Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_exponentialsmoothing.wasp
Title produced by softwareExponential Smoothing
Date of computationFri, 23 Dec 2016 11:24:34 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/23/t1482489654lzo4mnihbijvbf8.htm/, Retrieved Fri, 01 Nov 2024 03:27:23 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=302847, Retrieved Fri, 01 Nov 2024 03:27:23 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact93
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Exponential Smoothing] [expo smoot 2] [2016-12-23 10:24:34] [bb262dce3bb40077245e847c94886178] [Current]
Feedback Forum

Post a new message
Dataseries X:
3710
3480
4024
4154
4142
4122
4228
4122
3938
3976
3952
4072
3756
3378
4250
3888
4116
4216
4214
4320
4056
4104
3976
4258
3892
3628
4056
4022
4294
4282
4250
4418
3966
4184
4094
4074
3950
3700
4148
4192
4394
4216
4366
4512
3996
4292
4074
4228
4044
3634
4330
4282
4428
4346
4632
4634
4156
4512
4142
4442
4064
3818
4334
4404
4644
4542
4718
4568
4338
4544
4302
4506
4164
4096
4556
4472
4548
4710
4660
4702
4460
4524
4440
4566
4196
3996
4616
4312
4592
4684
4542
4810
4360
4540
4428
4606
4130
4034
4564
4286
4578
4530
4666
4852
4164
4494
4356
4338
4130
3840
4362
4296
4626
4490
4708
4686
4266
4528
4216
4488
4268
4052
4438
4354
4558
4494




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302847&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=302847&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302847&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Estimated Parameters of Exponential Smoothing
ParameterValue
alpha0.608925050844129
beta0.106237083075996
gammaFALSE

\begin{tabular}{lllllllll}
\hline
Estimated Parameters of Exponential Smoothing \tabularnewline
Parameter & Value \tabularnewline
alpha & 0.608925050844129 \tabularnewline
beta & 0.106237083075996 \tabularnewline
gamma & FALSE \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302847&T=1

[TABLE]
[ROW][C]Estimated Parameters of Exponential Smoothing[/C][/ROW]
[ROW][C]Parameter[/C][C]Value[/C][/ROW]
[ROW][C]alpha[/C][C]0.608925050844129[/C][/ROW]
[ROW][C]beta[/C][C]0.106237083075996[/C][/ROW]
[ROW][C]gamma[/C][C]FALSE[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302847&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302847&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimated Parameters of Exponential Smoothing
ParameterValue
alpha0.608925050844129
beta0.106237083075996
gammaFALSE







Interpolation Forecasts of Exponential Smoothing
tObservedFittedResiduals
340243250774
441543541.37837537267612.621624627331
541423774.12016625808367.879833741916
641223881.63085108566240.369148914338
742283927.04666716146300.953332838545
841224028.822508380693.1774916193963
939384010.10612610168-72.1061261016839
1039763886.0798328286689.9201671713436
1139523866.532381914985.4676180850975
1240723849.80259853647222.197401463533
1337563930.70504894689-174.705048946892
1433783758.62191135647-380.621911356475
1542503436.52824608487813.47175391513
1638883894.17195705755-6.17195705755103
1741163852.31481315036263.685186849643
1842163991.83835012259224.161649877412
1942144121.7961268849692.2038731150351
2043204177.36621511237142.633784887632
2140564272.87137955363-216.871379553633
2241044135.43534256628-31.4353425662794
2339764108.88238827818-132.882388278177
2442584011.95956885239246.040431147611
2538924161.68880563796-269.68880563796
2636283979.93130825877-351.931308258766
2740563725.32770622014330.672293779858
2840223907.76986722755114.230132772446
2942943965.80456974305328.195430256953
3042824175.35920253187106.640797468131
3142504256.90230739177-6.90230739176968
3244184268.85965817934149.140341820665
3339664385.48323860475-419.483238604753
3441844128.7211290110755.2788709889273
3540944164.62957458907-70.6295745890748
3640744119.30015661148-45.3001566114835
3739504086.46396955151-136.463969551512
3837003989.28794139112-289.287941391123
3941483780.3394096275367.660590372504
4041923995.20741442484196.792585575158
4143944118.7602059659275.239794034102
4242164307.8868461172-91.8868461172005
4343664267.5166794688398.4833205311716
4445124349.4386037137162.561396286304
4539964480.89543869458-484.89543869458
4642924186.73149734165105.268502658347
4740744258.74302776092-184.74302776092
4842284142.2081679921285.7918320078752
4940444195.95867121243-151.958671212427
5036344095.1066667233-461.106666723301
5143303776.17751885463553.822481145366
5242824111.09116353793170.908836462071
5344284223.89526228339204.104737716607
5443464370.11679834267-24.1167983426667
5546324375.80839811021256.191601889789
5646344568.7599473789765.2400526210258
