Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_exponentialsmoothing.wasp
Title produced by softwareExponential Smoothing
Date of computationFri, 23 Dec 2016 10:45:55 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/23/t1482488569mpocdnv65t3n5zl.htm/, Retrieved Fri, 01 Nov 2024 03:30:14 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=302838, Retrieved Fri, 01 Nov 2024 03:30:14 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact84
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Exponential Smoothing] [Expo smoot 1] [2016-12-23 09:45:55] [bb262dce3bb40077245e847c94886178] [Current]
Feedback Forum

Post a new message
Dataseries X:
3710
3480
4024
4154
4142
4122
4228
4122
3938
3976
3952
4072
3756
3378
4250
3888
4116
4216
4214
4320
4056
4104
3976
4258
3892
3628
4056
4022
4294
4282
4250
4418
3966
4184
4094
4074
3950
3700
4148
4192
4394
4216
4366
4512
3996
4292
4074
4228
4044
3634
4330
4282
4428
4346
4632
4634
4156
4512
4142
4442
4064
3818
4334
4404
4644
4542
4718
4568
4338
4544
4302
4506
4164
4096
4556
4472
4548
4710
4660
4702
4460
4524
4440
4566
4196
3996
4616
4312
4592
4684
4542
4810
4360
4540
4428
4606
4130
4034
4564
4286
4578
4530
4666
4852
4164
4494
4356
4338
4130
3840
4362
4296
4626
4490
4708
4686
4266
4528
4216
4488
4268
4052
4438
4354
4558
4494




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302838&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=302838&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302838&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Estimated Parameters of Exponential Smoothing
ParameterValue
alpha0.189993272775464
betaFALSE
gammaFALSE

\begin{tabular}{lllllllll}
\hline
Estimated Parameters of Exponential Smoothing \tabularnewline
Parameter & Value \tabularnewline
alpha & 0.189993272775464 \tabularnewline
beta & FALSE \tabularnewline
gamma & FALSE \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302838&T=1

[TABLE]
[ROW][C]Estimated Parameters of Exponential Smoothing[/C][/ROW]
[ROW][C]Parameter[/C][C]Value[/C][/ROW]
[ROW][C]alpha[/C][C]0.189993272775464[/C][/ROW]
[ROW][C]beta[/C][C]FALSE[/C][/ROW]
[ROW][C]gamma[/C][C]FALSE[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302838&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302838&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimated Parameters of Exponential Smoothing
ParameterValue
alpha0.189993272775464
betaFALSE
gammaFALSE







Interpolation Forecasts of Exponential Smoothing
tObservedFittedResiduals
234803710-230
340243666.30154726164357.698452738357
441543734.26184696412419.738153035877
541423814.00927236814327.990727631862
641223876.32530415092245.674695849079
742283923.0018436534304.998156346596
841223980.94944156818141.050558431824
939384007.74809879145-69.748098791445
1039763994.49642923219-18.496429232192
1139523990.98223210771-38.9822321077081
1240723983.5758702494788.4241297505287
1337564000.3758600531-244.375860053096
1433783953.94609061429-575.946090614289
1542503844.52020791625405.479792083754
1638883921.55864065855-33.558640658553
1741163915.18272468994200.817275310062
1842163953.33665605595262.663343944052
1942144003.24092441003210.759075589975
2043204043.2837309485276.716269051504
2140564095.85796053581-39.8579605358073
2241044088.2852161674515.7147838325463
2339764091.27091937876-115.270919378758
2442584069.37022015015188.629779849849
2538924105.20860936674-213.208609366739
2636284064.70040788925-436.700407889246
2740563981.7302681719974.269731828012
2840223995.8410175901526.1589824098523
2942944000.81104827067293.188951729329
3042824056.51497675133225.485023248666
3142504099.3556142802150.644385719801
3244184127.97703414835290.022965851646
3339664183.07944661055-217.079446610554
3441844141.8358120967342.1641879032722
3540944149.84672415039-55.8467241503895
3640744139.23622225527-65.2362222552683
3739504126.84177888548-176.841778885482
3837004093.24303055159-393.243030551594
3941484018.52950018095129.470499819045
4041924043.12802416945148.87197583055
4143944071.41269808205322.587301917954
4242164132.7021153292483.2978846707556
4343664148.52815305311217.471846946885
4445124189.84634099108322.153659008922
4539964251.05336900277-255.053369002774
4642924202.5949446935389.4050553064717
4740744219.58130375388-145.581303753876
4842284191.9218353987636.0781646012429
4940444198.77644396708-154.776443967079
5036344169.36996082923-535.369960829225
5143304067.65326982561262.346730174391
5242824117.49738369338164.502616306618
5344284148.7517741456279.248225854397
5443464201.80705849242144.192941507578
5546324229.20274736057402.797252639432
5646344305.7315156545328.268484345501
5741564368.10031934434-212.100319344342
