Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_decompose.wasp
Title produced by softwareClassical Decomposition
Date of computationFri, 23 Dec 2016 10:43:33 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/23/t14824862747r0z93og6x5kpdf.htm/, Retrieved Fri, 01 Nov 2024 03:46:05 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=302823, Retrieved Fri, 01 Nov 2024 03:46:05 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact84
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Classical Decomposition] [classical decompo...] [2016-12-23 09:43:33] [bd7223969ac5b08f41438741a34686d6] [Current]
Feedback Forum

Post a new message
Dataseries X:
99
102
100
98
98
99
100
99
100
99
101
104
100
101
99
100
102
99
99
100
99
105
100
101
100
101
99
100
100
100
100
101
101
100
99
101
101
101
100
100
100
101
98
99
100
101
100
100
99
100
99
101
98
100
99
103
105
100
101
100
99
100
99
105
99
102
100
100
99
102
99
101
100
100
99
101
100
100
98
99
99
98
105
98
100
101
101
100
101
102
100
100
99
102
102
98
100
101
98
99
99
101
100
99
99
101
99




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302823&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=302823&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302823&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
199NANA-0.356709NA
2102NANA0.393291NA
3100NANA-0.9765NA
498NANA0.518291NA
598NANA-0.356709NA
699NANA0.283172NA
710098.992299.9583-0.9660841.00775
89999.867299.9583-0.0910838-0.86725
910099.924599.8750.04954120.0754588
1099100.59699.91670.67975-1.59642
11101100.836100.1670.6693330.164
12104100.487100.3330.1537083.51296
1310099.935100.292-0.3567090.0650422
14101100.685100.2920.3932910.315042
159999.3152100.292-0.9765-0.315166
16100101.018100.50.518291-1.01829
17102100.352100.708-0.3567091.64838
1899100.825100.5420.283172-1.82484
199999.4506100.417-0.966084-0.450583
20100100.326100.417-0.0910838-0.325583
2199100.466100.4170.0495412-1.46621
22105101.096100.4170.679753.90358
23100101.003100.3330.669333-1.00267
24101100.445100.2920.1537080.554625
25100100.018100.375-0.356709-0.0182912
26101100.852100.4580.3932910.148375
279999.6068100.583-0.9765-0.606833
28100100.977100.4580.518291-0.976625
2910099.8516100.208-0.3567090.148375
30100100.45100.1670.283172-0.449839
3110099.2422100.208-0.9660840.75775
32101100.159100.25-0.09108380.841084
33101100.341100.2920.04954120.658792
34100101.013100.3330.67975-1.01308
3599101.003100.3330.669333-2.00267
36101100.529100.3750.1537080.471292
3710199.9766100.333-0.3567091.02338
38101100.56100.1670.3932910.440042