5741564649.65672128454-493.65672128454
5845124358.29238748823153.707612511773
5941424471.06782376063-329.06782376063
6044424268.58166682765173.418333172348
6140644383.29042357263-319.290423572635
6238184177.32144357495-359.321443574954
6343343923.73191715108410.268082848917
6444044165.30514732396238.694852676038
6546444317.84441015146326.155589848543
6645424544.73984929705-2.73984929705057
6747184571.18537443342146.814625566577
6845684698.19586574831-130.195865748314
6943384648.1053041594-310.105304159401
7045444468.4025358920475.5974641079583
7143024528.45427719843-226.454277198428
7245064389.92972399468116.07027600532
7341644467.48558681105-303.485586811049
7440964269.93076408695-173.930764086949
7545564140.01346398644415.986536013561
7644724396.2219300773675.7780699226396
7745484450.1710539183197.8289460816877
7847104523.87610437448186.123895625525
7946604663.38659467683-3.38659467682737
8047024687.280319800214.7196801998007
8144604723.15163158568-263.151631585675
8245244572.79675082374-48.7967508237371
8344404549.81124436381-109.811244363807
8445664482.5687486708883.4312513291216
8541964538.39365228387-342.39365228387
8639964312.77351522652-316.773515226523
8746164082.26190930014533.738090699856
8843124404.17586816111-92.1758681611145
8945924338.99224206155253.007757938452
9046844500.36675146656183.633248533435
9145424631.37669640129-89.3766964012912
9248104590.36223059881219.637769401193
9343604751.72287391365-391.722873913647
9445404515.4699887014324.5300112985706
9544284534.27076954436-106.270769544356
9646064466.54897741754139.451022582464
9741304557.47448544457-427.474485444574
9840344275.53134514995-241.531345149946
9945644091.18887655931472.811123440692
10042864372.41378270519-86.41378270519
10145784307.52249044103270.47750955897
10245304477.4485504868252.5514495131783
10346664518.07354874336147.92645125664
10448524626.34419922622225.655800773782
10541644796.54396661723-632.543966617226
10644944403.2448613786790.7551386213336
10743564456.25168871772-100.251688717721
10843384386.46435003724-48.464350037244
10941304345.07643997811-215.076439978106
11038404188.32086908518-348.320869085182
11143623927.89640368493434.103596315068
11242964171.99214015617124.007859843828
11346264235.28493521721390.715064782793
11444904486.257950721493.74204927851224
11547084501.83547782855206.164522171453
11646864654.009989312531.9900106874957
11742664702.19472480134-436.194724801342
11845284437.0724259496590.9275740503481
11942164498.81024279255-282.810242792548
12044884314.67462678224173.325373217755
12142684419.50390534329-151.503905343291
12240524316.73564748873-264.73564748873
12344384127.89188474479310.108115255208
12443544309.1459140547544.8540859452532
12545584331.78174979348226.218250206524
12644944479.4889223683614.5110776316387

\begin{tabular}{lllllllll}
\hline
Interpolation Forecasts of Exponential Smoothing \tabularnewline
t & Observed & Fitted & Residuals \tabularnewline
3 & 4024 & 3250 & 774 \tabularnewline
4 & 4154 & 3541.37837537267 & 612.621624627331 \tabularnewline
5 & 4142 & 3774.12016625808 & 367.879833741916 \tabularnewline
6 & 4122 & 3881.63085108566 & 240.369148914338 \tabularnewline
7 & 4228 & 3927.04666716146 & 300.953332838545 \tabularnewline
8 & 4122 & 4028.8225083806 & 93.1774916193963 \tabularnewline
9 & 3938 & 4010.10612610168 & -72.1061261016839 \tabularnewline
10 & 3976 & 3886.07983282866 & 89.9201671713436 \tabularnewline
11 & 3952 & 3866.5323819149 & 85.4676180850975 \tabularnewline
12 & 4072 & 3849.80259853647 & 222.197401463533 \tabularnewline
13 & 3756 & 3930.70504894689 & -174.705048946892 \tabularnewline
14 & 3378 & 3758.62191135647 & -380.621911356475 \tabularnewline
15 & 4250 & 3436.52824608487 & 813.47175391513 \tabularnewline
16 & 3888 & 3894.17195705755 & -6.17195705755103 \tabularnewline
17 & 4116 & 3852.31481315036 & 263.685186849643 \tabularnewline
18 & 4216 & 3991.83835012259 & 224.161649877412 \tabularnewline
19 & 4214 & 4121.79612688496 & 92.2038731150351 \tabularnewline
20 & 4320 & 4177.36621511237 & 142.633784887632 \tabularnewline
21 & 4056 & 4272.87137955363 & -216.871379553633 \tabularnewline
22 & 4104 & 4135.43534256628 & -31.4353425662794 \tabularnewline
23 & 3976 & 4108.88238827818 & -132.882388278177 \tabularnewline
24 & 4258 & 4011.95956885239 & 246.040431147611 \tabularnewline
25 & 3892 & 4161.68880563796 & -269.68880563796 \tabularnewline
26 & 3628 & 3979.93130825877 & -351.931308258766 \tabularnewline
27 & 4056 & 3725.32770622014 & 330.672293779858 \tabularnewline
28 & 4022 & 3907.76986722755 & 114.230132772446 \tabularnewline
29 & 4294 & 3965.80456974305 & 328.195430256953 \tabularnewline
