Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimaforecasting.wasp
Title produced by softwareARIMA Forecasting
Date of computationFri, 23 Dec 2016 12:03:39 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/23/t1482491054rn2i7ro89sszw9d.htm/, Retrieved Fri, 01 Nov 2024 03:26:40 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=302864, Retrieved Fri, 01 Nov 2024 03:26:40 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact80
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [ARIMA Forecasting] [ARIMA Forecasting] [2016-12-23 11:03:39] [55eb8f21ed24cda91766c505eb72bb6f] [Current]
Feedback Forum

Post a new message
Dataseries X:
3949.9
4010.65
4381.8
4238.25
4178.1
4702.25
3944.1
4208.5
4743.45
4948.25
4735.45
4843.15
4757.75
5227.15
5739.65
4981.45
5020.05
5149.15
4513.35
4762.55
4990.45
4963.35
5010
4983.3
4924.7
5175.25
5470.3
4969.4
5020.5
5519.2
4510.75
4934.45
5430.65
5254.7
4897.8
5305.7
5055.7
5409
5683
5125.55
4965.2
5373.3
4556.1
4714.25
5513.85
5258.45
5111.4
5422.25
4753.3
5455.5
5909.15
5524.4
5477.8
5907.75
5072.55
5171
5871.4
5812.45
5692.2
5838.1
5438.2
6041.05
6335.6
5891.8
5909.65
6449.75
5312.25
5828.1
6466.15
6328.35
6131.8
6734.2
6037.25
6412.4
6785.55
6386
6045.25
6597.25
5355.9
5773.35
6539.6
6149.2
6373.45
6504.7
5451.25
6119.9
6954.95
6139.7
6383.25
6643.7
5547.75
5974
6583.6
6571.55
5736.5
6027.2
5302.65
5825.85
5910.6
5733.65
5914.3
6128.25
5680.5
5926.3
6270.5
6263
6064.55
5706.6
5365
5884.2
6504.4
6174.3
6123.65
6698.95
5256.55
5838.2




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302864&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=302864&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302864&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[104])
925974-------
936583.6-------
946571.55-------
955736.5-------
966027.2-------
975302.65-------
985825.85-------
995910.6-------
1005733.65-------
1015914.3-------
1026128.25-------
1035680.5-------
1045926.3-------
1056270.56547.89946128.93296966.86590.09720.99820.43370.9982
10662636444.00585971.50236916.50940.22640.76420.29840.9841
1076064.556151.32115626.98646675.65570.37280.33820.93950.7999
1085706.66530.4855943.09577117.87440.0030.940.95350.9781
10953655734.29595097.866370.73170.12770.5340.90810.2772
1105884.26230.8055548.23936913.37060.15980.99350.87760.809
1116504.46644.60865917.70747371.50980.35270.97980.97610.9736
1126174.36197.98155429.92366966.03930.47590.21710.8820.7559
1136123.656170.03335362.84216977.22440.45520.49590.73270.723
1146698.956542.86015698.26227387.4580.35860.83470.8320.9238
1155256.555575.27034694.90636455.63420.2390.00620.40740.2172
1165838.25944.46465029.7246859.20530.40990.92980.51550.5155

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast \tabularnewline
time & Y[t] & F[t] & 95% LB & 95% UB & p-value(H0: Y[t] = F[t]) & P(F[t]>Y[t-1]) & P(F[t]>Y[t-s]) & P(F[t]>Y[104]) \tabularnewline
92 & 5974 & - & - & - & - & - & - & - \tabularnewline
93 & 6583.6 & - & - & - & - & - & - & - \tabularnewline
94 & 6571.55 & - & - & - & - & - & - & - \tabularnewline
95 & 5736.5 & - & - & - & - & - & - & - \tabularnewline
96 & 6027.2 & - & - & - & - & - & - & - \tabularnewline
97 & 5302.65 & - & - & - & - & - & - & - \tabularnewline
98 & 5825.85 & - & - & - & - & - & - & - \tabularnewline
99 & 5910.6 & - & - & - & - & - & - & - \tabularnewline