3910099.0652100.042-0.97650.934834
40100100.56100.0420.518291-0.559958
4110099.7683100.125-0.3567090.231709
42101100.408100.1250.2831720.591828
439899.0339100-0.966084-1.03392
449999.783999.875-0.0910838-0.783916
4510099.841299.79170.04954120.158792
46101100.47199.79170.679750.528584
47100100.41999.750.669333-0.419333
4810099.778799.6250.1537080.221292
499999.268399.625-0.356709-0.268291
50100100.22799.83330.393291-0.226625
519999.2318100.208-0.9765-0.231833
52101100.893100.3750.5182910.106709
5398100.018100.375-0.356709-2.01829
54100100.7100.4170.283172-0.699839
559999.4506100.417-0.966084-0.450583
56103100.326100.417-0.09108382.67442
57105100.466100.4170.04954124.53379
58100101.263100.5830.67975-1.26308
59101101.461100.7920.669333-0.461
60100101.07100.9170.153708-1.07037
6199100.685101.042-0.356709-1.68496
62100101.352100.9580.393291-1.35162
639999.6068100.583-0.9765-0.606833
64105100.935100.4170.5182914.06504
6599100.06100.417-0.356709-1.05996
66102100.658100.3750.2831721.34183
6710099.4922100.458-0.9660840.50775
68100100.409100.5-0.0910838-0.408916
6999100.55100.50.0495412-1.54954
70102101.013100.3330.679750.986917
7199100.878100.2080.669333-1.87767
72101100.32100.1670.1537080.679625
7310099.6433100-0.3567090.356709
74100100.26899.8750.393291-0.268291
759998.856899.8333-0.97650.143167
76101100.18599.66670.5182910.815042
7710099.393399.75-0.3567090.606709
78100100.15899.8750.283172-0.158172
799898.783999.75-0.966084-0.783916
809999.700699.7917-0.0910838-0.700583
819999.966299.91670.0495412-0.966208
8298100.63899.95830.67975-2.63808
83105100.62899.95830.6693334.37233
8498100.237100.0830.153708-2.23704
8510099.8933100.25-0.3567090.106709
86101100.768100.3750.3932910.231709
8710199.4402100.417-0.97651.55983
88100101.102100.5830.518291-1.10162
89101100.268100.625-0.3567090.731709
90102100.783100.50.2831721.21683
9110099.5339100.5-0.9660840.466084
92100100.409100.5-0.0910838-0.408916
9399100.425100.3750.0495412-1.42454
94102100.888100.2080.679751.11192
95102100.753100.0830.6693331.24733
9698100.11299.95830.153708-2.11204
9710099.5699.9167-0.3567090.440042
98101100.26899.8750.3932910.731709
999898.856899.8333-0.9765-0.856833
10099100.3199.79170.518291-1.30996
1019999.268399.625-0.356709-0.268291
102101NANA0.283172NA
103100NANA-0.966084NA
10499NANA-0.0910838NA
10599NANA0.0495412NA
106101NANA0.67975NA
10799NANA0.669333NA

\begin{tabular}{lllllllll}
\hline
Classical Decomposition by Moving Averages \tabularnewline
t & Observations & Fit & Trend & Seasonal & Random \tabularnewline