5845124327.80268551539184.197314484611
5941424362.79893613077-220.798936130772
6044424320.84862362994121.151376370055
6140644343.86657012774-279.866570127744
6238184290.69380452873-472.69380452873
6343344200.88516158563133.114838414369
6444044226.17608539095177.823914609046
6546444259.96143290527384.038567094729
6645424332.9261771396209.073822860402
6747184372.64879699652345.351203003477
6845684438.2632023121129.736797687903
6943384462.91232110423-124.91232110423
7045444439.17982040766104.820179592342
7143024459.09494938132-157.094949381319
7245064429.2479658118776.7520341881345
7341644443.83033597944-279.830335979444
7440964390.66445462485-294.664454624851
7545564334.68019052008221.319809479922
7644724376.7294654532195.2705345467893
7745484394.83022611082153.169773889177
7847104423.9314527423286.068547257695
7946604478.28255227392181.717447726083
8047024512.8076448878189.192355112201
8144604548.75291961966-88.7529196196638
8245244531.89046195275-7.89046195274568
8344404530.39132726263-90.3913272626332
8445664513.2175831654952.7824168345132
8541964523.24588728487-327.245887284875
8639964461.07137015731-465.07137015731
8746164372.71093846695243.289061533046
8843124418.93422349809-106.934223498089
8945924398.61744040398193.382559596016
9046844435.35882579933248.641174200673
9145424482.5989762324559.4010237675529
9248104493.88477114426316.115228855742
9343604553.94453804873-193.944538048725
9445404517.0963805279222.9036194720775
9544284521.44791414983-93.4479141498259
9646064503.69343910646102.30656089354
9741304523.13099743703-393.130997437025
9840344448.43875260448-414.438752604482
9945644369.69817763218194.301822367825
10042864406.61421677007-120.614216770075
10145784383.69832698268194.301673017321
10245304420.61433774499109.385662255013
10346664441.39687771153224.603122288472
10448524484.0699599907367.930040009298
10541644553.97419244448-389.974192444475
10644944479.8817193239814.1182806760198
10743564482.56409767558-126.564097675579
10843384458.51777054232-120.517770542322
10941304435.62020488938-305.620204889384
11038404377.55442193614-537.554421936142
11143624275.4226980175786.5773019824292
11242964291.871802969284.12819703071818
11346264292.65613263381333.34386736619
11444904355.98922495434134.010775045657
11547084381.45037069244326.549629307557
11646864443.4926034882242.507396511799
11742664489.56737742373-223.567377423735
11845284447.0910797011780.908920298828
11942164462.46323026548-246.463230265475
12044884415.6368745285272.3631254714755
12142684429.38538156511-161.385381565112
12240524398.72324474344-346.723244743439
12344384332.8481607273105.151839272696
12443544352.826302809081.17369719091676
12545584353.04929737963204.950702620367
12644944391.98855212811102.011447871893

\begin{tabular}{lllllllll}
\hline
Interpolation Forecasts of Exponential Smoothing \tabularnewline
t & Observed & Fitted & Residuals \tabularnewline
2 & 3480 & 3710 & -230 \tabularnewline
3 & 4024 & 3666.30154726164 & 357.698452738357 \tabularnewline
4 & 4154 & 3734.26184696412 & 419.738153035877 \tabularnewline
5 & 4142 & 3814.00927236814 & 327.990727631862 \tabularnewline
6 & 4122 & 3876.32530415092 & 245.674695849079 \tabularnewline
7 & 4228 & 3923.0018436534 & 304.998156346596 \tabularnewline
8 & 4122 & 3980.94944156818 & 141.050558431824 \tabularnewline
9 & 3938 & 4007.74809879145 & -69.748098791445 \tabularnewline
10 & 3976 & 3994.49642923219 & -18.496429232192 \tabularnewline
11 & 3952 & 3990.98223210771 & -38.9822321077081 \tabularnewline
12 & 4072 & 3983.57587024947 & 88.4241297505287 \tabularnewline
13 & 3756 & 4000.3758600531 & -244.375860053096 \tabularnewline
14 & 3378 & 3953.94609061429 & -575.946090614289 \tabularnewline
15 & 4250 & 3844.52020791625 & 405.479792083754 \tabularnewline
16 & 3888 & 3921.55864065855 & -33.558640658553 \tabularnewline
17 & 4116 & 3915.18272468994 & 200.817275310062 \tabularnewline
18 & 4216 & 3953.33665605595 & 262.663343944052 \tabularnewline
19 & 4214 & 4003.24092441003 & 210.759075589975 \tabularnewline
20 & 4320 & 4043.2837309485 & 276.716269051504 \tabularnewline
21 & 4056 & 4095.85796053581 & -39.8579605358073 \tabularnewline
22 & 4104 & 4088.28521616745 & 15.7147838325463 \tabularnewline
23 & 3976 & 4091.27091937876 & -115.270919378758 \tabularnewline
24 & 4258 & 4069.37022015015 & 188.629779849849 \tabularnewline
25 & 3892 & 4105.20860936674 & -213.208609366739 \tabularnewline
26 & 3628 & 4064.70040788925 & -436.700407889246 \tabularnewline
27 & 4056 & 3981.73026817199 & 74.269731828012 \tabularnewline
28 & 4022 & 3995.84101759015 & 26.1589824098523 \tabularnewline
29 & 4294 & 4000.81104827067 & 293.188951729329 \tabularnewline
