
5909.65
6449.75
5312.25
5828.1
6466.15
6328.35
6131.8
6734.2
6037.25
6412.4
6785.55
6386
6045.25
6597.25
5355.9
5773.35
6539.6
6149.2
6373.45
6504.7
5451.25
6119.9
6954.95
6139.7
6383.25
6643.7
5547.75
5974
6583.6
6571.55
5736.5
6027.2
5302.65
5825.85
5910.6
5733.65
5914.3
6128.25
5680.5
5926.3
6270.5
6263
6064.55
5706.6
5365
5884.2
6504.4
6174.3
6123.65
6698.95
5256.55
5838.2




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302865&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=302865&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302865&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[98])
866119.9-------
876954.95-------
886139.7-------
896383.25-------
906643.7-------
915547.75-------
925974-------
936583.6-------
946571.55-------
955736.5-------
966027.2-------
975302.65-------
985825.85-------
995910.66329.53785932.216726.86560.01940.99350.0010.9935
1005733.655782.76015330.7266234.79420.41570.28970.06090.4259
1015914.35758.44685255.99536260.89830.27160.53850.00740.3963
1026128.256219.28535656.31536782.25520.37560.85580.06980.9146
1035680.55062.7554451.79465673.71550.02383e-040.05990.0072
1045926.35521.59454865.90166177.28730.11320.31740.08810.1815
1056270.56189.78895491.19766888.38020.41040.77010.13460.8464
10662636014.02985275.51636752.54330.25440.2480.06950.6913
1076064.555750.57064974.1576526.98430.2140.09790.51420.4246
1085706.66116.64125304.01686929.26560.16130.550.58540.7585
10953655303.99174456.74136151.2420.44390.17580.50120.1137
1105884.25812.38684931.86826692.90550.43650.84030.4880.488
1116504.46364.17445412.81757315.53140.38630.83860.8250.8663
1126174.35794.8374795.75086793.92310.22830.0820.54780.4757
1136123.655725.9334680.95786770.90820.22780.20020.36190.4257
1146698.956162.52065070.59517254.44620.16780.52780.52450.7272
1155256.554990.66023855.1116126.20940.32310.00160.11690.0747
1165838.25423.30784245.69546600.92020.24490.60930.20120.2514

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast \tabularnewline
time & Y[t] & F[t] & 95% LB & 95% UB & p-value(H0: Y[t] = F[t]) & P(F[t]>Y[t-1]) & P(F[t]>Y[t-s]) & P(F[t]>Y[98]) \tabularnewline
86 & 6119.9 & - & - & - & - & - & - & - \tabularnewline
87 & 6954.95 & - & - & - & - & - & - & - \tabularnewline
88 & 6139.7 & - & - & - & - & - & - & - \tabularnewline
89 & 6383.25 & - & - & - & - & - & - & - \tabularnewline
90 & 6643.7 & - & - & - & - & - & - & - \tabularnewline
91 & 5547.75 & - & - & - & - & - & - & - \tabularnewline
92 & 5974 & - & - & - & - & - & - & - \tabularnewline
93 & 6583.6 & - & - & - & - & - & - & - \tabularnewline
94 & 6571.55 & - & - & - & - & - & - & - \tabularnewline
95 & 5736.5 & - & - & - & - & - & - & - \tabularnewline
96 & 6027.2 & - & - & - & - & - & - & - \tabularnewline
97 & 5302.65 & - & - & - & - & - & - & - \tabularnewline
98 & 5825.85 & - & - & - & - & - & - & - \tabularnewline
99 & 5910.6 & 6329.5378 & 5932.21 & 6726.8656 & 0.0194 & 0.9935 & 0.001 & 0.9935 \tabularnewline