100 & 5733.65 & - & - & - & - & - & - & - \tabularnewline
101 & 5914.3 & - & - & - & - & - & - & - \tabularnewline
102 & 6128.25 & - & - & - & - & - & - & - \tabularnewline
103 & 5680.5 & - & - & - & - & - & - & - \tabularnewline
104 & 5926.3 & - & - & - & - & - & - & - \tabularnewline
105 & 6270.5 & 6547.8994 & 6128.9329 & 6966.8659 & 0.0972 & 0.9982 & 0.4337 & 0.9982 \tabularnewline
106 & 6263 & 6444.0058 & 5971.5023 & 6916.5094 & 0.2264 & 0.7642 & 0.2984 & 0.9841 \tabularnewline
107 & 6064.55 & 6151.3211 & 5626.9864 & 6675.6557 & 0.3728 & 0.3382 & 0.9395 & 0.7999 \tabularnewline
108 & 5706.6 & 6530.485 & 5943.0957 & 7117.8744 & 0.003 & 0.94 & 0.9535 & 0.9781 \tabularnewline
109 & 5365 & 5734.2959 & 5097.86 & 6370.7317 & 0.1277 & 0.534 & 0.9081 & 0.2772 \tabularnewline
110 & 5884.2 & 6230.805 & 5548.2393 & 6913.3706 & 0.1598 & 0.9935 & 0.8776 & 0.809 \tabularnewline
111 & 6504.4 & 6644.6086 & 5917.7074 & 7371.5098 & 0.3527 & 0.9798 & 0.9761 & 0.9736 \tabularnewline
112 & 6174.3 & 6197.9815 & 5429.9236 & 6966.0393 & 0.4759 & 0.2171 & 0.882 & 0.7559 \tabularnewline
113 & 6123.65 & 6170.0333 & 5362.8421 & 6977.2244 & 0.4552 & 0.4959 & 0.7327 & 0.723 \tabularnewline
114 & 6698.95 & 6542.8601 & 5698.2622 & 7387.458 & 0.3586 & 0.8347 & 0.832 & 0.9238 \tabularnewline
115 & 5256.55 & 5575.2703 & 4694.9063 & 6455.6342 & 0.239 & 0.0062 & 0.4074 & 0.2172 \tabularnewline
116 & 5838.2 & 5944.4646 & 5029.724 & 6859.2053 & 0.4099 & 0.9298 & 0.5155 & 0.5155 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302864&T=1

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast[/C][/ROW]
[ROW][C]time[/C][C]Y[t][/C][C]F[t][/C][C]95% LB[/C][C]95% UB[/C][C]p-value(H0: Y[t] = F[t])[/C][C]P(F[t]>Y[t-1])[/C][C]P(F[t]>Y[t-s])[/C][C]P(F[t]>Y[104])[/C][/ROW]
[ROW][C]92[/C][C]5974[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]93[/C][C]6583.6[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]94[/C][C]6571.55[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]95[/C][C]5736.5[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]96[/C][C]6027.2[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]97[/C][C]5302.65[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]98[/C][C]5825.85[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]99[/C][C]5910.6[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]100[/C][C]5733.65[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]101[/C][C]5914.3[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]102[/C][C]6128.25[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]103[/C][C]5680.5[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]104[/C][C]5926.3[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]105[/C][C]6270.5[/C][C]6547.8994[/C][C]6128.9329[/C][C]6966.8659[/C][C]0.0972[/C][C]0.9982[/C][C]0.4337[/C][C]0.9982[/C][/ROW]
[ROW][C]106[/C][C]6263[/C][C]6444.0058[/C][C]5971.5023[/C][C]6916.5094[/C][C]0.2264[/C][C]0.7642[/C][C]0.2984[/C][C]0.9841[/C][/ROW]
[ROW][C]107[/C][C]6064.55[/C][C]6151.3211[/C][C]5626.9864[/C][C]6675.6557[/C][C]0.3728[/C][C]0.3382[/C][C]0.9395[/C][C]0.7999[/C][/ROW]
[ROW][C]108[/C][C]5706.6[/C][C]6530.485[/C][C]5943.0957[/C][C]7117.8744[/C][C]0.003[/C][C]0.94[/C][C]0.9535[/C][C]0.9781[/C][/ROW]
[ROW][C]109[/C][C]5365[/C][C]5734.2959[/C][C]5097.86[/C][C]6370.7317[/C][C]0.1277[/C][C]0.534[/C][C]0.9081[/C][C]0.2772[/C][/ROW]