1 & 99 & NA & NA & -0.356709 & NA \tabularnewline
2 & 102 & NA & NA & 0.393291 & NA \tabularnewline
3 & 100 & NA & NA & -0.9765 & NA \tabularnewline
4 & 98 & NA & NA & 0.518291 & NA \tabularnewline
5 & 98 & NA & NA & -0.356709 & NA \tabularnewline
6 & 99 & NA & NA & 0.283172 & NA \tabularnewline
7 & 100 & 98.9922 & 99.9583 & -0.966084 & 1.00775 \tabularnewline
8 & 99 & 99.8672 & 99.9583 & -0.0910838 & -0.86725 \tabularnewline
9 & 100 & 99.9245 & 99.875 & 0.0495412 & 0.0754588 \tabularnewline
10 & 99 & 100.596 & 99.9167 & 0.67975 & -1.59642 \tabularnewline
11 & 101 & 100.836 & 100.167 & 0.669333 & 0.164 \tabularnewline
12 & 104 & 100.487 & 100.333 & 0.153708 & 3.51296 \tabularnewline
13 & 100 & 99.935 & 100.292 & -0.356709 & 0.0650422 \tabularnewline
14 & 101 & 100.685 & 100.292 & 0.393291 & 0.315042 \tabularnewline
15 & 99 & 99.3152 & 100.292 & -0.9765 & -0.315166 \tabularnewline
16 & 100 & 101.018 & 100.5 & 0.518291 & -1.01829 \tabularnewline
17 & 102 & 100.352 & 100.708 & -0.356709 & 1.64838 \tabularnewline
18 & 99 & 100.825 & 100.542 & 0.283172 & -1.82484 \tabularnewline
19 & 99 & 99.4506 & 100.417 & -0.966084 & -0.450583 \tabularnewline
20 & 100 & 100.326 & 100.417 & -0.0910838 & -0.325583 \tabularnewline
21 & 99 & 100.466 & 100.417 & 0.0495412 & -1.46621 \tabularnewline
22 & 105 & 101.096 & 100.417 & 0.67975 & 3.90358 \tabularnewline
23 & 100 & 101.003 & 100.333 & 0.669333 & -1.00267 \tabularnewline
24 & 101 & 100.445 & 100.292 & 0.153708 & 0.554625 \tabularnewline
25 & 100 & 100.018 & 100.375 & -0.356709 & -0.0182912 \tabularnewline
26 & 101 & 100.852 & 100.458 & 0.393291 & 0.148375 \tabularnewline
27 & 99 & 99.6068 & 100.583 & -0.9765 & -0.606833 \tabularnewline
28 & 100 & 100.977 & 100.458 & 0.518291 & -0.976625 \tabularnewline
29 & 100 & 99.8516 & 100.208 & -0.356709 & 0.148375 \tabularnewline
30 & 100 & 100.45 & 100.167 & 0.283172 & -0.449839 \tabularnewline
31 & 100 & 99.2422 & 100.208 & -0.966084 & 0.75775 \tabularnewline
32 & 101 & 100.159 & 100.25 & -0.0910838 & 0.841084 \tabularnewline
33 & 101 & 100.341 & 100.292 & 0.0495412 & 0.658792 \tabularnewline
34 & 100 & 101.013 & 100.333 & 0.67975 & -1.01308 \tabularnewline
35 & 99 & 101.003 & 100.333 & 0.669333 & -2.00267 \tabularnewline
36 & 101 & 100.529 & 100.375 & 0.153708 & 0.471292 \tabularnewline
37 & 101 & 99.9766 & 100.333 & -0.356709 & 1.02338 \tabularnewline
38 & 101 & 100.56 & 100.167 & 0.393291 & 0.440042 \tabularnewline
39 & 100 & 99.0652 & 100.042 & -0.9765 & 0.934834 \tabularnewline
40 & 100 & 100.56 & 100.042 & 0.518291 & -0.559958 \tabularnewline