100 & 5733.65 & 5782.7601 & 5330.726 & 6234.7942 & 0.4157 & 0.2897 & 0.0609 & 0.4259 \tabularnewline
101 & 5914.3 & 5758.4468 & 5255.9953 & 6260.8983 & 0.2716 & 0.5385 & 0.0074 & 0.3963 \tabularnewline
102 & 6128.25 & 6219.2853 & 5656.3153 & 6782.2552 & 0.3756 & 0.8558 & 0.0698 & 0.9146 \tabularnewline
103 & 5680.5 & 5062.755 & 4451.7946 & 5673.7155 & 0.0238 & 3e-04 & 0.0599 & 0.0072 \tabularnewline
104 & 5926.3 & 5521.5945 & 4865.9016 & 6177.2873 & 0.1132 & 0.3174 & 0.0881 & 0.1815 \tabularnewline
105 & 6270.5 & 6189.7889 & 5491.1976 & 6888.3802 & 0.4104 & 0.7701 & 0.1346 & 0.8464 \tabularnewline
106 & 6263 & 6014.0298 & 5275.5163 & 6752.5433 & 0.2544 & 0.248 & 0.0695 & 0.6913 \tabularnewline
107 & 6064.55 & 5750.5706 & 4974.157 & 6526.9843 & 0.214 & 0.0979 & 0.5142 & 0.4246 \tabularnewline
108 & 5706.6 & 6116.6412 & 5304.0168 & 6929.2656 & 0.1613 & 0.55 & 0.5854 & 0.7585 \tabularnewline
109 & 5365 & 5303.9917 & 4456.7413 & 6151.242 & 0.4439 & 0.1758 & 0.5012 & 0.1137 \tabularnewline
110 & 5884.2 & 5812.3868 & 4931.8682 & 6692.9055 & 0.4365 & 0.8403 & 0.488 & 0.488 \tabularnewline
111 & 6504.4 & 6364.1744 & 5412.8175 & 7315.5314 & 0.3863 & 0.8386 & 0.825 & 0.8663 \tabularnewline
112 & 6174.3 & 5794.837 & 4795.7508 & 6793.9231 & 0.2283 & 0.082 & 0.5478 & 0.4757 \tabularnewline
113 & 6123.65 & 5725.933 & 4680.9578 & 6770.9082 & 0.2278 & 0.2002 & 0.3619 & 0.4257 \tabularnewline
114 & 6698.95 & 6162.5206 & 5070.5951 & 7254.4462 & 0.1678 & 0.5278 & 0.5245 & 0.7272 \tabularnewline
115 & 5256.55 & 4990.6602 & 3855.111 & 6126.2094 & 0.3231 & 0.0016 & 0.1169 & 0.0747 \tabularnewline
116 & 5838.2 & 5423.3078 & 4245.6954 & 6600.9202 & 0.2449 & 0.6093 & 0.2012 & 0.2514 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302865&T=1

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast[/C][/ROW]
[ROW][C]time[/C][C]Y[t][/C][C]F[t][/C][C]95% LB[/C][C]95% UB[/C][C]p-value(H0: Y[t] = F[t])[/C][C]P(F[t]>Y[t-1])[/C][C]P(F[t]>Y[t-s])[/C][C]P(F[t]>Y[98])[/C][/ROW]
[ROW][C]86[/C][C]6119.9[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]87[/C][C]6954.95[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]88[/C][C]6139.7[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]89[/C][C]6383.25[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]90[/C][C]6643.7[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]91[/C][C]5547.75[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]92[/C][C]5974[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]93[/C][C]6583.6[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]94[/C][C]6571.55[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]95[/C][C]5736.5[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]96[/C][C]6027.2[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]97[/C][C]5302.65[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]98[/C][C]5825.85[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]99[/C][C]5910.6[/C][C]6329.5378[/C][C]5932.21[/C][C]6726.8656[/C][C]0.0194[/C][C]0.9935[/C][C]0.001[/C][C]0.9935[/C][/ROW]