[ROW][C]110[/C][C]5884.2[/C][C]6230.805[/C][C]5548.2393[/C][C]6913.3706[/C][C]0.1598[/C][C]0.9935[/C][C]0.8776[/C][C]0.809[/C][/ROW]
[ROW][C]111[/C][C]6504.4[/C][C]6644.6086[/C][C]5917.7074[/C][C]7371.5098[/C][C]0.3527[/C][C]0.9798[/C][C]0.9761[/C][C]0.9736[/C][/ROW]
[ROW][C]112[/C][C]6174.3[/C][C]6197.9815[/C][C]5429.9236[/C][C]6966.0393[/C][C]0.4759[/C][C]0.2171[/C][C]0.882[/C][C]0.7559[/C][/ROW]
[ROW][C]113[/C][C]6123.65[/C][C]6170.0333[/C][C]5362.8421[/C][C]6977.2244[/C][C]0.4552[/C][C]0.4959[/C][C]0.7327[/C][C]0.723[/C][/ROW]
[ROW][C]114[/C][C]6698.95[/C][C]6542.8601[/C][C]5698.2622[/C][C]7387.458[/C][C]0.3586[/C][C]0.8347[/C][C]0.832[/C][C]0.9238[/C][/ROW]
[ROW][C]115[/C][C]5256.55[/C][C]5575.2703[/C][C]4694.9063[/C][C]6455.6342[/C][C]0.239[/C][C]0.0062[/C][C]0.4074[/C][C]0.2172[/C][/ROW]
[ROW][C]116[/C][C]5838.2[/C][C]5944.4646[/C][C]5029.724[/C][C]6859.2053[/C][C]0.4099[/C][C]0.9298[/C][C]0.5155[/C][C]0.5155[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302864&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302864&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[104])
925974-------
936583.6-------
946571.55-------
955736.5-------
966027.2-------
975302.65-------
985825.85-------
995910.6-------
1005733.65-------
1015914.3-------
1026128.25-------
1035680.5-------
1045926.3-------
1056270.56547.89946128.93296966.86590.09720.99820.43370.9982
10662636444.00585971.50236916.50940.22640.76420.29840.9841
1076064.556151.32115626.98646675.65570.37280.33820.93950.7999
1085706.66530.4855943.09577117.87440.0030.940.95350.9781
10953655734.29595097.866370.73170.12770.5340.90810.2772
1105884.26230.8055548.23936913.37060.15980.99350.87760.809
1116504.46644.60865917.70747371.50980.35270.97980.97610.9736
1126174.36197.98155429.92366966.03930.47590.21710.8820.7559
1136123.656170.03335362.84216977.22440.45520.49590.73270.723
1146698.956542.86015698.26227387.4580.35860.83470.8320.9238
1155256.555575.27034694.90636455.63420.2390.00620.40740.2172
1165838.25944.46465029.7246859.20530.40990.92980.51550.5155







Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPEsMAPESq.EMSERMSEScaledEMASE
1050.0326-0.04420.04420.043376950.426800-0.60720.6072
1060.0374-0.02890.03660.035932763.114354856.7705234.2152-0.39620.5017
1070.0435-0.01430.02910.02877529.222139080.9211197.689-0.18990.3978
1080.0459-0.14440.0580.0552678786.562199007.3313446.1024-1.80350.7492
1090.0566-0.06880.06010.0574136379.4357186481.7522431.8353-0.80840.7611
1100.0559-0.05890.05990.0574120134.9948175423.9593418.8364-0.75870.7607
1110.0558-0.02160.05440.052219658.4501153171.7437391.3716-0.30690.6959
1120.0632-0.00380.04810.0462560.8133134095.3774366.1904-0.05180.6154
1130.0667-0.00760.04360.04192151.4065119434.9362345.5936-0.10150.5583
1140.06590.02330.04160.040124364.0487109927.8474331.55370.34170.5366
1150.0806-0.06060.04330.0418101582.6061109169.1891330.4076-0.69770.5513
1160.0785-0.01820.04120.039811292.1751101012.7713317.8251-0.23260.5247

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast Performance \tabularnewline
time & % S.E. & PE & MAPE & sMAPE & Sq.E & MSE & RMSE & ScaledE & MASE \tabularnewline
105 & 0.0326 & -0.0442 & 0.0442 & 0.0433 & 76950.4268 & 0 & 0 & -0.6072 & 0.6072 \tabularnewline
106 & 0.0374 & -0.0289 & 0.0366 & 0.0359 & 32763.1143 & 54856.7705 & 234.2152 & -0.3962 & 0.5017 \tabularnewline