30 & 4282 & 4056.51497675133 & 225.485023248666 \tabularnewline
31 & 4250 & 4099.3556142802 & 150.644385719801 \tabularnewline
32 & 4418 & 4127.97703414835 & 290.022965851646 \tabularnewline
33 & 3966 & 4183.07944661055 & -217.079446610554 \tabularnewline
34 & 4184 & 4141.83581209673 & 42.1641879032722 \tabularnewline
35 & 4094 & 4149.84672415039 & -55.8467241503895 \tabularnewline
36 & 4074 & 4139.23622225527 & -65.2362222552683 \tabularnewline
37 & 3950 & 4126.84177888548 & -176.841778885482 \tabularnewline
38 & 3700 & 4093.24303055159 & -393.243030551594 \tabularnewline
39 & 4148 & 4018.52950018095 & 129.470499819045 \tabularnewline
40 & 4192 & 4043.12802416945 & 148.87197583055 \tabularnewline
41 & 4394 & 4071.41269808205 & 322.587301917954 \tabularnewline
42 & 4216 & 4132.70211532924 & 83.2978846707556 \tabularnewline
43 & 4366 & 4148.52815305311 & 217.471846946885 \tabularnewline
44 & 4512 & 4189.84634099108 & 322.153659008922 \tabularnewline
45 & 3996 & 4251.05336900277 & -255.053369002774 \tabularnewline
46 & 4292 & 4202.59494469353 & 89.4050553064717 \tabularnewline
47 & 4074 & 4219.58130375388 & -145.581303753876 \tabularnewline
48 & 4228 & 4191.92183539876 & 36.0781646012429 \tabularnewline
49 & 4044 & 4198.77644396708 & -154.776443967079 \tabularnewline
50 & 3634 & 4169.36996082923 & -535.369960829225 \tabularnewline
51 & 4330 & 4067.65326982561 & 262.346730174391 \tabularnewline
52 & 4282 & 4117.49738369338 & 164.502616306618 \tabularnewline
53 & 4428 & 4148.7517741456 & 279.248225854397 \tabularnewline
54 & 4346 & 4201.80705849242 & 144.192941507578 \tabularnewline
55 & 4632 & 4229.20274736057 & 402.797252639432 \tabularnewline
56 & 4634 & 4305.7315156545 & 328.268484345501 \tabularnewline
57 & 4156 & 4368.10031934434 & -212.100319344342 \tabularnewline
58 & 4512 & 4327.80268551539 & 184.197314484611 \tabularnewline
59 & 4142 & 4362.79893613077 & -220.798936130772 \tabularnewline
60 & 4442 & 4320.84862362994 & 121.151376370055 \tabularnewline
61 & 4064 & 4343.86657012774 & -279.866570127744 \tabularnewline
62 & 3818 & 4290.69380452873 & -472.69380452873 \tabularnewline
63 & 4334 & 4200.88516158563 & 133.114838414369 \tabularnewline
64 & 4404 & 4226.17608539095 & 177.823914609046 \tabularnewline
65 & 4644 & 4259.96143290527 & 384.038567094729 \tabularnewline
66 & 4542 & 4332.9261771396 & 209.073822860402 \tabularnewline
67 & 4718 & 4372.64879699652 & 345.351203003477 \tabularnewline
68 & 4568 & 4438.2632023121 & 129.736797687903 \tabularnewline
69 & 4338 & 4462.91232110423 & -124.91232110423 \tabularnewline
70 & 4544 & 4439.17982040766 & 104.820179592342 \tabularnewline
71 & 4302 & 4459.09494938132 & -157.094949381319 \tabularnewline
72 & 4506 & 4429.24796581187 & 76.7520341881345 \tabularnewline
73 & 4164 & 4443.83033597944 & -279.830335979444 \tabularnewline
74 & 4096 & 4390.66445462485 & -294.664454624851 \tabularnewline
75 & 4556 & 4334.68019052008 & 221.319809479922 \tabularnewline
76 & 4472 & 4376.72946545321 & 95.2705345467893 \tabularnewline
77 & 4548 & 4394.83022611082 & 153.169773889177 \tabularnewline
78 & 4710 & 4423.9314527423 & 286.068547257695 \tabularnewline
79 & 4660 & 4478.28255227392 & 181.717447726083 \tabularnewline
80 & 4702 & 4512.8076448878 & 189.192355112201 \tabularnewline
81 & 4460 & 4548.75291961966 & -88.7529196196638 \tabularnewline
82 & 4524 & 4531.89046195275 & -7.89046195274568 \tabularnewline
83 & 4440 & 4530.39132726263 & -90.3913272626332 \tabularnewline
84 & 4566 & 4513.21758316549 & 52.7824168345132 \tabularnewline
85 & 4196 & 4523.24588728487 & -327.245887284875 \tabularnewline
86 & 3996 & 4461.07137015731 & -465.07137015731 \tabularnewline
87 & 4616 & 4372.71093846695 & 243.289061533046 \tabularnewline
88 & 4312 & 4418.93422349809 & -106.934223498089 \tabularnewline
89 & 4592 & 4398.61744040398 & 193.382559596016 \tabularnewline
90 & 4684 & 4435.35882579933 & 248.641174200673 \tabularnewline
91 & 4542 & 4482.59897623245 & 59.4010237675529 \tabularnewline
92 & 4810 & 4493.88477114426 & 316.115228855742 \tabularnewline
93 & 4360 & 4553.94453804873 & -193.944538048725 \tabularnewline
94 & 4540 & 4517.09638052792 & 22.9036194720775 \tabularnewline
95 & 4428 & 4521.44791414983 & -93.4479141498259 \tabularnewline
96 & 4606 & 4503.69343910646 & 102.30656089354 \tabularnewline
97 & 4130 & 4523.13099743703 & -393.130997437025 \tabularnewline
98 & 4034 & 4448.43875260448 & -414.438752604482 \tabularnewline
99 & 4564 & 4369.69817763218 & 194.301822367825 \tabularnewline
100 & 4286 & 4406.61421677007 & -120.614216770075 \tabularnewline
101 & 4578 & 4383.69832698268 & 194.301673017321 \tabularnewline