[ROW][C]100[/C][C]5733.65[/C][C]5782.7601[/C][C]5330.726[/C][C]6234.7942[/C][C]0.4157[/C][C]0.2897[/C][C]0.0609[/C][C]0.4259[/C][/ROW]
[ROW][C]101[/C][C]5914.3[/C][C]5758.4468[/C][C]5255.9953[/C][C]6260.8983[/C][C]0.2716[/C][C]0.5385[/C][C]0.0074[/C][C]0.3963[/C][/ROW]
[ROW][C]102[/C][C]6128.25[/C][C]6219.2853[/C][C]5656.3153[/C][C]6782.2552[/C][C]0.3756[/C][C]0.8558[/C][C]0.0698[/C][C]0.9146[/C][/ROW]
[ROW][C]103[/C][C]5680.5[/C][C]5062.755[/C][C]4451.7946[/C][C]5673.7155[/C][C]0.0238[/C][C]3e-04[/C][C]0.0599[/C][C]0.0072[/C][/ROW]
[ROW][C]104[/C][C]5926.3[/C][C]5521.5945[/C][C]4865.9016[/C][C]6177.2873[/C][C]0.1132[/C][C]0.3174[/C][C]0.0881[/C][C]0.1815[/C][/ROW]
[ROW][C]105[/C][C]6270.5[/C][C]6189.7889[/C][C]5491.1976[/C][C]6888.3802[/C][C]0.4104[/C][C]0.7701[/C][C]0.1346[/C][C]0.8464[/C][/ROW]
[ROW][C]106[/C][C]6263[/C][C]6014.0298[/C][C]5275.5163[/C][C]6752.5433[/C][C]0.2544[/C][C]0.248[/C][C]0.0695[/C][C]0.6913[/C][/ROW]
[ROW][C]107[/C][C]6064.55[/C][C]5750.5706[/C][C]4974.157[/C][C]6526.9843[/C][C]0.214[/C][C]0.0979[/C][C]0.5142[/C][C]0.4246[/C][/ROW]
[ROW][C]108[/C][C]5706.6[/C][C]6116.6412[/C][C]5304.0168[/C][C]6929.2656[/C][C]0.1613[/C][C]0.55[/C][C]0.5854[/C][C]0.7585[/C][/ROW]
[ROW][C]109[/C][C]5365[/C][C]5303.9917[/C][C]4456.7413[/C][C]6151.242[/C][C]0.4439[/C][C]0.1758[/C][C]0.5012[/C][C]0.1137[/C][/ROW]
[ROW][C]110[/C][C]5884.2[/C][C]5812.3868[/C][C]4931.8682[/C][C]6692.9055[/C][C]0.4365[/C][C]0.8403[/C][C]0.488[/C][C]0.488[/C][/ROW]
[ROW][C]111[/C][C]6504.4[/C][C]6364.1744[/C][C]5412.8175[/C][C]7315.5314[/C][C]0.3863[/C][C]0.8386[/C][C]0.825[/C][C]0.8663[/C][/ROW]
[ROW][C]112[/C][C]6174.3[/C][C]5794.837[/C][C]4795.7508[/C][C]6793.9231[/C][C]0.2283[/C][C]0.082[/C][C]0.5478[/C][C]0.4757[/C][/ROW]
[ROW][C]113[/C][C]6123.65[/C][C]5725.933[/C][C]4680.9578[/C][C]6770.9082[/C][C]0.2278[/C][C]0.2002[/C][C]0.3619[/C][C]0.4257[/C][/ROW]
[ROW][C]114[/C][C]6698.95[/C][C]6162.5206[/C][C]5070.5951[/C][C]7254.4462[/C][C]0.1678[/C][C]0.5278[/C][C]0.5245[/C][C]0.7272[/C][/ROW]
[ROW][C]115[/C][C]5256.55[/C][C]4990.6602[/C][C]3855.111[/C][C]6126.2094[/C][C]0.3231[/C][C]0.0016[/C][C]0.1169[/C][C]0.0747[/C][/ROW]
[ROW][C]116[/C][C]5838.2[/C][C]5423.3078[/C][C]4245.6954[/C][C]6600.9202[/C][C]0.2449[/C][C]0.6093[/C][C]0.2012[/C][C]0.2514[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302865&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302865&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[98])
866119.9-------
876954.95-------
886139.7-------
896383.25-------
906643.7-------
915547.75-------
925974-------
936583.6-------
946571.55-------
955736.5-------
966027.2-------
975302.65-------
985825.85-------
995910.66329.53785932.216726.86560.01940.99350.0010.9935
1005733.655782.76015330.7266234.79420.41570.28970.06090.4259