107 & 0.0435 & -0.0143 & 0.0291 & 0.0287 & 7529.2221 & 39080.9211 & 197.689 & -0.1899 & 0.3978 \tabularnewline
108 & 0.0459 & -0.1444 & 0.058 & 0.0552 & 678786.562 & 199007.3313 & 446.1024 & -1.8035 & 0.7492 \tabularnewline
109 & 0.0566 & -0.0688 & 0.0601 & 0.0574 & 136379.4357 & 186481.7522 & 431.8353 & -0.8084 & 0.7611 \tabularnewline
110 & 0.0559 & -0.0589 & 0.0599 & 0.0574 & 120134.9948 & 175423.9593 & 418.8364 & -0.7587 & 0.7607 \tabularnewline
111 & 0.0558 & -0.0216 & 0.0544 & 0.0522 & 19658.4501 & 153171.7437 & 391.3716 & -0.3069 & 0.6959 \tabularnewline
112 & 0.0632 & -0.0038 & 0.0481 & 0.0462 & 560.8133 & 134095.3774 & 366.1904 & -0.0518 & 0.6154 \tabularnewline
113 & 0.0667 & -0.0076 & 0.0436 & 0.0419 & 2151.4065 & 119434.9362 & 345.5936 & -0.1015 & 0.5583 \tabularnewline
114 & 0.0659 & 0.0233 & 0.0416 & 0.0401 & 24364.0487 & 109927.8474 & 331.5537 & 0.3417 & 0.5366 \tabularnewline
115 & 0.0806 & -0.0606 & 0.0433 & 0.0418 & 101582.6061 & 109169.1891 & 330.4076 & -0.6977 & 0.5513 \tabularnewline
116 & 0.0785 & -0.0182 & 0.0412 & 0.0398 & 11292.1751 & 101012.7713 & 317.8251 & -0.2326 & 0.5247 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302864&T=2

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast Performance[/C][/ROW]
[ROW][C]time[/C][C]% S.E.[/C][C]PE[/C][C]MAPE[/C][C]sMAPE[/C][C]Sq.E[/C][C]MSE[/C][C]RMSE[/C][C]ScaledE[/C][C]MASE[/C][/ROW]
[ROW][C]105[/C][C]0.0326[/C][C]-0.0442[/C][C]0.0442[/C][C]0.0433[/C][C]76950.4268[/C][C]0[/C][C]0[/C][C]-0.6072[/C][C]0.6072[/C][/ROW]
[ROW][C]106[/C][C]0.0374[/C][C]-0.0289[/C][C]0.0366[/C][C]0.0359[/C][C]32763.1143[/C][C]54856.7705[/C][C]234.2152[/C][C]-0.3962[/C][C]0.5017[/C][/ROW]
[ROW][C]107[/C][C]0.0435[/C][C]-0.0143[/C][C]0.0291[/C][C]0.0287[/C][C]7529.2221[/C][C]39080.9211[/C][C]197.689[/C][C]-0.1899[/C][C]0.3978[/C][/ROW]
[ROW][C]108[/C][C]0.0459[/C][C]-0.1444[/C][C]0.058[/C][C]0.0552[/C][C]678786.562[/C][C]199007.3313[/C][C]446.1024[/C][C]-1.8035[/C][C]0.7492[/C][/ROW]
[ROW][C]109[/C][C]0.0566[/C][C]-0.0688[/C][C]0.0601[/C][C]0.0574[/C][C]136379.4357[/C][C]186481.7522[/C][C]431.8353[/C][C]-0.8084[/C][C]0.7611[/C][/ROW]
[ROW][C]110[/C][C]0.0559[/C][C]-0.0589[/C][C]0.0599[/C][C]0.0574[/C][C]120134.9948[/C][C]175423.9593[/C][C]418.8364[/C][C]-0.7587[/C][C]0.7607[/C][/ROW]
[ROW][C]111[/C][C]0.0558[/C][C]-0.0216[/C][C]0.0544[/C][C]0.0522[/C][C]19658.4501[/C][C]153171.7437[/C][C]391.3716[/C][C]-0.3069[/C][C]0.6959[/C][/ROW]
[ROW][C]112[/C][C]0.0632[/C][C]-0.0038[/C][C]0.0481[/C][C]0.0462[/C][C]560.8133[/C][C]134095.3774[/C][C]366.1904[/C][C]-0.0518[/C][C]0.6154[/C][/ROW]
[ROW][C]113[/C][C]0.0667[/C][C]-0.0076[/C][C]0.0436[/C][C]0.0419[/C][C]2151.4065[/C][C]119434.9362[/C][C]345.5936[/C][C]-0.1015[/C][C]0.5583[/C][/ROW]
[ROW][C]114[/C][C]0.0659[/C][C]0.0233[/C][C]0.0416[/C][C]0.0401[/C][C]24364.0487[/C][C]109927.8474[/C][C]331.5537[/C][C]0.3417[/C][C]0.5366[/C][/ROW]
[ROW][C]115[/C][C]0.0806[/C][C]-0.0606[/C][C]0.0433[/C][C]0.0418[/C][C]101582.6061[/C][C]109169.1891[/C][C]330.4076[/C][C]-0.6977[/C][C]0.5513[/C][/ROW]
[ROW][C]116[/C][C]0.0785[/C][C]-0.0182[/C][C]0.0412[/C][C]0.0398[/C][C]11292.1751[/C][C]101012.7713[/C][C]317.8251[/C][C]-0.2326[/C][C]0.5247[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302864&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302864&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPEsMAPESq.EMSERMSEScaledEMASE