41 & 100 & 99.7683 & 100.125 & -0.356709 & 0.231709 \tabularnewline
42 & 101 & 100.408 & 100.125 & 0.283172 & 0.591828 \tabularnewline
43 & 98 & 99.0339 & 100 & -0.966084 & -1.03392 \tabularnewline
44 & 99 & 99.7839 & 99.875 & -0.0910838 & -0.783916 \tabularnewline
45 & 100 & 99.8412 & 99.7917 & 0.0495412 & 0.158792 \tabularnewline
46 & 101 & 100.471 & 99.7917 & 0.67975 & 0.528584 \tabularnewline
47 & 100 & 100.419 & 99.75 & 0.669333 & -0.419333 \tabularnewline
48 & 100 & 99.7787 & 99.625 & 0.153708 & 0.221292 \tabularnewline
49 & 99 & 99.2683 & 99.625 & -0.356709 & -0.268291 \tabularnewline
50 & 100 & 100.227 & 99.8333 & 0.393291 & -0.226625 \tabularnewline
51 & 99 & 99.2318 & 100.208 & -0.9765 & -0.231833 \tabularnewline
52 & 101 & 100.893 & 100.375 & 0.518291 & 0.106709 \tabularnewline
53 & 98 & 100.018 & 100.375 & -0.356709 & -2.01829 \tabularnewline
54 & 100 & 100.7 & 100.417 & 0.283172 & -0.699839 \tabularnewline
55 & 99 & 99.4506 & 100.417 & -0.966084 & -0.450583 \tabularnewline
56 & 103 & 100.326 & 100.417 & -0.0910838 & 2.67442 \tabularnewline
57 & 105 & 100.466 & 100.417 & 0.0495412 & 4.53379 \tabularnewline
58 & 100 & 101.263 & 100.583 & 0.67975 & -1.26308 \tabularnewline
59 & 101 & 101.461 & 100.792 & 0.669333 & -0.461 \tabularnewline
60 & 100 & 101.07 & 100.917 & 0.153708 & -1.07037 \tabularnewline
61 & 99 & 100.685 & 101.042 & -0.356709 & -1.68496 \tabularnewline
62 & 100 & 101.352 & 100.958 & 0.393291 & -1.35162 \tabularnewline
63 & 99 & 99.6068 & 100.583 & -0.9765 & -0.606833 \tabularnewline
64 & 105 & 100.935 & 100.417 & 0.518291 & 4.06504 \tabularnewline
65 & 99 & 100.06 & 100.417 & -0.356709 & -1.05996 \tabularnewline
66 & 102 & 100.658 & 100.375 & 0.283172 & 1.34183 \tabularnewline
67 & 100 & 99.4922 & 100.458 & -0.966084 & 0.50775 \tabularnewline
68 & 100 & 100.409 & 100.5 & -0.0910838 & -0.408916 \tabularnewline
69 & 99 & 100.55 & 100.5 & 0.0495412 & -1.54954 \tabularnewline
70 & 102 & 101.013 & 100.333 & 0.67975 & 0.986917 \tabularnewline
71 & 99 & 100.878 & 100.208 & 0.669333 & -1.87767 \tabularnewline
72 & 101 & 100.32 & 100.167 & 0.153708 & 0.679625 \tabularnewline
73 & 100 & 99.6433 & 100 & -0.356709 & 0.356709 \tabularnewline
74 & 100 & 100.268 & 99.875 & 0.393291 & -0.268291 \tabularnewline
75 & 99 & 98.8568 & 99.8333 & -0.9765 & 0.143167 \tabularnewline
76 & 101 & 100.185 & 99.6667 & 0.518291 & 0.815042 \tabularnewline
77 & 100 & 99.3933 & 99.75 & -0.356709 & 0.606709 \tabularnewline
78 & 100 & 100.158 & 99.875 & 0.283172 & -0.158172 \tabularnewline