30 & 4282 & 4175.35920253187 & 106.640797468131 \tabularnewline
31 & 4250 & 4256.90230739177 & -6.90230739176968 \tabularnewline
32 & 4418 & 4268.85965817934 & 149.140341820665 \tabularnewline
33 & 3966 & 4385.48323860475 & -419.483238604753 \tabularnewline
34 & 4184 & 4128.72112901107 & 55.2788709889273 \tabularnewline
35 & 4094 & 4164.62957458907 & -70.6295745890748 \tabularnewline
36 & 4074 & 4119.30015661148 & -45.3001566114835 \tabularnewline
37 & 3950 & 4086.46396955151 & -136.463969551512 \tabularnewline
38 & 3700 & 3989.28794139112 & -289.287941391123 \tabularnewline
39 & 4148 & 3780.3394096275 & 367.660590372504 \tabularnewline
40 & 4192 & 3995.20741442484 & 196.792585575158 \tabularnewline
41 & 4394 & 4118.7602059659 & 275.239794034102 \tabularnewline
42 & 4216 & 4307.8868461172 & -91.8868461172005 \tabularnewline
43 & 4366 & 4267.51667946883 & 98.4833205311716 \tabularnewline
44 & 4512 & 4349.4386037137 & 162.561396286304 \tabularnewline
45 & 3996 & 4480.89543869458 & -484.89543869458 \tabularnewline
46 & 4292 & 4186.73149734165 & 105.268502658347 \tabularnewline
47 & 4074 & 4258.74302776092 & -184.74302776092 \tabularnewline
48 & 4228 & 4142.20816799212 & 85.7918320078752 \tabularnewline
49 & 4044 & 4195.95867121243 & -151.958671212427 \tabularnewline
50 & 3634 & 4095.1066667233 & -461.106666723301 \tabularnewline
51 & 4330 & 3776.17751885463 & 553.822481145366 \tabularnewline
52 & 4282 & 4111.09116353793 & 170.908836462071 \tabularnewline
53 & 4428 & 4223.89526228339 & 204.104737716607 \tabularnewline
54 & 4346 & 4370.11679834267 & -24.1167983426667 \tabularnewline
55 & 4632 & 4375.80839811021 & 256.191601889789 \tabularnewline
56 & 4634 & 4568.75994737897 & 65.2400526210258 \tabularnewline
57 & 4156 & 4649.65672128454 & -493.65672128454 \tabularnewline
58 & 4512 & 4358.29238748823 & 153.707612511773 \tabularnewline
59 & 4142 & 4471.06782376063 & -329.06782376063 \tabularnewline
60 & 4442 & 4268.58166682765 & 173.418333172348 \tabularnewline
61 & 4064 & 4383.29042357263 & -319.290423572635 \tabularnewline
62 & 3818 & 4177.32144357495 & -359.321443574954 \tabularnewline
63 & 4334 & 3923.73191715108 & 410.268082848917 \tabularnewline
64 & 4404 & 4165.30514732396 & 238.694852676038 \tabularnewline
65 & 4644 & 4317.84441015146 & 326.155589848543 \tabularnewline
66 & 4542 & 4544.73984929705 & -2.73984929705057 \tabularnewline
67 & 4718 & 4571.18537443342 & 146.814625566577 \tabularnewline
68 & 4568 & 4698.19586574831 & -130.195865748314 \tabularnewline
69 & 4338 & 4648.1053041594 & -310.105304159401 \tabularnewline
70 & 4544 & 4468.40253589204 & 75.5974641079583 \tabularnewline
71 & 4302 & 4528.45427719843 & -226.454277198428 \tabularnewline
72 & 4506 & 4389.92972399468 & 116.07027600532 \tabularnewline
73 & 4164 & 4467.48558681105 & -303.485586811049 \tabularnewline
74 & 4096 & 4269.93076408695 & -173.930764086949 \tabularnewline
75 & 4556 & 4140.01346398644 & 415.986536013561 \tabularnewline
76 & 4472 & 4396.22193007736 & 75.7780699226396 \tabularnewline
77 & 4548 & 4450.17105391831 & 97.8289460816877 \tabularnewline
78 & 4710 & 4523.87610437448 & 186.123895625525 \tabularnewline
79 & 4660 & 4663.38659467683 & -3.38659467682737 \tabularnewline
80 & 4702 & 4687.2803198002 & 14.7196801998007 \tabularnewline
81 & 4460 & 4723.15163158568 & -263.151631585675 \tabularnewline
82 & 4524 & 4572.79675082374 & -48.7967508237371 \tabularnewline
83 & 4440 & 4549.81124436381 & -109.811244363807 \tabularnewline
84 & 4566 & 4482.56874867088 & 83.4312513291216 \tabularnewline
85 & 4196 & 4538.39365228387 & -342.39365228387 \tabularnewline
86 & 3996 & 4312.77351522652 & -316.773515226523 \tabularnewline
87 & 4616 & 4082.26190930014 & 533.738090699856 \tabularnewline
88 & 4312 & 4404.17586816111 & -92.1758681611145 \tabularnewline
89 & 4592 & 4338.99224206155 & 253.007757938452 \tabularnewline
90 & 4684 & 4500.36675146656 & 183.633248533435 \tabularnewline
91 & 4542 & 4631.37669640129 & -89.3766964012912 \tabularnewline
92 & 4810 & 4590.36223059881 & 219.637769401193 \tabularnewline
93 & 4360 & 4751.72287391365 & -391.722873913647 \tabularnewline
94 & 4540 & 4515.46998870143 & 24.5300112985706 \tabularnewline
95 & 4428 & 4534.27076954436 & -106.270769544356 \tabularnewline
96 & 4606 & 4466.54897741754 & 139.451022582464 \tabularnewline
97 & 4130 & 4557.47448544457 & -427.474485444574 \tabularnewline
98 & 4034 & 4275.53134514995 & -241.531345149946 \tabularnewline
99 & 4564 & 4091.18887655931 & 472.811123440692 \tabularnewline
100 & 4286 & 4372.41378270519 & -86.41378270519 \tabularnewline
101 & 4578 & 4307.52249044103 & 270.47750955897 \tabularnewline