1050.0326-0.04420.04420.043376950.426800-0.60720.6072
1060.0374-0.02890.03660.035932763.114354856.7705234.2152-0.39620.5017
1070.0435-0.01430.02910.02877529.222139080.9211197.689-0.18990.3978
1080.0459-0.14440.0580.0552678786.562199007.3313446.1024-1.80350.7492
1090.0566-0.06880.06010.0574136379.4357186481.7522431.8353-0.80840.7611
1100.0559-0.05890.05990.0574120134.9948175423.9593418.8364-0.75870.7607
1110.0558-0.02160.05440.052219658.4501153171.7437391.3716-0.30690.6959
1120.0632-0.00380.04810.0462560.8133134095.3774366.1904-0.05180.6154
1130.0667-0.00760.04360.04192151.4065119434.9362345.5936-0.10150.5583
1140.06590.02330.04160.040124364.0487109927.8474331.55370.34170.5366
1150.0806-0.06060.04330.0418101582.6061109169.1891330.4076-0.69770.5513
1160.0785-0.01820.04120.039811292.1751101012.7713317.8251-0.23260.5247



Parameters (Session):
par1 = 18 ; par2 = 1 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = 1 ; par7 = 1 ; par8 = 1 ; par9 = 1 ; par10 = TRUE ;
Parameters (R input):
par1 = 12 ; par2 = 1 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = 2 ; par7 = 0 ; par8 = 2 ; par9 = 0 ; par10 = FALSE ;
R code (references can be found in the software module):
par1 <- as.numeric(par1) #cut off periods
par2 <- as.numeric(par2) #lambda
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #p
par7 <- as.numeric(par7) #q
par8 <- as.numeric(par8) #P
par9 <- as.numeric(par9) #Q
if (par10 == 'TRUE') par10 <- TRUE
if (par10 == 'FALSE') par10 <- FALSE
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
lx <- length(x)
first <- lx - 2*par1
nx <- lx - par1
nx1 <- nx + 1
fx <- lx - nx
if (fx < 1) {
fx <- par5*2
nx1 <- lx + fx - 1
first <- lx - 2*fx
}
first <- 1
if (fx < 3) fx <- round(lx/10,0)
(arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML'))
(forecast <- predict(arima.out,fx))
(lb <- forecast$pred - 1.96 * forecast$se)
(ub <- forecast$pred + 1.96 * forecast$se)
if (par2 == 0) {
x <- exp(x)
forecast$pred <- exp(forecast$pred)
lb <- exp(lb)
ub <- exp(ub)
}
if (par2 != 0) {
x <- x^(1/par2)
forecast$pred <- forecast$pred^(1/par2)
lb <- lb^(1/par2)
ub <- ub^(1/par2)
}
if (par2 < 0) {
olb <- lb
lb <- ub
ub <- olb
}
(actandfor <- c(x[1:nx], forecast$pred))
(perc.se <- (ub-forecast$pred)/1.96/forecast$pred)
bitmap(file='test1.png')
opar <- par(mar=c(4,4,2,2),las=1)
ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub))
plot(x,ylim=ylim,type='n',xlim=c(first,lx))
usr <- par('usr')
rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon')
rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender')
abline(h= (-3:3)*2 , col ='gray', lty =3)
polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA)
lines(nx1:lx, lb , lty=2)
lines(nx1:lx, ub , lty=2)
lines(x, lwd=2)
lines(nx1:lx, forecast$pred , lwd=2 , col ='white')
box()
par(opar)
dev.off()
prob.dec <- array(NA, dim=fx)
prob.sdec <- array(NA, dim=fx)
prob.ldec <- array(NA, dim=fx)
prob.pval <- array(NA, dim=fx)
perf.pe <- array(0, dim=fx)
perf.spe <- array(0, dim=fx)
perf.scalederr <- array(0, dim=fx)
perf.mase <- array(0, dim=fx)
perf.mase1 <- array(0, dim=fx)
perf.mape <- array(0, dim=fx)
perf.smape <- array(0, dim=fx)
perf.mape1 <- array(0, dim=fx)
perf.smape1 <- array(0,dim=fx)
perf.se <- array(0, dim=fx)
perf.mse <- array(0, dim=fx)