79 & 98 & 98.7839 & 99.75 & -0.966084 & -0.783916 \tabularnewline
80 & 99 & 99.7006 & 99.7917 & -0.0910838 & -0.700583 \tabularnewline
81 & 99 & 99.9662 & 99.9167 & 0.0495412 & -0.966208 \tabularnewline
82 & 98 & 100.638 & 99.9583 & 0.67975 & -2.63808 \tabularnewline
83 & 105 & 100.628 & 99.9583 & 0.669333 & 4.37233 \tabularnewline
84 & 98 & 100.237 & 100.083 & 0.153708 & -2.23704 \tabularnewline
85 & 100 & 99.8933 & 100.25 & -0.356709 & 0.106709 \tabularnewline
86 & 101 & 100.768 & 100.375 & 0.393291 & 0.231709 \tabularnewline
87 & 101 & 99.4402 & 100.417 & -0.9765 & 1.55983 \tabularnewline
88 & 100 & 101.102 & 100.583 & 0.518291 & -1.10162 \tabularnewline
89 & 101 & 100.268 & 100.625 & -0.356709 & 0.731709 \tabularnewline
90 & 102 & 100.783 & 100.5 & 0.283172 & 1.21683 \tabularnewline
91 & 100 & 99.5339 & 100.5 & -0.966084 & 0.466084 \tabularnewline
92 & 100 & 100.409 & 100.5 & -0.0910838 & -0.408916 \tabularnewline
93 & 99 & 100.425 & 100.375 & 0.0495412 & -1.42454 \tabularnewline
94 & 102 & 100.888 & 100.208 & 0.67975 & 1.11192 \tabularnewline
95 & 102 & 100.753 & 100.083 & 0.669333 & 1.24733 \tabularnewline
96 & 98 & 100.112 & 99.9583 & 0.153708 & -2.11204 \tabularnewline
97 & 100 & 99.56 & 99.9167 & -0.356709 & 0.440042 \tabularnewline
98 & 101 & 100.268 & 99.875 & 0.393291 & 0.731709 \tabularnewline
99 & 98 & 98.8568 & 99.8333 & -0.9765 & -0.856833 \tabularnewline
100 & 99 & 100.31 & 99.7917 & 0.518291 & -1.30996 \tabularnewline
101 & 99 & 99.2683 & 99.625 & -0.356709 & -0.268291 \tabularnewline
102 & 101 & NA & NA & 0.283172 & NA \tabularnewline
103 & 100 & NA & NA & -0.966084 & NA \tabularnewline
104 & 99 & NA & NA & -0.0910838 & NA \tabularnewline
105 & 99 & NA & NA & 0.0495412 & NA \tabularnewline
106 & 101 & NA & NA & 0.67975 & NA \tabularnewline
107 & 99 & NA & NA & 0.669333 & NA \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302823&T=1

[TABLE]
[ROW][C]Classical Decomposition by Moving Averages[/C][/ROW]
[ROW][C]t[/C][C]Observations[/C][C]Fit[/C][C]Trend[/C][C]Seasonal[/C][C]Random[/C][/ROW]
[ROW][C]1[/C][C]99[/C][C]NA[/C][C]NA[/C][C]-0.356709[/C][C]NA[/C][/ROW]
[ROW][C]2[/C][C]102[/C][C]NA[/C][C]NA[/C][C]0.393291[/C][C]NA[/C][/ROW]
[ROW][C]3[/C][C]100[/C][C]NA[/C][C]NA[/C][C]-0.9765[/C][C]NA[/C][/ROW]
[ROW][C]4[/C][C]98[/C][C]NA[/C][C]NA[/C][C]0.518291[/C][C]NA[/C][/ROW]
[ROW][C]5[/C][C]98[/C][C]NA[/C][C]NA[/C][C]-0.356709[/C][C]NA[/C][/ROW]
[ROW][C]6[/C][C]99[/C][C]NA[/C][C]NA[/C][C]0.283172[/C][C]NA[/C][/ROW]
[ROW][C]7[/C][C]100[/C][C]98.9922[/C][C]99.9583[/C][C]-0.966084[/C][C]1.00775[/C][/ROW]