1015914.35758.44685255.99536260.89830.27160.53850.00740.3963
1026128.256219.28535656.31536782.25520.37560.85580.06980.9146
1035680.55062.7554451.79465673.71550.02383e-040.05990.0072
1045926.35521.59454865.90166177.28730.11320.31740.08810.1815
1056270.56189.78895491.19766888.38020.41040.77010.13460.8464
10662636014.02985275.51636752.54330.25440.2480.06950.6913
1076064.555750.57064974.1576526.98430.2140.09790.51420.4246
1085706.66116.64125304.01686929.26560.16130.550.58540.7585
10953655303.99174456.74136151.2420.44390.17580.50120.1137
1105884.25812.38684931.86826692.90550.43650.84030.4880.488
1116504.46364.17445412.81757315.53140.38630.83860.8250.8663
1126174.35794.8374795.75086793.92310.22830.0820.54780.4757
1136123.655725.9334680.95786770.90820.22780.20020.36190.4257
1146698.956162.52065070.59517254.44620.16780.52780.52450.7272
1155256.554990.66023855.1116126.20940.32310.00160.11690.0747
1165838.25423.30784245.69546600.92020.24490.60930.20120.2514







Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPEsMAPESq.EMSERMSEScaledEMASE
990.032-0.07090.07090.0685175508.857700-1.07351.0735
1000.0399-0.00860.03970.03852411.801988960.3298298.2622-0.12580.5997
1010.04450.02640.03530.034624290.208367403.6226259.62210.39940.5329
1020.0462-0.01490.03020.02968287.417452624.5713229.4005-0.23330.458
1030.06160.10870.04590.0467381608.8375118421.4246344.12411.58290.683
1040.06060.06830.04960.0507163786.5692125982.282354.93981.0370.742
1050.05760.01290.04440.04536514.2834108915.4251330.02340.20680.6655
1060.06270.03980.04380.044761986.1619103049.2672321.01290.6380.6621
1070.06890.05180.04470.045698583.0512102553.021320.2390.80460.6779
1080.0678-0.07190.04740.048168133.7986109111.0987330.3197-1.05070.7152
1090.08150.01140.04410.04473722.013999530.2728315.48420.15630.6644
1100.07730.01220.04150.0425157.1391665.8443302.76370.1840.6244
1110.07630.02160.03990.040419663.207286127.1799293.47430.35930.604
1120.0880.06150.04150.0421143992.177890260.394300.43370.97240.6303
1130.09310.06490.0430.0437158178.825594788.2894307.87711.01910.6562
1140.09040.08010.04530.0462287756.4628106848.8003326.87731.37460.7011
1150.11610.05060.04570.046670697.369104722.2455323.60820.68130.6999
1160.11080.07110.04710.0481172135.5278108467.4278329.34391.06310.7201

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast Performance \tabularnewline
time & % S.E. & PE & MAPE & sMAPE & Sq.E & MSE & RMSE & ScaledE & MASE \tabularnewline
99 & 0.032 & -0.0709 & 0.0709 & 0.0685 & 175508.8577 & 0 & 0 & -1.0735 & 1.0735 \tabularnewline
100 & 0.0399 & -0.0086 & 0.0397 & 0.0385 & 2411.8019 & 88960.3298 & 298.2622 & -0.1258 & 0.5997 \tabularnewline
101 & 0.0445 & 0.0264 & 0.0353 & 0.0346 & 24290.2083 & 67403.6226 & 259.6221 & 0.3994 & 0.5329 \tabularnewline
102 & 0.0462 & -0.0149 & 0.0302 & 0.0296 & 8287.4174 & 52624.5713 & 229.4005 & -0.2333 & 0.458 \tabularnewline
103 & 0.0616 & 0.1087 & 0.0459 & 0.0467 & 381608.8375 & 118421.4246 & 344.1241 & 1.5829 & 0.683 \tabularnewline