102 & 4530 & 4420.61433774499 & 109.385662255013 \tabularnewline
103 & 4666 & 4441.39687771153 & 224.603122288472 \tabularnewline
104 & 4852 & 4484.0699599907 & 367.930040009298 \tabularnewline
105 & 4164 & 4553.97419244448 & -389.974192444475 \tabularnewline
106 & 4494 & 4479.88171932398 & 14.1182806760198 \tabularnewline
107 & 4356 & 4482.56409767558 & -126.564097675579 \tabularnewline
108 & 4338 & 4458.51777054232 & -120.517770542322 \tabularnewline
109 & 4130 & 4435.62020488938 & -305.620204889384 \tabularnewline
110 & 3840 & 4377.55442193614 & -537.554421936142 \tabularnewline
111 & 4362 & 4275.42269801757 & 86.5773019824292 \tabularnewline
112 & 4296 & 4291.87180296928 & 4.12819703071818 \tabularnewline
113 & 4626 & 4292.65613263381 & 333.34386736619 \tabularnewline
114 & 4490 & 4355.98922495434 & 134.010775045657 \tabularnewline
115 & 4708 & 4381.45037069244 & 326.549629307557 \tabularnewline
116 & 4686 & 4443.4926034882 & 242.507396511799 \tabularnewline
117 & 4266 & 4489.56737742373 & -223.567377423735 \tabularnewline
118 & 4528 & 4447.09107970117 & 80.908920298828 \tabularnewline
119 & 4216 & 4462.46323026548 & -246.463230265475 \tabularnewline
120 & 4488 & 4415.63687452852 & 72.3631254714755 \tabularnewline
121 & 4268 & 4429.38538156511 & -161.385381565112 \tabularnewline
122 & 4052 & 4398.72324474344 & -346.723244743439 \tabularnewline
123 & 4438 & 4332.8481607273 & 105.151839272696 \tabularnewline
124 & 4354 & 4352.82630280908 & 1.17369719091676 \tabularnewline
125 & 4558 & 4353.04929737963 & 204.950702620367 \tabularnewline
126 & 4494 & 4391.98855212811 & 102.011447871893 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302838&T=2

[TABLE]
[ROW][C]Interpolation Forecasts of Exponential Smoothing[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Fitted[/C][C]Residuals[/C][/ROW]
[ROW][C]2[/C][C]3480[/C][C]3710[/C][C]-230[/C][/ROW]
[ROW][C]3[/C][C]4024[/C][C]3666.30154726164[/C][C]357.698452738357[/C][/ROW]
[ROW][C]4[/C][C]4154[/C][C]3734.26184696412[/C][C]419.738153035877[/C][/ROW]
[ROW][C]5[/C][C]4142[/C][C]3814.00927236814[/C][C]327.990727631862[/C][/ROW]
[ROW][C]6[/C][C]4122[/C][C]3876.32530415092[/C][C]245.674695849079[/C][/ROW]
[ROW][C]7[/C][C]4228[/C][C]3923.0018436534[/C][C]304.998156346596[/C][/ROW]
[ROW][C]8[/C][C]4122[/C][C]3980.94944156818[/C][C]141.050558431824[/C][/ROW]
[ROW][C]9[/C][C]3938[/C][C]4007.74809879145[/C][C]-69.748098791445[/C][/ROW]
[ROW][C]10[/C][C]3976[/C][C]3994.49642923219[/C][C]-18.496429232192[/C][/ROW]
[ROW][C]11[/C][C]3952[/C][C]3990.98223210771[/C][C]-38.9822321077081[/C][/ROW]
[ROW][C]12[/C][C]4072[/C][C]3983.57587024947[/C][C]88.4241297505287[/C][/ROW]
[ROW][C]13[/C][C]3756[/C][C]4000.3758600531[/C][C]-244.375860053096[/C][/ROW]
[ROW][C]14[/C][C]3378[/C][C]3953.94609061429[/C][C]-575.946090614289[/C][/ROW]
[ROW][C]15[/C][C]4250[/C][C]3844.52020791625[/C][C]405.479792083754[/C][/ROW]
[ROW][C]16[/C][C]3888[/C][C]3921.55864065855[/C][C]-33.558640658553[/C][/ROW]
[ROW][C]17[/C][C]4116[/C][C]3915.18272468994[/C][C]200.817275310062[/C][/ROW]
[ROW][C]18[/C][C]4216[/C][C]3953.33665605595[/C][C]262.663343944052[/C][/ROW]
[ROW][C]19[/C][C]4214[/C][C]4003.24092441003[/C][C]210.759075589975[/C][/ROW]
[ROW][C]20[/C][C]4320[/C][C]4043.2837309485[/C][C]276.716269051504[/C][/ROW]
[ROW][C]21[/C][C]4056[/C][C]4095.85796053581[/C][C]-39.8579605358073[/C][/ROW]
[ROW][C]22[/C][C]4104[/C][C]4088.28521616745[/C][C]15.7147838325463[/C][/ROW]
[ROW][C]23[/C][C]3976[/C][C]4091.27091937876[/C][C]-115.270919378758[/C][/ROW]
[ROW][C]24[/C][C]4258[/C][C]4069.37022015015[/C][C]188.629779849849[/C][/ROW]
[ROW][C]25[/C][C]3892[/C][C]4105.20860936674[/C][C]-213.208609366739[/C][/ROW]
[ROW][C]26[/C][C]3628[/C][C]4064.70040788925[/C][C]-436.700407889246[/C][/ROW]
[ROW][C]27[/C][C]4056[/C][C]3981.73026817199[/C][C]74.269731828012[/C][/ROW]
[ROW][C]28[/C][C]4022[/C][C]3995.84101759015[/C][C]26.1589824098523[/C][/ROW]
[ROW][C]29[/C][C]4294[/C][C]4000.81104827067[/C][C]293.188951729329[/C][/ROW]
[ROW][C]30[/C][C]4282[/C][C]4056.51497675133[/C][C]225.485023248666[/C][/ROW]
[ROW][C]31[/C][C]4250[/C][C]4099.3556142802[/C][C]150.644385719801[/C][/ROW]
[ROW][C]32[/C][C]4418[/C][C]4127.97703414835[/C][C]290.022965851646[/C][/ROW]
[ROW][C]33[/C][C]3966[/C][C]4183.07944661055[/C][C]-217.079446610554[/C][/ROW]
[ROW][C]34[/C][C]4184[/C][C]4141.83581209673[/C][C]42.1641879032722[/C][/ROW]
[ROW][C]35[/C][C]4094[/C][C]4149.84672415039[/C][C]-55.8467241503895[/C][/ROW]
[ROW][C]36[/C][C]4074[/C][C]4139.23622225527[/C][C]-65.2362222552683[/C][/ROW]
[ROW][C]37[/C][C]3950[/C][C]4126.84177888548[/C][C]-176.841778885482[/C][/ROW]
[ROW][C]38[/C][C]3700[/C][C]4093.24303055159[/C][C]-393.243030551594[/C][/ROW]