[ROW][C]8[/C][C]99[/C][C]99.8672[/C][C]99.9583[/C][C]-0.0910838[/C][C]-0.86725[/C][/ROW]
[ROW][C]9[/C][C]100[/C][C]99.9245[/C][C]99.875[/C][C]0.0495412[/C][C]0.0754588[/C][/ROW]
[ROW][C]10[/C][C]99[/C][C]100.596[/C][C]99.9167[/C][C]0.67975[/C][C]-1.59642[/C][/ROW]
[ROW][C]11[/C][C]101[/C][C]100.836[/C][C]100.167[/C][C]0.669333[/C][C]0.164[/C][/ROW]
[ROW][C]12[/C][C]104[/C][C]100.487[/C][C]100.333[/C][C]0.153708[/C][C]3.51296[/C][/ROW]
[ROW][C]13[/C][C]100[/C][C]99.935[/C][C]100.292[/C][C]-0.356709[/C][C]0.0650422[/C][/ROW]
[ROW][C]14[/C][C]101[/C][C]100.685[/C][C]100.292[/C][C]0.393291[/C][C]0.315042[/C][/ROW]
[ROW][C]15[/C][C]99[/C][C]99.3152[/C][C]100.292[/C][C]-0.9765[/C][C]-0.315166[/C][/ROW]
[ROW][C]16[/C][C]100[/C][C]101.018[/C][C]100.5[/C][C]0.518291[/C][C]-1.01829[/C][/ROW]
[ROW][C]17[/C][C]102[/C][C]100.352[/C][C]100.708[/C][C]-0.356709[/C][C]1.64838[/C][/ROW]
[ROW][C]18[/C][C]99[/C][C]100.825[/C][C]100.542[/C][C]0.283172[/C][C]-1.82484[/C][/ROW]
[ROW][C]19[/C][C]99[/C][C]99.4506[/C][C]100.417[/C][C]-0.966084[/C][C]-0.450583[/C][/ROW]
[ROW][C]20[/C][C]100[/C][C]100.326[/C][C]100.417[/C][C]-0.0910838[/C][C]-0.325583[/C][/ROW]
[ROW][C]21[/C][C]99[/C][C]100.466[/C][C]100.417[/C][C]0.0495412[/C][C]-1.46621[/C][/ROW]
[ROW][C]22[/C][C]105[/C][C]101.096[/C][C]100.417[/C][C]0.67975[/C][C]3.90358[/C][/ROW]
[ROW][C]23[/C][C]100[/C][C]101.003[/C][C]100.333[/C][C]0.669333[/C][C]-1.00267[/C][/ROW]
[ROW][C]24[/C][C]101[/C][C]100.445[/C][C]100.292[/C][C]0.153708[/C][C]0.554625[/C][/ROW]
[ROW][C]25[/C][C]100[/C][C]100.018[/C][C]100.375[/C][C]-0.356709[/C][C]-0.0182912[/C][/ROW]
[ROW][C]26[/C][C]101[/C][C]100.852[/C][C]100.458[/C][C]0.393291[/C][C]0.148375[/C][/ROW]
[ROW][C]27[/C][C]99[/C][C]99.6068[/C][C]100.583[/C][C]-0.9765[/C][C]-0.606833[/C][/ROW]
[ROW][C]28[/C][C]100[/C][C]100.977[/C][C]100.458[/C][C]0.518291[/C][C]-0.976625[/C][/ROW]
[ROW][C]29[/C][C]100[/C][C]99.8516[/C][C]100.208[/C][C]-0.356709[/C][C]0.148375[/C][/ROW]
[ROW][C]30[/C][C]100[/C][C]100.45[/C][C]100.167[/C][C]0.283172[/C][C]-0.449839[/C][/ROW]
[ROW][C]31[/C][C]100[/C][C]99.2422[/C][C]100.208[/C][C]-0.966084[/C][C]0.75775[/C][/ROW]
[ROW][C]32[/C][C]101[/C][C]100.159[/C][C]100.25[/C][C]-0.0910838[/C][C]0.841084[/C][/ROW]
[ROW][C]33[/C][C]101[/C][C]100.341[/C][C]100.292[/C][C]0.0495412[/C][C]0.658792[/C][/ROW]
[ROW][C]34[/C][C]100[/C][C]101.013[/C][C]100.333[/C][C]0.67975[/C][C]-1.01308[/C][/ROW]
[ROW][C]35[/C][C]99[/C][C]101.003[/C][C]100.333[/C][C]0.669333[/C][C]-2.00267[/C][/ROW]