104 & 0.0606 & 0.0683 & 0.0496 & 0.0507 & 163786.5692 & 125982.282 & 354.9398 & 1.037 & 0.742 \tabularnewline
105 & 0.0576 & 0.0129 & 0.0444 & 0.0453 & 6514.2834 & 108915.4251 & 330.0234 & 0.2068 & 0.6655 \tabularnewline
106 & 0.0627 & 0.0398 & 0.0438 & 0.0447 & 61986.1619 & 103049.2672 & 321.0129 & 0.638 & 0.6621 \tabularnewline
107 & 0.0689 & 0.0518 & 0.0447 & 0.0456 & 98583.0512 & 102553.021 & 320.239 & 0.8046 & 0.6779 \tabularnewline
108 & 0.0678 & -0.0719 & 0.0474 & 0.048 & 168133.7986 & 109111.0987 & 330.3197 & -1.0507 & 0.7152 \tabularnewline
109 & 0.0815 & 0.0114 & 0.0441 & 0.0447 & 3722.0139 & 99530.2728 & 315.4842 & 0.1563 & 0.6644 \tabularnewline
110 & 0.0773 & 0.0122 & 0.0415 & 0.042 & 5157.13 & 91665.8443 & 302.7637 & 0.184 & 0.6244 \tabularnewline
111 & 0.0763 & 0.0216 & 0.0399 & 0.0404 & 19663.2072 & 86127.1799 & 293.4743 & 0.3593 & 0.604 \tabularnewline
112 & 0.088 & 0.0615 & 0.0415 & 0.0421 & 143992.1778 & 90260.394 & 300.4337 & 0.9724 & 0.6303 \tabularnewline
113 & 0.0931 & 0.0649 & 0.043 & 0.0437 & 158178.8255 & 94788.2894 & 307.8771 & 1.0191 & 0.6562 \tabularnewline
114 & 0.0904 & 0.0801 & 0.0453 & 0.0462 & 287756.4628 & 106848.8003 & 326.8773 & 1.3746 & 0.7011 \tabularnewline
115 & 0.1161 & 0.0506 & 0.0457 & 0.0466 & 70697.369 & 104722.2455 & 323.6082 & 0.6813 & 0.6999 \tabularnewline
116 & 0.1108 & 0.0711 & 0.0471 & 0.0481 & 172135.5278 & 108467.4278 & 329.3439 & 1.0631 & 0.7201 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302865&T=2

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast Performance[/C][/ROW]
[ROW][C]time[/C][C]% S.E.[/C][C]PE[/C][C]MAPE[/C][C]sMAPE[/C][C]Sq.E[/C][C]MSE[/C][C]RMSE[/C][C]ScaledE[/C][C]MASE[/C][/ROW]
[ROW][C]99[/C][C]0.032[/C][C]-0.0709[/C][C]0.0709[/C][C]0.0685[/C][C]175508.8577[/C][C]0[/C][C]0[/C][C]-1.0735[/C][C]1.0735[/C][/ROW]
[ROW][C]100[/C][C]0.0399[/C][C]-0.0086[/C][C]0.0397[/C][C]0.0385[/C][C]2411.8019[/C][C]88960.3298[/C][C]298.2622[/C][C]-0.1258[/C][C]0.5997[/C][/ROW]
[ROW][C]101[/C][C]0.0445[/C][C]0.0264[/C][C]0.0353[/C][C]0.0346[/C][C]24290.2083[/C][C]67403.6226[/C][C]259.6221[/C][C]0.3994[/C][C]0.5329[/C][/ROW]
[ROW][C]102[/C][C]0.0462[/C][C]-0.0149[/C][C]0.0302[/C][C]0.0296[/C][C]8287.4174[/C][C]52624.5713[/C][C]229.4005[/C][C]-0.2333[/C][C]0.458[/C][/ROW]
[ROW][C]103[/C][C]0.0616[/C][C]0.1087[/C][C]0.0459[/C][C]0.0467[/C][C]381608.8375[/C][C]118421.4246[/C][C]344.1241[/C][C]1.5829[/C][C]0.683[/C][/ROW]
[ROW][C]104[/C][C]0.0606[/C][C]0.0683[/C][C]0.0496[/C][C]0.0507[/C][C]163786.5692[/C][C]125982.282[/C][C]354.9398[/C][C]1.037[/C][C]0.742[/C][/ROW]
[ROW][C]105[/C][C]0.0576[/C][C]0.0129[/C][C]0.0444[/C][C]0.0453[/C][C]6514.2834[/C][C]108915.4251[/C][C]330.0234[/C][C]0.2068[/C][C]0.6655[/C][/ROW]
[ROW][C]106[/C][C]0.0627[/C][C]0.0398[/C][C]0.0438[/C][C]0.0447[/C][C]61986.1619[/C][C]103049.2672[/C][C]321.0129[/C][C]0.638[/C][C]0.6621[/C][/ROW]