[ROW][C]39[/C][C]4148[/C][C]4018.52950018095[/C][C]129.470499819045[/C][/ROW]
[ROW][C]40[/C][C]4192[/C][C]4043.12802416945[/C][C]148.87197583055[/C][/ROW]
[ROW][C]41[/C][C]4394[/C][C]4071.41269808205[/C][C]322.587301917954[/C][/ROW]
[ROW][C]42[/C][C]4216[/C][C]4132.70211532924[/C][C]83.2978846707556[/C][/ROW]
[ROW][C]43[/C][C]4366[/C][C]4148.52815305311[/C][C]217.471846946885[/C][/ROW]
[ROW][C]44[/C][C]4512[/C][C]4189.84634099108[/C][C]322.153659008922[/C][/ROW]
[ROW][C]45[/C][C]3996[/C][C]4251.05336900277[/C][C]-255.053369002774[/C][/ROW]
[ROW][C]46[/C][C]4292[/C][C]4202.59494469353[/C][C]89.4050553064717[/C][/ROW]
[ROW][C]47[/C][C]4074[/C][C]4219.58130375388[/C][C]-145.581303753876[/C][/ROW]
[ROW][C]48[/C][C]4228[/C][C]4191.92183539876[/C][C]36.0781646012429[/C][/ROW]
[ROW][C]49[/C][C]4044[/C][C]4198.77644396708[/C][C]-154.776443967079[/C][/ROW]
[ROW][C]50[/C][C]3634[/C][C]4169.36996082923[/C][C]-535.369960829225[/C][/ROW]
[ROW][C]51[/C][C]4330[/C][C]4067.65326982561[/C][C]262.346730174391[/C][/ROW]
[ROW][C]52[/C][C]4282[/C][C]4117.49738369338[/C][C]164.502616306618[/C][/ROW]
[ROW][C]53[/C][C]4428[/C][C]4148.7517741456[/C][C]279.248225854397[/C][/ROW]
[ROW][C]54[/C][C]4346[/C][C]4201.80705849242[/C][C]144.192941507578[/C][/ROW]
[ROW][C]55[/C][C]4632[/C][C]4229.20274736057[/C][C]402.797252639432[/C][/ROW]
[ROW][C]56[/C][C]4634[/C][C]4305.7315156545[/C][C]328.268484345501[/C][/ROW]
[ROW][C]57[/C][C]4156[/C][C]4368.10031934434[/C][C]-212.100319344342[/C][/ROW]
[ROW][C]58[/C][C]4512[/C][C]4327.80268551539[/C][C]184.197314484611[/C][/ROW]
[ROW][C]59[/C][C]4142[/C][C]4362.79893613077[/C][C]-220.798936130772[/C][/ROW]
[ROW][C]60[/C][C]4442[/C][C]4320.84862362994[/C][C]121.151376370055[/C][/ROW]
[ROW][C]61[/C][C]4064[/C][C]4343.86657012774[/C][C]-279.866570127744[/C][/ROW]
[ROW][C]62[/C][C]3818[/C][C]4290.69380452873[/C][C]-472.69380452873[/C][/ROW]
[ROW][C]63[/C][C]4334[/C][C]4200.88516158563[/C][C]133.114838414369[/C][/ROW]
[ROW][C]64[/C][C]4404[/C][C]4226.17608539095[/C][C]177.823914609046[/C][/ROW]
[ROW][C]65[/C][C]4644[/C][C]4259.96143290527[/C][C]384.038567094729[/C][/ROW]
[ROW][C]66[/C][C]4542[/C][C]4332.9261771396[/C][C]209.073822860402[/C][/ROW]
[ROW][C]67[/C][C]4718[/C][C]4372.64879699652[/C][C]345.351203003477[/C][/ROW]
[ROW][C]68[/C][C]4568[/C][C]4438.2632023121[/C][C]129.736797687903[/C][/ROW]
[ROW][C]69[/C][C]4338[/C][C]4462.91232110423[/C][C]-124.91232110423[/C][/ROW]
[ROW][C]70[/C][C]4544[/C][C]4439.17982040766[/C][C]104.820179592342[/C][/ROW]
[ROW][C]71[/C][C]4302[/C][C]4459.09494938132[/C][C]-157.094949381319[/C][/ROW]
[ROW][C]72[/C][C]4506[/C][C]4429.24796581187[/C][C]76.7520341881345[/C][/ROW]
[ROW][C]73[/C][C]4164[/C][C]4443.83033597944[/C][C]-279.830335979444[/C][/ROW]
[ROW][C]74[/C][C]4096[/C][C]4390.66445462485[/C][C]-294.664454624851[/C][/ROW]
[ROW][C]75[/C][C]4556[/C][C]4334.68019052008[/C][C]221.319809479922[/C][/ROW]
[ROW][C]76[/C][C]4472[/C][C]4376.72946545321[/C][C]95.2705345467893[/C][/ROW]
[ROW][C]77[/C][C]4548[/C][C]4394.83022611082[/C][C]153.169773889177[/C][/ROW]
[ROW][C]78[/C][C]4710[/C][C]4423.9314527423[/C][C]286.068547257695[/C][/ROW]
[ROW][C]79[/C][C]4660[/C][C]4478.28255227392[/C][C]181.717447726083[/C][/ROW]
[ROW][C]80[/C][C]4702[/C][C]4512.8076448878[/C][C]189.192355112201[/C][/ROW]
[ROW][C]81[/C][C]4460[/C][C]4548.75291961966[/C][C]-88.7529196196638[/C][/ROW]
[ROW][C]82[/C][C]4524[/C][C]4531.89046195275[/C][C]-7.89046195274568[/C][/ROW]
[ROW][C]83[/C][C]4440[/C][C]4530.39132726263[/C][C]-90.3913272626332[/C][/ROW]
[ROW][C]84[/C][C]4566[/C][C]4513.21758316549[/C][C]52.7824168345132[/C][/ROW]
[ROW][C]85[/C][C]4196[/C][C]4523.24588728487[/C][C]-327.245887284875[/C][/ROW]
[ROW][C]86[/C][C]3996[/C][C]4461.07137015731[/C][C]-465.07137015731[/C][/ROW]
[ROW][C]87[/C][C]4616[/C][C]4372.71093846695[/C][C]243.289061533046[/C][/ROW]
[ROW][C]88[/C][C]4312[/C][C]4418.93422349809[/C][C]-106.934223498089[/C][/ROW]
[ROW][C]89[/C][C]4592[/C][C]4398.61744040398[/C][C]193.382559596016[/C][/ROW]
[ROW][C]90[/C][C]4684[/C][C]4435.35882579933[/C][C]248.641174200673[/C][/ROW]
[ROW][C]91[/C][C]4542[/C][C]4482.59897623245[/C][C]59.4010237675529[/C][/ROW]
[ROW][C]92[/C][C]4810[/C][C]4493.88477114426[/C][C]316.115228855742[/C][/ROW]
[ROW][C]93[/C][C]4360[/C][C]4553.94453804873[/C][C]-193.944538048725[/C][/ROW]
[ROW][C]94[/C][C]4540[/C][C]4517.09638052792[/C][C]22.9036194720775[/C][/ROW]
[ROW][C]95[/C][C]4428[/C][C]4521.44791414983[/C][C]-93.4479141498259[/C][/ROW]
[ROW][C]96[/C][C]4606[/C][C]4503.69343910646[/C][C]102.30656089354[/C][/ROW]
[ROW][C]97[/C][C]4130[/C][C]4523.13099743703[/C][C]-393.130997437025[/C][/ROW]