perf.mse1 <- array(0, dim=fx)
perf.rmse <- array(0, dim=fx)
perf.scaleddenom <- 0
for (i in 2:fx) {
perf.scaleddenom = perf.scaleddenom + abs(x[nx+i] - x[nx+i-1])
}
perf.scaleddenom = perf.scaleddenom / (fx-1)
for (i in 1:fx) {
locSD <- (ub[i] - forecast$pred[i]) / 1.96
perf.scalederr[i] = (x[nx+i] - forecast$pred[i]) / perf.scaleddenom
perf.pe[i] = (x[nx+i] - forecast$pred[i]) / x[nx+i]
perf.spe[i] = 2*(x[nx+i] - forecast$pred[i]) / (x[nx+i] + forecast$pred[i])
perf.se[i] = (x[nx+i] - forecast$pred[i])^2
prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD)
prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD)
prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD)
prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD)
}
perf.mape[1] = abs(perf.pe[1])
perf.smape[1] = abs(perf.spe[1])
perf.mape1[1] = perf.mape[1]
perf.smape1[1] = perf.smape[1]
perf.mse[1] = perf.se[1]
perf.mase[1] = abs(perf.scalederr[1])
perf.mase1[1] = perf.mase[1]
for (i in 2:fx) {
perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i])
perf.mape1[i] = perf.mape[i] / i
perf.smape[i] = perf.smape[i-1] + abs(perf.spe[i])
perf.smape1[i] = perf.smape[i] / i
perf.mse[i] = perf.mse[i-1] + perf.se[i]
perf.mse1[i] = perf.mse[i] / i
perf.mase[i] = perf.mase[i-1] + abs(perf.scalederr[i])
perf.mase1[i] = perf.mase[i] / i
}
perf.rmse = sqrt(perf.mse1)
bitmap(file='test2.png')
plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub)))
dum <- forecast$pred
dum[1:par1] <- x[(nx+1):lx]
lines(dum, lty=1)
lines(ub,lty=3)
lines(lb,lty=3)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'Y[t]',1,header=TRUE)
a<-table.element(a,'F[t]',1,header=TRUE)
a<-table.element(a,'95% LB',1,header=TRUE)
a<-table.element(a,'95% UB',1,header=TRUE)
a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE)
mylab <- paste('P(F[t]>Y[',nx,sep='')
mylab <- paste(mylab,'])',sep='')
a<-table.element(a,mylab,1,header=TRUE)
a<-table.row.end(a)
for (i in (nx-par5):nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.row.end(a)
}
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(x[nx+i],4))
a<-table.element(a,round(forecast$pred[i],4))
a<-table.element(a,round(lb[i],4))
a<-table.element(a,round(ub[i],4))
a<-table.element(a,round((1-prob.pval[i]),4))
a<-table.element(a,round((1-prob.dec[i]),4))
a<-table.element(a,round((1-prob.sdec[i]),4))
a<-table.element(a,round((1-prob.ldec[i]),4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',10,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'% S.E.',1,header=TRUE)
a<-table.element(a,'PE',1,header=TRUE)
a<-table.element(a,'MAPE',1,header=TRUE)
a<-table.element(a,'sMAPE',1,header=TRUE)
a<-table.element(a,'Sq.E',1,header=TRUE)
a<-table.element(a,'MSE',1,header=TRUE)
a<-table.element(a,'RMSE',1,header=TRUE)
a<-table.element(a,'ScaledE',1,header=TRUE)
a<-table.element(a,'MASE',1,header=TRUE)
a<-table.row.end(a)
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(perc.se[i],4))
a<-table.element(a,round(perf.pe[i],4))
a<-table.element(a,round(perf.mape1[i],4))
a<-table.element(a,round(perf.smape1[i],4))
a<-table.element(a,round(perf.se[i],4))
a<-table.element(a,round(perf.mse1[i],4))
a<-table.element(a,round(perf.rmse[i],4))
a<-table.element(a,round(perf.scalederr[i],4))
a<-table.element(a,round(perf.mase1[i],4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')