102 & 4530 & 4477.44855048682 & 52.5514495131783 \tabularnewline
103 & 4666 & 4518.07354874336 & 147.92645125664 \tabularnewline
104 & 4852 & 4626.34419922622 & 225.655800773782 \tabularnewline
105 & 4164 & 4796.54396661723 & -632.543966617226 \tabularnewline
106 & 4494 & 4403.24486137867 & 90.7551386213336 \tabularnewline
107 & 4356 & 4456.25168871772 & -100.251688717721 \tabularnewline
108 & 4338 & 4386.46435003724 & -48.464350037244 \tabularnewline
109 & 4130 & 4345.07643997811 & -215.076439978106 \tabularnewline
110 & 3840 & 4188.32086908518 & -348.320869085182 \tabularnewline
111 & 4362 & 3927.89640368493 & 434.103596315068 \tabularnewline
112 & 4296 & 4171.99214015617 & 124.007859843828 \tabularnewline
113 & 4626 & 4235.28493521721 & 390.715064782793 \tabularnewline
114 & 4490 & 4486.25795072149 & 3.74204927851224 \tabularnewline
115 & 4708 & 4501.83547782855 & 206.164522171453 \tabularnewline
116 & 4686 & 4654.0099893125 & 31.9900106874957 \tabularnewline
117 & 4266 & 4702.19472480134 & -436.194724801342 \tabularnewline
118 & 4528 & 4437.07242594965 & 90.9275740503481 \tabularnewline
119 & 4216 & 4498.81024279255 & -282.810242792548 \tabularnewline
120 & 4488 & 4314.67462678224 & 173.325373217755 \tabularnewline
121 & 4268 & 4419.50390534329 & -151.503905343291 \tabularnewline
122 & 4052 & 4316.73564748873 & -264.73564748873 \tabularnewline
123 & 4438 & 4127.89188474479 & 310.108115255208 \tabularnewline
124 & 4354 & 4309.14591405475 & 44.8540859452532 \tabularnewline
125 & 4558 & 4331.78174979348 & 226.218250206524 \tabularnewline
126 & 4494 & 4479.48892236836 & 14.5110776316387 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302847&T=2

[TABLE]
[ROW][C]Interpolation Forecasts of Exponential Smoothing[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Fitted[/C][C]Residuals[/C][/ROW]
[ROW][C]3[/C][C]4024[/C][C]3250[/C][C]774[/C][/ROW]
[ROW][C]4[/C][C]4154[/C][C]3541.37837537267[/C][C]612.621624627331[/C][/ROW]
[ROW][C]5[/C][C]4142[/C][C]3774.12016625808[/C][C]367.879833741916[/C][/ROW]
[ROW][C]6[/C][C]4122[/C][C]3881.63085108566[/C][C]240.369148914338[/C][/ROW]
[ROW][C]7[/C][C]4228[/C][C]3927.04666716146[/C][C]300.953332838545[/C][/ROW]
[ROW][C]8[/C][C]4122[/C][C]4028.8225083806[/C][C]93.1774916193963[/C][/ROW]
[ROW][C]9[/C][C]3938[/C][C]4010.10612610168[/C][C]-72.1061261016839[/C][/ROW]
[ROW][C]10[/C][C]3976[/C][C]3886.07983282866[/C][C]89.9201671713436[/C][/ROW]
[ROW][C]11[/C][C]3952[/C][C]3866.5323819149[/C][C]85.4676180850975[/C][/ROW]
[ROW][C]12[/C][C]4072[/C][C]3849.80259853647[/C][C]222.197401463533[/C][/ROW]
[ROW][C]13[/C][C]3756[/C][C]3930.70504894689[/C][C]-174.705048946892[/C][/ROW]
[ROW][C]14[/C][C]3378[/C][C]3758.62191135647[/C][C]-380.621911356475[/C][/ROW]
[ROW][C]15[/C][C]4250[/C][C]3436.52824608487[/C][C]813.47175391513[/C][/ROW]
[ROW][C]16[/C][C]3888[/C][C]3894.17195705755[/C][C]-6.17195705755103[/C][/ROW]
[ROW][C]17[/C][C]4116[/C][C]3852.31481315036[/C][C]263.685186849643[/C][/ROW]
[ROW][C]18[/C][C]4216[/C][C]3991.83835012259[/C][C]224.161649877412[/C][/ROW]
[ROW][C]19[/C][C]4214[/C][C]4121.79612688496[/C][C]92.2038731150351[/C][/ROW]
[ROW][C]20[/C][C]4320[/C][C]4177.36621511237[/C][C]142.633784887632[/C][/ROW]
[ROW][C]21[/C][C]4056[/C][C]4272.87137955363[/C][C]-216.871379553633[/C][/ROW]
[ROW][C]22[/C][C]4104[/C][C]4135.43534256628[/C][C]-31.4353425662794[/C][/ROW]
[ROW][C]23[/C][C]3976[/C][C]4108.88238827818[/C][C]-132.882388278177[/C][/ROW]
[ROW][C]24[/C][C]4258[/C][C]4011.95956885239[/C][C]246.040431147611[/C][/ROW]
[ROW][C]25[/C][C]3892[/C][C]4161.68880563796[/C][C]-269.68880563796[/C][/ROW]
[ROW][C]26[/C][C]3628[/C][C]3979.93130825877[/C][C]-351.931308258766[/C][/ROW]
[ROW][C]27[/C][C]4056[/C][C]3725.32770622014[/C][C]330.672293779858[/C][/ROW]
[ROW][C]28[/C][C]4022[/C][C]3907.76986722755[/C][C]114.230132772446[/C][/ROW]
[ROW][C]29[/C][C]4294[/C][C]3965.80456974305[/C][C]328.195430256953[/C][/ROW]
[ROW][C]30[/C][C]4282[/C][C]4175.35920253187[/C][C]106.640797468131[/C][/ROW]
[ROW][C]31[/C][C]4250[/C][C]4256.90230739177[/C][C]-6.90230739176968[/C][/ROW]
[ROW][C]32[/C][C]4418[/C][C]4268.85965817934[/C][C]149.140341820665[/C][/ROW]
[ROW][C]33[/C][C]3966[/C][C]4385.48323860475[/C][C]-419.483238604753[/C][/ROW]
[ROW][C]34[/C][C]4184[/C][C]4128.72112901107[/C][C]55.2788709889273[/C][/ROW]
[ROW][C]35[/C][C]4094[/C][C]4164.62957458907[/C][C]-70.6295745890748[/C][/ROW]
[ROW][C]36[/C][C]4074[/C][C]4119.30015661148[/C][C]-45.3001566114835[/C][/ROW]
[ROW][C]37[/C][C]3950[/C][C]4086.46396955151[/C][C]-136.463969551512[/C][/ROW]
[ROW][C]38[/C][C]3700[/C][C]3989.28794139112[/C][C]-289.287941391123[/C][/ROW]