[ROW][C]98[/C][C]4034[/C][C]4448.43875260448[/C][C]-414.438752604482[/C][/ROW]
[ROW][C]99[/C][C]4564[/C][C]4369.69817763218[/C][C]194.301822367825[/C][/ROW]
[ROW][C]100[/C][C]4286[/C][C]4406.61421677007[/C][C]-120.614216770075[/C][/ROW]
[ROW][C]101[/C][C]4578[/C][C]4383.69832698268[/C][C]194.301673017321[/C][/ROW]
[ROW][C]102[/C][C]4530[/C][C]4420.61433774499[/C][C]109.385662255013[/C][/ROW]
[ROW][C]103[/C][C]4666[/C][C]4441.39687771153[/C][C]224.603122288472[/C][/ROW]
[ROW][C]104[/C][C]4852[/C][C]4484.0699599907[/C][C]367.930040009298[/C][/ROW]
[ROW][C]105[/C][C]4164[/C][C]4553.97419244448[/C][C]-389.974192444475[/C][/ROW]
[ROW][C]106[/C][C]4494[/C][C]4479.88171932398[/C][C]14.1182806760198[/C][/ROW]
[ROW][C]107[/C][C]4356[/C][C]4482.56409767558[/C][C]-126.564097675579[/C][/ROW]
[ROW][C]108[/C][C]4338[/C][C]4458.51777054232[/C][C]-120.517770542322[/C][/ROW]
[ROW][C]109[/C][C]4130[/C][C]4435.62020488938[/C][C]-305.620204889384[/C][/ROW]
[ROW][C]110[/C][C]3840[/C][C]4377.55442193614[/C][C]-537.554421936142[/C][/ROW]
[ROW][C]111[/C][C]4362[/C][C]4275.42269801757[/C][C]86.5773019824292[/C][/ROW]
[ROW][C]112[/C][C]4296[/C][C]4291.87180296928[/C][C]4.12819703071818[/C][/ROW]
[ROW][C]113[/C][C]4626[/C][C]4292.65613263381[/C][C]333.34386736619[/C][/ROW]
[ROW][C]114[/C][C]4490[/C][C]4355.98922495434[/C][C]134.010775045657[/C][/ROW]
[ROW][C]115[/C][C]4708[/C][C]4381.45037069244[/C][C]326.549629307557[/C][/ROW]
[ROW][C]116[/C][C]4686[/C][C]4443.4926034882[/C][C]242.507396511799[/C][/ROW]
[ROW][C]117[/C][C]4266[/C][C]4489.56737742373[/C][C]-223.567377423735[/C][/ROW]
[ROW][C]118[/C][C]4528[/C][C]4447.09107970117[/C][C]80.908920298828[/C][/ROW]
[ROW][C]119[/C][C]4216[/C][C]4462.46323026548[/C][C]-246.463230265475[/C][/ROW]
[ROW][C]120[/C][C]4488[/C][C]4415.63687452852[/C][C]72.3631254714755[/C][/ROW]
[ROW][C]121[/C][C]4268[/C][C]4429.38538156511[/C][C]-161.385381565112[/C][/ROW]
[ROW][C]122[/C][C]4052[/C][C]4398.72324474344[/C][C]-346.723244743439[/C][/ROW]
[ROW][C]123[/C][C]4438[/C][C]4332.8481607273[/C][C]105.151839272696[/C][/ROW]
[ROW][C]124[/C][C]4354[/C][C]4352.82630280908[/C][C]1.17369719091676[/C][/ROW]
[ROW][C]125[/C][C]4558[/C][C]4353.04929737963[/C][C]204.950702620367[/C][/ROW]
[ROW][C]126[/C][C]4494[/C][C]4391.98855212811[/C][C]102.011447871893[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302838&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302838&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Interpolation Forecasts of Exponential Smoothing
tObservedFittedResiduals
234803710-230
340243666.30154726164357.698452738357
441543734.26184696412419.738153035877
541423814.00927236814327.990727631862
641223876.32530415092245.674695849079
742283923.0018436534304.998156346596
841223980.94944156818141.050558431824
939384007.74809879145-69.748098791445
1039763994.49642923219-18.496429232192
1139523990.98223210771-38.9822321077081
1240723983.5758702494788.4241297505287
1337564000.3758600531-244.375860053096
1433783953.94609061429-575.946090614289
1542503844.52020791625405.479792083754
1638883921.55864065855-33.558640658553
1741163915.18272468994200.817275310062
1842163953.33665605595262.663343944052
1942144003.24092441003210.759075589975
2043204043.2837309485276.716269051504
2140564095.85796053581-39.8579605358073
2241044088.2852161674515.7147838325463
2339764091.27091937876-115.270919378758
2442584069.37022015015188.629779849849
2538924105.20860936674-213.208609366739
2636284064.70040788925-436.700407889246
2740563981.7302681719974.269731828012
2840223995.8410175901526.1589824098523
2942944000.81104827067293.188951729329
3042824056.51497675133225.485023248666
3142504099.3556142802150.644385719801
3244184127.97703414835290.022965851646
3339664183.07944661055-217.079446610554
3441844141.8358120967342.1641879032722
3540944149.84672415039-55.8467241503895
3640744139.23622225527-65.2362222552683
3739504126.84177888548-176.841778885482
3837004093.24303055159-393.243030551594
3941484018.52950018095129.470499819045
4041924043.12802416945148.87197583055
4143944071.41269808205322.587301917954
4242164132.7021153292483.2978846707556
4343664148.52815305311217.471846946885
4445124189.84634099108322.153659008922
4539964251.05336900277-255.053369002774
4642924202.5949446935389.4050553064717
4740744219.58130375388-145.581303753876
4842284191.9218353987636.0781646012429
4940444198.77644396708-154.776443967079
5036344169.36996082923-535.369960829225
5143304067.65326982561262.346730174391
5242824117.49738369338164.502616306618
5344284148.7517741456279.248225854397
5443464201.80705849242144.192941507578
5546324229.20274736057402.797252639432
5646344305.7315156545328.268484345501
5741564368.10031934434-212.100319344342