[ROW][C]107[/C][C]0.0689[/C][C]0.0518[/C][C]0.0447[/C][C]0.0456[/C][C]98583.0512[/C][C]102553.021[/C][C]320.239[/C][C]0.8046[/C][C]0.6779[/C][/ROW]
[ROW][C]108[/C][C]0.0678[/C][C]-0.0719[/C][C]0.0474[/C][C]0.048[/C][C]168133.7986[/C][C]109111.0987[/C][C]330.3197[/C][C]-1.0507[/C][C]0.7152[/C][/ROW]
[ROW][C]109[/C][C]0.0815[/C][C]0.0114[/C][C]0.0441[/C][C]0.0447[/C][C]3722.0139[/C][C]99530.2728[/C][C]315.4842[/C][C]0.1563[/C][C]0.6644[/C][/ROW]
[ROW][C]110[/C][C]0.0773[/C][C]0.0122[/C][C]0.0415[/C][C]0.042[/C][C]5157.13[/C][C]91665.8443[/C][C]302.7637[/C][C]0.184[/C][C]0.6244[/C][/ROW]
[ROW][C]111[/C][C]0.0763[/C][C]0.0216[/C][C]0.0399[/C][C]0.0404[/C][C]19663.2072[/C][C]86127.1799[/C][C]293.4743[/C][C]0.3593[/C][C]0.604[/C][/ROW]
[ROW][C]112[/C][C]0.088[/C][C]0.0615[/C][C]0.0415[/C][C]0.0421[/C][C]143992.1778[/C][C]90260.394[/C][C]300.4337[/C][C]0.9724[/C][C]0.6303[/C][/ROW]
[ROW][C]113[/C][C]0.0931[/C][C]0.0649[/C][C]0.043[/C][C]0.0437[/C][C]158178.8255[/C][C]94788.2894[/C][C]307.8771[/C][C]1.0191[/C][C]0.6562[/C][/ROW]
[ROW][C]114[/C][C]0.0904[/C][C]0.0801[/C][C]0.0453[/C][C]0.0462[/C][C]287756.4628[/C][C]106848.8003[/C][C]326.8773[/C][C]1.3746[/C][C]0.7011[/C][/ROW]
[ROW][C]115[/C][C]0.1161[/C][C]0.0506[/C][C]0.0457[/C][C]0.0466[/C][C]70697.369[/C][C]104722.2455[/C][C]323.6082[/C][C]0.6813[/C][C]0.6999[/C][/ROW]
[ROW][C]116[/C][C]0.1108[/C][C]0.0711[/C][C]0.0471[/C][C]0.0481[/C][C]172135.5278[/C][C]108467.4278[/C][C]329.3439[/C][C]1.0631[/C][C]0.7201[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302865&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302865&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPEsMAPESq.EMSERMSEScaledEMASE
990.032-0.07090.07090.0685175508.857700-1.07351.0735
1000.0399-0.00860.03970.03852411.801988960.3298298.2622-0.12580.5997
1010.04450.02640.03530.034624290.208367403.6226259.62210.39940.5329
1020.0462-0.01490.03020.02968287.417452624.5713229.4005-0.23330.458
1030.06160.10870.04590.0467381608.8375118421.4246344.12411.58290.683
1040.06060.06830.04960.0507163786.5692125982.282354.93981.0370.742
1050.05760.01290.04440.04536514.2834108915.4251330.02340.20680.6655
1060.06270.03980.04380.044761986.1619103049.2672321.01290.6380.6621
1070.06890.05180.04470.045698583.0512102553.021320.2390.80460.6779
1080.0678-0.07190.04740.048168133.7986109111.0987330.3197-1.05070.7152
1090.08150.01140.04410.04473722.013999530.2728315.48420.15630.6644
1100.07730.01220.04150.0425157.1391665.8443302.76370.1840.6244
1110.07630.02160.03990.040419663.207286127.1799293.47430.35930.604
1120.0880.06150.04150.0421143992.177890260.394300.43370.97240.6303
1130.09310.06490.0430.0437158178.825594788.2894307.87711.01910.6562
1140.09040.08010.04530.0462287756.4628106848.8003326.87731.37460.7011
1150.11610.05060.04570.046670697.369104722.2455323.60820.68130.6999
1160.11080.07110.04710.0481172135.5278108467.4278329.34391.06310.7201



Parameters (Session):