[ROW][C]39[/C][C]4148[/C][C]3780.3394096275[/C][C]367.660590372504[/C][/ROW]
[ROW][C]40[/C][C]4192[/C][C]3995.20741442484[/C][C]196.792585575158[/C][/ROW]
[ROW][C]41[/C][C]4394[/C][C]4118.7602059659[/C][C]275.239794034102[/C][/ROW]
[ROW][C]42[/C][C]4216[/C][C]4307.8868461172[/C][C]-91.8868461172005[/C][/ROW]
[ROW][C]43[/C][C]4366[/C][C]4267.51667946883[/C][C]98.4833205311716[/C][/ROW]
[ROW][C]44[/C][C]4512[/C][C]4349.4386037137[/C][C]162.561396286304[/C][/ROW]
[ROW][C]45[/C][C]3996[/C][C]4480.89543869458[/C][C]-484.89543869458[/C][/ROW]
[ROW][C]46[/C][C]4292[/C][C]4186.73149734165[/C][C]105.268502658347[/C][/ROW]
[ROW][C]47[/C][C]4074[/C][C]4258.74302776092[/C][C]-184.74302776092[/C][/ROW]
[ROW][C]48[/C][C]4228[/C][C]4142.20816799212[/C][C]85.7918320078752[/C][/ROW]
[ROW][C]49[/C][C]4044[/C][C]4195.95867121243[/C][C]-151.958671212427[/C][/ROW]
[ROW][C]50[/C][C]3634[/C][C]4095.1066667233[/C][C]-461.106666723301[/C][/ROW]
[ROW][C]51[/C][C]4330[/C][C]3776.17751885463[/C][C]553.822481145366[/C][/ROW]
[ROW][C]52[/C][C]4282[/C][C]4111.09116353793[/C][C]170.908836462071[/C][/ROW]
[ROW][C]53[/C][C]4428[/C][C]4223.89526228339[/C][C]204.104737716607[/C][/ROW]
[ROW][C]54[/C][C]4346[/C][C]4370.11679834267[/C][C]-24.1167983426667[/C][/ROW]
[ROW][C]55[/C][C]4632[/C][C]4375.80839811021[/C][C]256.191601889789[/C][/ROW]
[ROW][C]56[/C][C]4634[/C][C]4568.75994737897[/C][C]65.2400526210258[/C][/ROW]
[ROW][C]57[/C][C]4156[/C][C]4649.65672128454[/C][C]-493.65672128454[/C][/ROW]
[ROW][C]58[/C][C]4512[/C][C]4358.29238748823[/C][C]153.707612511773[/C][/ROW]
[ROW][C]59[/C][C]4142[/C][C]4471.06782376063[/C][C]-329.06782376063[/C][/ROW]
[ROW][C]60[/C][C]4442[/C][C]4268.58166682765[/C][C]173.418333172348[/C][/ROW]
[ROW][C]61[/C][C]4064[/C][C]4383.29042357263[/C][C]-319.290423572635[/C][/ROW]
[ROW][C]62[/C][C]3818[/C][C]4177.32144357495[/C][C]-359.321443574954[/C][/ROW]
[ROW][C]63[/C][C]4334[/C][C]3923.73191715108[/C][C]410.268082848917[/C][/ROW]
[ROW][C]64[/C][C]4404[/C][C]4165.30514732396[/C][C]238.694852676038[/C][/ROW]
[ROW][C]65[/C][C]4644[/C][C]4317.84441015146[/C][C]326.155589848543[/C][/ROW]
[ROW][C]66[/C][C]4542[/C][C]4544.73984929705[/C][C]-2.73984929705057[/C][/ROW]
[ROW][C]67[/C][C]4718[/C][C]4571.18537443342[/C][C]146.814625566577[/C][/ROW]
[ROW][C]68[/C][C]4568[/C][C]4698.19586574831[/C][C]-130.195865748314[/C][/ROW]
[ROW][C]69[/C][C]4338[/C][C]4648.1053041594[/C][C]-310.105304159401[/C][/ROW]
[ROW][C]70[/C][C]4544[/C][C]4468.40253589204[/C][C]75.5974641079583[/C][/ROW]
[ROW][C]71[/C][C]4302[/C][C]4528.45427719843[/C][C]-226.454277198428[/C][/ROW]
[ROW][C]72[/C][C]4506[/C][C]4389.92972399468[/C][C]116.07027600532[/C][/ROW]
[ROW][C]73[/C][C]4164[/C][C]4467.48558681105[/C][C]-303.485586811049[/C][/ROW]
[ROW][C]74[/C][C]4096[/C][C]4269.93076408695[/C][C]-173.930764086949[/C][/ROW]
[ROW][C]75[/C][C]4556[/C][C]4140.01346398644[/C][C]415.986536013561[/C][/ROW]
[ROW][C]76[/C][C]4472[/C][C]4396.22193007736[/C][C]75.7780699226396[/C][/ROW]
[ROW][C]77[/C][C]4548[/C][C]4450.17105391831[/C][C]97.8289460816877[/C][/ROW]
[ROW][C]78[/C][C]4710[/C][C]4523.87610437448[/C][C]186.123895625525[/C][/ROW]
[ROW][C]79[/C][C]4660[/C][C]4663.38659467683[/C][C]-3.38659467682737[/C][/ROW]
[ROW][C]80[/C][C]4702[/C][C]4687.2803198002[/C][C]14.7196801998007[/C][/ROW]
[ROW][C]81[/C][C]4460[/C][C]4723.15163158568[/C][C]-263.151631585675[/C][/ROW]
[ROW][C]82[/C][C]4524[/C][C]4572.79675082374[/C][C]-48.7967508237371[/C][/ROW]
[ROW][C]83[/C][C]4440[/C][C]4549.81124436381[/C][C]-109.811244363807[/C][/ROW]
[ROW][C]84[/C][C]4566[/C][C]4482.56874867088[/C][C]83.4312513291216[/C][/ROW]
[ROW][C]85[/C][C]4196[/C][C]4538.39365228387[/C][C]-342.39365228387[/C][/ROW]
[ROW][C]86[/C][C]3996[/C][C]4312.77351522652[/C][C]-316.773515226523[/C][/ROW]
[ROW][C]87[/C][C]4616[/C][C]4082.26190930014[/C][C]533.738090699856[/C][/ROW]
[ROW][C]88[/C][C]4312[/C][C]4404.17586816111[/C][C]-92.1758681611145[/C][/ROW]
[ROW][C]89[/C][C]4592[/C][C]4338.99224206155[/C][C]253.007757938452[/C][/ROW]
[ROW][C]90[/C][C]4684[/C][C]4500.36675146656[/C][C]183.633248533435[/C][/ROW]
[ROW][C]91[/C][C]4542[/C][C]4631.37669640129[/C][C]-89.3766964012912[/C][/ROW]
[ROW][C]92[/C][C]4810[/C][C]4590.36223059881[/C][C]219.637769401193[/C][/ROW]
[ROW][C]93[/C][C]4360[/C][C]4751.72287391365[/C][C]-391.722873913647[/C][/ROW]
[ROW][C]94[/C][C]4540[/C][C]4515.46998870143[/C][C]24.5300112985706[/C][/ROW]
[ROW][C]95[/C][C]4428[/C][C]4534.27076954436[/C][C]-106.270769544356[/C][/ROW]
[ROW][C]96[/C][C]4606[/C][C]4466.54897741754[/C][C]139.451022582464[/C][/ROW]
[ROW][C]97[/C][C]4130[/C][C]4557.47448544457[/C][C]-427.474485444574[/C][/ROW]
[ROW][C]98[/C][C]4034[/C][C]4275.53134514995[/C][C]-241.531345149946[/C][/ROW]