5845124327.80268551539184.197314484611
5941424362.79893613077-220.798936130772
6044424320.84862362994121.151376370055
6140644343.86657012774-279.866570127744
6238184290.69380452873-472.69380452873
6343344200.88516158563133.114838414369
6444044226.17608539095177.823914609046
6546444259.96143290527384.038567094729
6645424332.9261771396209.073822860402
6747184372.64879699652345.351203003477
6845684438.2632023121129.736797687903
6943384462.91232110423-124.91232110423
7045444439.17982040766104.820179592342
7143024459.09494938132-157.094949381319
7245064429.2479658118776.7520341881345
7341644443.83033597944-279.830335979444
7440964390.66445462485-294.664454624851
7545564334.68019052008221.319809479922
7644724376.7294654532195.2705345467893
7745484394.83022611082153.169773889177
7847104423.9314527423286.068547257695
7946604478.28255227392181.717447726083
8047024512.8076448878189.192355112201
8144604548.75291961966-88.7529196196638
8245244531.89046195275-7.89046195274568
8344404530.39132726263-90.3913272626332
8445664513.2175831654952.7824168345132
8541964523.24588728487-327.245887284875
8639964461.07137015731-465.07137015731
8746164372.71093846695243.289061533046
8843124418.93422349809-106.934223498089
8945924398.61744040398193.382559596016
9046844435.35882579933248.641174200673
9145424482.5989762324559.4010237675529
9248104493.88477114426316.115228855742
9343604553.94453804873-193.944538048725
9445404517.0963805279222.9036194720775
9544284521.44791414983-93.4479141498259
9646064503.69343910646102.30656089354
9741304523.13099743703-393.130997437025
9840344448.43875260448-414.438752604482
9945644369.69817763218194.301822367825
10042864406.61421677007-120.614216770075
10145784383.69832698268194.301673017321
10245304420.61433774499109.385662255013
10346664441.39687771153224.603122288472
10448524484.0699599907367.930040009298
10541644553.97419244448-389.974192444475
10644944479.8817193239814.1182806760198
10743564482.56409767558-126.564097675579
10843384458.51777054232-120.517770542322
10941304435.62020488938-305.620204889384
11038404377.55442193614-537.554421936142
11143624275.4226980175786.5773019824292
11242964291.871802969284.12819703071818
11346264292.65613263381333.34386736619
11444904355.98922495434134.010775045657
11547084381.45037069244326.549629307557
11646864443.4926034882242.507396511799
11742664489.56737742373-223.567377423735
11845284447.0910797011780.908920298828
11942164462.46323026548-246.463230265475
12044884415.6368745285272.3631254714755
12142684429.38538156511-161.385381565112
12240524398.72324474344-346.723244743439
12344384332.8481607273105.151839272696
12443544352.826302809081.17369719091676
12545584353.04929737963204.950702620367
12644944391.98855212811102.011447871893







Extrapolation Forecasts of Exponential Smoothing
tForecast95% Lower Bound95% Upper Bound
1274411.370040969853944.260476873954878.47960506575
1284411.370040969853935.904485269854886.83559666985
1294411.370040969853927.69282996614895.0472519736
1304411.370040969853919.618280188444903.12180175126
1314411.370040969853911.674189457294911.06589248242
1324411.370040969853903.85443154874918.885650391
1334411.370040969853896.153345206444926.58673673327
1344411.370040969853888.565686186324934.17439575338
1354411.370040969853881.086585478474941.65349646123
1364411.370040969853873.711512761544949.02856917816
1374411.370040969853866.436244309764956.30383762994
1384411.370040969853859.256834707194963.48324723251

\begin{tabular}{lllllllll}
\hline
Extrapolation Forecasts of Exponential Smoothing \tabularnewline
t & Forecast & 95% Lower Bound & 95% Upper Bound \tabularnewline
127 & 4411.37004096985 & 3944.26047687395 & 4878.47960506575 \tabularnewline
128 & 4411.37004096985 & 3935.90448526985 & 4886.83559666985 \tabularnewline
129 & 4411.37004096985 & 3927.6928299661 & 4895.0472519736 \tabularnewline
130 & 4411.37004096985 & 3919.61828018844 & 4903.12180175126 \tabularnewline
131 & 4411.37004096985 & 3911.67418945729 & 4911.06589248242 \tabularnewline
132 & 4411.37004096985 & 3903.8544315487 & 4918.885650391 \tabularnewline
133 & 4411.37004096985 & 3896.15334520644 & 4926.58673673327 \tabularnewline
134 & 4411.37004096985 & 3888.56568618632 & 4934.17439575338 \tabularnewline
135 & 4411.37004096985 & 3881.08658547847 & 4941.65349646123 \tabularnewline
136 & 4411.37004096985 & 3873.71151276154 & 4949.02856917816 \tabularnewline
137 & 4411.37004096985 & 3866.43624430976 & 4956.30383762994 \tabularnewline
138 & 4411.37004096985 & 3859.25683470719 & 4963.48324723251 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302838&T=3

[TABLE]
[ROW][C]Extrapolation Forecasts of Exponential Smoothing[/C][/ROW]