par1 = 18 ; par2 = 1 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = 1 ; par7 = 1 ; par8 = 1 ; par9 = 1 ; par10 = TRUE ;
Parameters (R input):
par1 = 18 ; par2 = 1 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = 2 ; par7 = 0 ; par8 = 2 ; par9 = 0 ; par10 = FALSE ;
R code (references can be found in the software module):
par10 <- 'TRUE'
par9 <- '0'
par8 <- '2'
par7 <- '0'
par6 <- '2'
par5 <- '12'
par4 <- '1'
par3 <- '1'
par2 <- '1'
par1 <- '18'
par1 <- as.numeric(par1) #cut off periods
par2 <- as.numeric(par2) #lambda
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #p
par7 <- as.numeric(par7) #q
par8 <- as.numeric(par8) #P
par9 <- as.numeric(par9) #Q
if (par10 == 'TRUE') par10 <- TRUE
if (par10 == 'FALSE') par10 <- FALSE
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
lx <- length(x)
first <- lx - 2*par1
nx <- lx - par1
nx1 <- nx + 1
fx <- lx - nx
if (fx < 1) {
fx <- par5*2
nx1 <- lx + fx - 1
first <- lx - 2*fx
}
first <- 1
if (fx < 3) fx <- round(lx/10,0)
(arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML'))
(forecast <- predict(arima.out,fx))
(lb <- forecast$pred - 1.96 * forecast$se)
(ub <- forecast$pred + 1.96 * forecast$se)
if (par2 == 0) {
x <- exp(x)
forecast$pred <- exp(forecast$pred)
lb <- exp(lb)
ub <- exp(ub)
}
if (par2 != 0) {
x <- x^(1/par2)
forecast$pred <- forecast$pred^(1/par2)
lb <- lb^(1/par2)
ub <- ub^(1/par2)
}
if (par2 < 0) {
olb <- lb
lb <- ub
ub <- olb
}
(actandfor <- c(x[1:nx], forecast$pred))
(perc.se <- (ub-forecast$pred)/1.96/forecast$pred)
bitmap(file='test1.png')
opar <- par(mar=c(4,4,2,2),las=1)
ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub))
plot(x,ylim=ylim,type='n',xlim=c(first,lx))
usr <- par('usr')
rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon')
rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender')
abline(h= (-3:3)*2 , col ='gray', lty =3)
polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA)
lines(nx1:lx, lb , lty=2)
lines(nx1:lx, ub , lty=2)
lines(x, lwd=2)
lines(nx1:lx, forecast$pred , lwd=2 , col ='white')
box()
par(opar)
dev.off()
prob.dec <- array(NA, dim=fx)
prob.sdec <- array(NA, dim=fx)
prob.ldec <- array(NA, dim=fx)
prob.pval <- array(NA, dim=fx)
perf.pe <- array(0, dim=fx)
perf.spe <- array(0, dim=fx)
perf.scalederr <- array(0, dim=fx)
perf.mase <- array(0, dim=fx)
perf.mase1 <- array(0, dim=fx)
perf.mape <- array(0, dim=fx)
perf.smape <- array(0, dim=fx)
perf.mape1 <- array(0, dim=fx)
perf.smape1 <- array(0,dim=fx)
perf.se <- array(0, dim=fx)
perf.mse <- array(0, dim=fx)
perf.mse1 <- array(0, dim=fx)
perf.rmse <- array(0, dim=fx)
perf.scaleddenom <- 0
for (i in 2:fx) {
perf.scaleddenom = perf.scaleddenom + abs(x[nx+i] - x[nx+i-1])
}
perf.scaleddenom = perf.scaleddenom / (fx-1)
for (i in 1:fx) {
locSD <- (ub[i] - forecast$pred[i]) / 1.96
perf.scalederr[i] = (x[nx+i] - forecast$pred[i]) / perf.scaleddenom
perf.pe[i] = (x[nx+i] - forecast$pred[i]) / x[nx+i]