[ROW][C]99[/C][C]4564[/C][C]4091.18887655931[/C][C]472.811123440692[/C][/ROW]
[ROW][C]100[/C][C]4286[/C][C]4372.41378270519[/C][C]-86.41378270519[/C][/ROW]
[ROW][C]101[/C][C]4578[/C][C]4307.52249044103[/C][C]270.47750955897[/C][/ROW]
[ROW][C]102[/C][C]4530[/C][C]4477.44855048682[/C][C]52.5514495131783[/C][/ROW]
[ROW][C]103[/C][C]4666[/C][C]4518.07354874336[/C][C]147.92645125664[/C][/ROW]
[ROW][C]104[/C][C]4852[/C][C]4626.34419922622[/C][C]225.655800773782[/C][/ROW]
[ROW][C]105[/C][C]4164[/C][C]4796.54396661723[/C][C]-632.543966617226[/C][/ROW]
[ROW][C]106[/C][C]4494[/C][C]4403.24486137867[/C][C]90.7551386213336[/C][/ROW]
[ROW][C]107[/C][C]4356[/C][C]4456.25168871772[/C][C]-100.251688717721[/C][/ROW]
[ROW][C]108[/C][C]4338[/C][C]4386.46435003724[/C][C]-48.464350037244[/C][/ROW]
[ROW][C]109[/C][C]4130[/C][C]4345.07643997811[/C][C]-215.076439978106[/C][/ROW]
[ROW][C]110[/C][C]3840[/C][C]4188.32086908518[/C][C]-348.320869085182[/C][/ROW]
[ROW][C]111[/C][C]4362[/C][C]3927.89640368493[/C][C]434.103596315068[/C][/ROW]
[ROW][C]112[/C][C]4296[/C][C]4171.99214015617[/C][C]124.007859843828[/C][/ROW]
[ROW][C]113[/C][C]4626[/C][C]4235.28493521721[/C][C]390.715064782793[/C][/ROW]
[ROW][C]114[/C][C]4490[/C][C]4486.25795072149[/C][C]3.74204927851224[/C][/ROW]
[ROW][C]115[/C][C]4708[/C][C]4501.83547782855[/C][C]206.164522171453[/C][/ROW]
[ROW][C]116[/C][C]4686[/C][C]4654.0099893125[/C][C]31.9900106874957[/C][/ROW]
[ROW][C]117[/C][C]4266[/C][C]4702.19472480134[/C][C]-436.194724801342[/C][/ROW]
[ROW][C]118[/C][C]4528[/C][C]4437.07242594965[/C][C]90.9275740503481[/C][/ROW]
[ROW][C]119[/C][C]4216[/C][C]4498.81024279255[/C][C]-282.810242792548[/C][/ROW]
[ROW][C]120[/C][C]4488[/C][C]4314.67462678224[/C][C]173.325373217755[/C][/ROW]
[ROW][C]121[/C][C]4268[/C][C]4419.50390534329[/C][C]-151.503905343291[/C][/ROW]
[ROW][C]122[/C][C]4052[/C][C]4316.73564748873[/C][C]-264.73564748873[/C][/ROW]
[ROW][C]123[/C][C]4438[/C][C]4127.89188474479[/C][C]310.108115255208[/C][/ROW]
[ROW][C]124[/C][C]4354[/C][C]4309.14591405475[/C][C]44.8540859452532[/C][/ROW]
[ROW][C]125[/C][C]4558[/C][C]4331.78174979348[/C][C]226.218250206524[/C][/ROW]
[ROW][C]126[/C][C]4494[/C][C]4479.48892236836[/C][C]14.5110776316387[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302847&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302847&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Interpolation Forecasts of Exponential Smoothing
tObservedFittedResiduals
340243250774
441543541.37837537267612.621624627331
541423774.12016625808367.879833741916
641223881.63085108566240.369148914338
742283927.04666716146300.953332838545
841224028.822508380693.1774916193963
939384010.10612610168-72.1061261016839
1039763886.0798328286689.9201671713436
1139523866.532381914985.4676180850975
1240723849.80259853647222.197401463533
1337563930.70504894689-174.705048946892
1433783758.62191135647-380.621911356475
1542503436.52824608487813.47175391513
1638883894.17195705755-6.17195705755103
1741163852.31481315036263.685186849643
1842163991.83835012259224.161649877412
1942144121.7961268849692.2038731150351
2043204177.36621511237142.633784887632
2140564272.87137955363-216.871379553633
2241044135.43534256628-31.4353425662794
2339764108.88238827818-132.882388278177
2442584011.95956885239246.040431147611
2538924161.68880563796-269.68880563796
2636283979.93130825877-351.931308258766
2740563725.32770622014330.672293779858
2840223907.76986722755114.230132772446
2942943965.80456974305328.195430256953
3042824175.35920253187106.640797468131
3142504256.90230739177-6.90230739176968
3244184268.85965817934149.140341820665
3339664385.48323860475-419.483238604753
3441844128.7211290110755.2788709889273
3540944164.62957458907-70.6295745890748
3640744119.30015661148-45.3001566114835
3739504086.46396955151-136.463969551512
3837003989.28794139112-289.287941391123
3941483780.3394096275367.660590372504
4041923995.20741442484196.792585575158
4143944118.7602059659275.239794034102
4242164307.8868461172-91.8868461172005
4343664267.5166794688398.4833205311716
4445124349.4386037137162.561396286304
4539964480.89543869458-484.89543869458
4642924186.73149734165105.268502658347
4740744258.74302776092-184.74302776092
4842284142.2081679921285.7918320078752
4940444195.95867121243-151.958671212427
5036344095.1066667233-461.106666723301
5143303776.17751885463553.822481145366
5242824111.09116353793170.908836462071
5344284223.89526228339204.104737716607
5443464370.11679834267-24.1167983426667
5546324375.80839811021256.191601889789
5646344568.7599473789765.2400526210258
5741564649.65672128454-493.65672128454
5845124358.29238748823153.707612511773