[ROW][C]t[/C][C]Forecast[/C][C]95% Lower Bound[/C][C]95% Upper Bound[/C][/ROW]
[ROW][C]127[/C][C]4411.37004096985[/C][C]3944.26047687395[/C][C]4878.47960506575[/C][/ROW]
[ROW][C]128[/C][C]4411.37004096985[/C][C]3935.90448526985[/C][C]4886.83559666985[/C][/ROW]
[ROW][C]129[/C][C]4411.37004096985[/C][C]3927.6928299661[/C][C]4895.0472519736[/C][/ROW]
[ROW][C]130[/C][C]4411.37004096985[/C][C]3919.61828018844[/C][C]4903.12180175126[/C][/ROW]
[ROW][C]131[/C][C]4411.37004096985[/C][C]3911.67418945729[/C][C]4911.06589248242[/C][/ROW]
[ROW][C]132[/C][C]4411.37004096985[/C][C]3903.8544315487[/C][C]4918.885650391[/C][/ROW]
[ROW][C]133[/C][C]4411.37004096985[/C][C]3896.15334520644[/C][C]4926.58673673327[/C][/ROW]
[ROW][C]134[/C][C]4411.37004096985[/C][C]3888.56568618632[/C][C]4934.17439575338[/C][/ROW]
[ROW][C]135[/C][C]4411.37004096985[/C][C]3881.08658547847[/C][C]4941.65349646123[/C][/ROW]
[ROW][C]136[/C][C]4411.37004096985[/C][C]3873.71151276154[/C][C]4949.02856917816[/C][/ROW]
[ROW][C]137[/C][C]4411.37004096985[/C][C]3866.43624430976[/C][C]4956.30383762994[/C][/ROW]
[ROW][C]138[/C][C]4411.37004096985[/C][C]3859.25683470719[/C][C]4963.48324723251[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302838&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302838&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Extrapolation Forecasts of Exponential Smoothing
tForecast95% Lower Bound95% Upper Bound
1274411.370040969853944.260476873954878.47960506575
1284411.370040969853935.904485269854886.83559666985
1294411.370040969853927.69282996614895.0472519736
1304411.370040969853919.618280188444903.12180175126
1314411.370040969853911.674189457294911.06589248242
1324411.370040969853903.85443154874918.885650391
1334411.370040969853896.153345206444926.58673673327
1344411.370040969853888.565686186324934.17439575338
1354411.370040969853881.086585478474941.65349646123
1364411.370040969853873.711512761544949.02856917816
1374411.370040969853866.436244309764956.30383762994
1384411.370040969853859.256834707194963.48324723251



Parameters (Session):
par1 = 12 ; par2 = Single ; par3 = additive ; par4 = 12 ;
Parameters (R input):
par1 = 12 ; par2 = Single ; par3 = additive ; par4 = 12 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
par4 <- as.numeric(par4)
if (par2 == 'Single') K <- 1
if (par2 == 'Double') K <- 2
if (par2 == 'Triple') K <- par1
nx <- length(x)
nxmK <- nx - K
x <- ts(x, frequency = par1)
if (par2 == 'Single') fit <- HoltWinters(x, gamma=F, beta=F)
if (par2 == 'Double') fit <- HoltWinters(x, gamma=F)
if (par2 == 'Triple') fit <- HoltWinters(x, seasonal=par3)
fit
myresid <- x - fit$fitted[,'xhat']
bitmap(file='test1.png')
op <- par(mfrow=c(2,1))
plot(fit,ylab='Observed (black) / Fitted (red)',main='Interpolation Fit of Exponential Smoothing')
plot(myresid,ylab='Residuals',main='Interpolation Prediction Errors')
par(op)
dev.off()
bitmap(file='test2.png')
p <- predict(fit, par4, prediction.interval=TRUE)
np <- length(p[,1])
plot(fit,p,ylab='Observed (black) / Fitted (red)',main='Extrapolation Fit of Exponential Smoothing')
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(myresid),lag.max = nx/2,main='Residual ACF')
spectrum(myresid,main='Residals Periodogram')
cpgram(myresid,main='Residal Cumulative Periodogram')
qqnorm(myresid,main='Residual Normal QQ Plot')
qqline(myresid)
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimated Parameters of Exponential Smoothing',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'Value',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,fit$alpha)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,fit$beta)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'gamma',header=TRUE)
a<-table.element(a,fit$gamma)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Interpolation Forecasts of Exponential Smoothing',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Fitted',header=TRUE)
a<-table.element(a,'Residuals',header=TRUE)
a<-table.row.end(a)
for (i in 1:nxmK) {
a<-table.row.start(a)
a<-table.element(a,i+K,header=TRUE)
a<-table.element(a,x[i+K])
a<-table.element(a,fit$fitted[i,'xhat'])
a<-table.element(a,myresid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Extrapolation Forecasts of Exponential Smoothing',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Forecast',header=TRUE)
a<-table.element(a,'95% Lower Bound',header=TRUE)
a<-table.element(a,'95% Upper Bound',header=TRUE)
a<-table.row.end(a)
for (i in 1:np) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,p[i,'fit'])
a<-table.element(a,p[i,'lwr'])
a<-table.element(a,p[i,'upr'])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')