perf.spe[i] = 2*(x[nx+i] - forecast$pred[i]) / (x[nx+i] + forecast$pred[i])
perf.se[i] = (x[nx+i] - forecast$pred[i])^2
prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD)
prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD)
prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD)
prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD)
}
perf.mape[1] = abs(perf.pe[1])
perf.smape[1] = abs(perf.spe[1])
perf.mape1[1] = perf.mape[1]
perf.smape1[1] = perf.smape[1]
perf.mse[1] = perf.se[1]
perf.mase[1] = abs(perf.scalederr[1])
perf.mase1[1] = perf.mase[1]
for (i in 2:fx) {
perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i])
perf.mape1[i] = perf.mape[i] / i
perf.smape[i] = perf.smape[i-1] + abs(perf.spe[i])
perf.smape1[i] = perf.smape[i] / i
perf.mse[i] = perf.mse[i-1] + perf.se[i]
perf.mse1[i] = perf.mse[i] / i
perf.mase[i] = perf.mase[i-1] + abs(perf.scalederr[i])
perf.mase1[i] = perf.mase[i] / i
}
perf.rmse = sqrt(perf.mse1)
bitmap(file='test2.png')
plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub)))
dum <- forecast$pred
dum[1:par1] <- x[(nx+1):lx]
lines(dum, lty=1)
lines(ub,lty=3)
lines(lb,lty=3)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'Y[t]',1,header=TRUE)
a<-table.element(a,'F[t]',1,header=TRUE)
a<-table.element(a,'95% LB',1,header=TRUE)
a<-table.element(a,'95% UB',1,header=TRUE)
a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE)
mylab <- paste('P(F[t]>Y[',nx,sep='')
mylab <- paste(mylab,'])',sep='')
a<-table.element(a,mylab,1,header=TRUE)
a<-table.row.end(a)
for (i in (nx-par5):nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.row.end(a)
}
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(x[nx+i],4))
a<-table.element(a,round(forecast$pred[i],4))
a<-table.element(a,round(lb[i],4))
a<-table.element(a,round(ub[i],4))
a<-table.element(a,round((1-prob.pval[i]),4))
a<-table.element(a,round((1-prob.dec[i]),4))
a<-table.element(a,round((1-prob.sdec[i]),4))
a<-table.element(a,round((1-prob.ldec[i]),4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',10,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'% S.E.',1,header=TRUE)
a<-table.element(a,'PE',1,header=TRUE)
a<-table.element(a,'MAPE',1,header=TRUE)
a<-table.element(a,'sMAPE',1,header=TRUE)
a<-table.element(a,'Sq.E',1,header=TRUE)
a<-table.element(a,'MSE',1,header=TRUE)
a<-table.element(a,'RMSE',1,header=TRUE)
a<-table.element(a,'ScaledE',1,header=TRUE)
a<-table.element(a,'MASE',1,header=TRUE)
a<-table.row.end(a)
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(perc.se[i],4))
a<-table.element(a,round(perf.pe[i],4))
a<-table.element(a,round(perf.mape1[i],4))
a<-table.element(a,round(perf.smape1[i],4))
a<-table.element(a,round(perf.se[i],4))
a<-table.element(a,round(perf.mse1[i],4))
a<-table.element(a,round(perf.rmse[i],4))
a<-table.element(a,round(perf.scalederr[i],4))
a<-table.element(a,round(perf.mase1[i],4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')