5941424471.06782376063-329.06782376063
6044424268.58166682765173.418333172348
6140644383.29042357263-319.290423572635
6238184177.32144357495-359.321443574954
6343343923.73191715108410.268082848917
6444044165.30514732396238.694852676038
6546444317.84441015146326.155589848543
6645424544.73984929705-2.73984929705057
6747184571.18537443342146.814625566577
6845684698.19586574831-130.195865748314
6943384648.1053041594-310.105304159401
7045444468.4025358920475.5974641079583
7143024528.45427719843-226.454277198428
7245064389.92972399468116.07027600532
7341644467.48558681105-303.485586811049
7440964269.93076408695-173.930764086949
7545564140.01346398644415.986536013561
7644724396.2219300773675.7780699226396
7745484450.1710539183197.8289460816877
7847104523.87610437448186.123895625525
7946604663.38659467683-3.38659467682737
8047024687.280319800214.7196801998007
8144604723.15163158568-263.151631585675
8245244572.79675082374-48.7967508237371
8344404549.81124436381-109.811244363807
8445664482.5687486708883.4312513291216
8541964538.39365228387-342.39365228387
8639964312.77351522652-316.773515226523
8746164082.26190930014533.738090699856
8843124404.17586816111-92.1758681611145
8945924338.99224206155253.007757938452
9046844500.36675146656183.633248533435
9145424631.37669640129-89.3766964012912
9248104590.36223059881219.637769401193
9343604751.72287391365-391.722873913647
9445404515.4699887014324.5300112985706
9544284534.27076954436-106.270769544356
9646064466.54897741754139.451022582464
9741304557.47448544457-427.474485444574
9840344275.53134514995-241.531345149946
9945644091.18887655931472.811123440692
10042864372.41378270519-86.41378270519
10145784307.52249044103270.47750955897
10245304477.4485504868252.5514495131783
10346664518.07354874336147.92645125664
10448524626.34419922622225.655800773782
10541644796.54396661723-632.543966617226
10644944403.2448613786790.7551386213336
10743564456.25168871772-100.251688717721
10843384386.46435003724-48.464350037244
10941304345.07643997811-215.076439978106
11038404188.32086908518-348.320869085182
11143623927.89640368493434.103596315068
11242964171.99214015617124.007859843828
11346264235.28493521721390.715064782793
11444904486.257950721493.74204927851224
11547084501.83547782855206.164522171453
11646864654.009989312531.9900106874957
11742664702.19472480134-436.194724801342
11845284437.0724259496590.9275740503481
11942164498.81024279255-282.810242792548
12044884314.67462678224173.325373217755
12142684419.50390534329-151.503905343291
12240524316.73564748873-264.73564748873
12344384127.89188474479310.108115255208
12443544309.1459140547544.8540859452532
12545584331.78174979348226.218250206524
12644944479.4889223683614.5110776316387







Extrapolation Forecasts of Exponential Smoothing
tForecast95% Lower Bound95% Upper Bound
1274499.221021843273969.899917382415028.54212630413
1284510.116962633533871.90456024335148.32936502377
1294521.01290342383772.654428587845269.37137825976
1304531.908844214063671.268460342355392.54922808577
1314542.804785004323567.282109264945518.3274607437
1324553.700725794583460.442614325795646.95883726337
1334564.596666584843350.614243967655778.57908920204
1344575.492607375113237.729701208155913.25551354206
1354586.388548165373121.763292268366051.01380406238
1364597.284488955633002.715270153956191.85370775731
1374608.180429745892880.602303300546335.75855619124
1384619.076370536152755.451478472276482.70126260004

\begin{tabular}{lllllllll}
\hline
Extrapolation Forecasts of Exponential Smoothing \tabularnewline
t & Forecast & 95% Lower Bound & 95% Upper Bound \tabularnewline
127 & 4499.22102184327 & 3969.89991738241 & 5028.54212630413 \tabularnewline
128 & 4510.11696263353 & 3871.9045602433 & 5148.32936502377 \tabularnewline
129 & 4521.0129034238 & 3772.65442858784 & 5269.37137825976 \tabularnewline
130 & 4531.90884421406 & 3671.26846034235 & 5392.54922808577 \tabularnewline
131 & 4542.80478500432 & 3567.28210926494 & 5518.3274607437 \tabularnewline
132 & 4553.70072579458 & 3460.44261432579 & 5646.95883726337 \tabularnewline
133 & 4564.59666658484 & 3350.61424396765 & 5778.57908920204 \tabularnewline
134 & 4575.49260737511 & 3237.72970120815 & 5913.25551354206 \tabularnewline
135 & 4586.38854816537 & 3121.76329226836 & 6051.01380406238 \tabularnewline
136 & 4597.28448895563 & 3002.71527015395 & 6191.85370775731 \tabularnewline
137 & 4608.18042974589 & 2880.60230330054 & 6335.75855619124 \tabularnewline
138 & 4619.07637053615 & 2755.45147847227 & 6482.70126260004 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302847&T=3

[TABLE]
[ROW][C]Extrapolation Forecasts of Exponential Smoothing[/C][/ROW]
[ROW][C]t[/C][C]Forecast[/C][C]95% Lower Bound[/C][C]95% Upper Bound[/C][/ROW]
[ROW][C]127[/C][C]4499.22102184327[/C][C]3969.89991738241[/C][C]5028.54212630413[/C][/ROW]
[ROW][C]128[/C][C]4510.11696263353[/C][C]3871.9045602433[/C][C]5148.32936502377[/C][/ROW]
[ROW][C]129[/C][C]4521.0129034238[/C][C]3772.65442858784[/C][C]5269.37137825976[/C][/ROW]
[ROW][C]130[/C][C]4531.90884421406[/C][C]3671.26846034235[/C][C]5392.54922808577[/C][/ROW]
[ROW][C]131[/C][C]4542.80478500432[/C][C]3567.28210926494[/C][C]5518.3274607437[/C][/ROW]
[ROW][C]132[/C][C]4553.70072579458[/C][C]3460.44261432579[/C][C]5646.95883726337[/C][/ROW]
[ROW][C]133[/C][C]4564.59666658484[/C][C]3350.61424396765[/C][C]5778.57908920204[/C][/ROW]
[ROW][C]134[/C][C]4575.49260737511[/C][C]3237.72970120815[/C][C]5913.25551354206[/C][/ROW]
[ROW][C]135[/C][C]4586.38854816537[/C][C]3121.76329226836[/C][C]6051.01380406238[/C][/ROW]
[ROW][C]136[/C][C]4597.28448895563[/C][C]3002.71527015395[/C][C]6191.85370775731[/C][/ROW]
[ROW][C]137[/C][C]4608.18042974589[/C][C]2880.60230330054[/C][C]6335.75855619124[/C][/ROW]
[ROW][C]138[/C][C]4619.07637053615[/C][C]2755.45147847227[/C][C]6482.70126260004[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302847&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302847&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Extrapolation Forecasts of Exponential Smoothing
tForecast95% Lower Bound95% Upper Bound
1274499.221021843273969.899917382415028.54212630413
1284510.116962633533871.90456024335148.32936502377
1294521.01290342383772.654428587845269.37137825976
1304531.908844214063671.268460342355392.54922808577
1314542.804785004323567.282109264945518.3274607437
1324553.700725794583460.442614325795646.95883726337
1334564.596666584843350.614243967655778.57908920204
1344575.492607375113237.729701208155913.25551354206
1354586.388548165373121.763292268366051.01380406238
1364597.284488955633002.715270153956191.85370775731
1374608.180429745892880.602303300546335.75855619124
1384619.076370536152755.451478472276482.70126260004



Parameters (Session):
par1 = 12 ; par2 = Double ; par3 = additive ; par4 = 12 ;
Parameters (R input):
par1 = 12 ; par2 = Double ; par3 = additive ; par4 = 12 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
par4 <- as.numeric(par4)
if (par2 == 'Single') K <- 1
if (par2 == 'Double') K <- 2
if (par2 == 'Triple') K <- par1
nx <- length(x)
nxmK <- nx - K
x <- ts(x, frequency = par1)
if (par2 == 'Single') fit <- HoltWinters(x, gamma=F, beta=F)
if (par2 == 'Double') fit <- HoltWinters(x, gamma=F)
if (par2 == 'Triple') fit <- HoltWinters(x, seasonal=par3)
fit
myresid <- x - fit$fitted[,'xhat']
bitmap(file='test1.png')
op <- par(mfrow=c(2,1))
plot(fit,ylab='Observed (black) / Fitted (red)',main='Interpolation Fit of Exponential Smoothing')
plot(myresid,ylab='Residuals',main='Interpolation Prediction Errors')
par(op)
dev.off()
bitmap(file='test2.png')
p <- predict(fit, par4, prediction.interval=TRUE)
np <- length(p[,1])
plot(fit,p,ylab='Observed (black) / Fitted (red)',main='Extrapolation Fit of Exponential Smoothing')
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(myresid),lag.max = nx/2,main='Residual ACF')
spectrum(myresid,main='Residals Periodogram')
cpgram(myresid,main='Residal Cumulative Periodogram')
qqnorm(myresid,main='Residual Normal QQ Plot')
qqline(myresid)
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimated Parameters of Exponential Smoothing',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'Value',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,fit$alpha)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,fit$beta)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'gamma',header=TRUE)
a<-table.element(a,fit$gamma)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Interpolation Forecasts of Exponential Smoothing',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Fitted',header=TRUE)
a<-table.element(a,'Residuals',header=TRUE)
a<-table.row.end(a)
for (i in 1:nxmK) {
a<-table.row.start(a)
a<-table.element(a,i+K,header=TRUE)
a<-table.element(a,x[i+K])
a<-table.element(a,fit$fitted[i,'xhat'])
a<-table.element(a,myresid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Extrapolation Forecasts of Exponential Smoothing',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Forecast',header=TRUE)
a<-table.element(a,'95% Lower Bound',header=TRUE)
a<-table.element(a,'95% Upper Bound',header=TRUE)
a<-table.row.end(a)
for (i in 1:np) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,p[i,'fit'])
a<-table.element(a,p[i,'lwr'])
a<-table.element(a,p[i,'upr'])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')