[ROW][C]36[/C][C]101[/C][C]100.529[/C][C]100.375[/C][C]0.153708[/C][C]0.471292[/C][/ROW]
[ROW][C]37[/C][C]101[/C][C]99.9766[/C][C]100.333[/C][C]-0.356709[/C][C]1.02338[/C][/ROW]
[ROW][C]38[/C][C]101[/C][C]100.56[/C][C]100.167[/C][C]0.393291[/C][C]0.440042[/C][/ROW]
[ROW][C]39[/C][C]100[/C][C]99.0652[/C][C]100.042[/C][C]-0.9765[/C][C]0.934834[/C][/ROW]
[ROW][C]40[/C][C]100[/C][C]100.56[/C][C]100.042[/C][C]0.518291[/C][C]-0.559958[/C][/ROW]
[ROW][C]41[/C][C]100[/C][C]99.7683[/C][C]100.125[/C][C]-0.356709[/C][C]0.231709[/C][/ROW]
[ROW][C]42[/C][C]101[/C][C]100.408[/C][C]100.125[/C][C]0.283172[/C][C]0.591828[/C][/ROW]
[ROW][C]43[/C][C]98[/C][C]99.0339[/C][C]100[/C][C]-0.966084[/C][C]-1.03392[/C][/ROW]
[ROW][C]44[/C][C]99[/C][C]99.7839[/C][C]99.875[/C][C]-0.0910838[/C][C]-0.783916[/C][/ROW]
[ROW][C]45[/C][C]100[/C][C]99.8412[/C][C]99.7917[/C][C]0.0495412[/C][C]0.158792[/C][/ROW]
[ROW][C]46[/C][C]101[/C][C]100.471[/C][C]99.7917[/C][C]0.67975[/C][C]0.528584[/C][/ROW]
[ROW][C]47[/C][C]100[/C][C]100.419[/C][C]99.75[/C][C]0.669333[/C][C]-0.419333[/C][/ROW]
[ROW][C]48[/C][C]100[/C][C]99.7787[/C][C]99.625[/C][C]0.153708[/C][C]0.221292[/C][/ROW]
[ROW][C]49[/C][C]99[/C][C]99.2683[/C][C]99.625[/C][C]-0.356709[/C][C]-0.268291[/C][/ROW]
[ROW][C]50[/C][C]100[/C][C]100.227[/C][C]99.8333[/C][C]0.393291[/C][C]-0.226625[/C][/ROW]
[ROW][C]51[/C][C]99[/C][C]99.2318[/C][C]100.208[/C][C]-0.9765[/C][C]-0.231833[/C][/ROW]
[ROW][C]52[/C][C]101[/C][C]100.893[/C][C]100.375[/C][C]0.518291[/C][C]0.106709[/C][/ROW]
[ROW][C]53[/C][C]98[/C][C]100.018[/C][C]100.375[/C][C]-0.356709[/C][C]-2.01829[/C][/ROW]
[ROW][C]54[/C][C]100[/C][C]100.7[/C][C]100.417[/C][C]0.283172[/C][C]-0.699839[/C][/ROW]
[ROW][C]55[/C][C]99[/C][C]99.4506[/C][C]100.417[/C][C]-0.966084[/C][C]-0.450583[/C][/ROW]
[ROW][C]56[/C][C]103[/C][C]100.326[/C][C]100.417[/C][C]-0.0910838[/C][C]2.67442[/C][/ROW]
[ROW][C]57[/C][C]105[/C][C]100.466[/C][C]100.417[/C][C]0.0495412[/C][C]4.53379[/C][/ROW]
[ROW][C]58[/C][C]100[/C][C]101.263[/C][C]100.583[/C][C]0.67975[/C][C]-1.26308[/C][/ROW]
[ROW][C]59[/C][C]101[/C][C]101.461[/C][C]100.792[/C][C]0.669333[/C][C]-0.461[/C][/ROW]
[ROW][C]60[/C][C]100[/C][C]101.07[/C][C]100.917[/C][C]0.153708[/C][C]-1.07037[/C][/ROW]
[ROW][C]61[/C][C]99[/C][C]100.685[/C][C]101.042[/C][C]-0.356709[/C][C]-1.68496[/C][/ROW]
[ROW][C]62[/C][C]100[/C][C]101.352[/C][C]100.958[/C][C]0.393291[/C][C]-1.35162[/C][/ROW]
[ROW][C]63[/C][C]99[/C][C]99.6068[/C][C]100.583[/C][C]-0.9765[/C][C]-0.606833[/C][/ROW]
[ROW][C]64[/C][C]105[/C][C]100.935[/C][C]100.417[/C][C]0.518291[/C][C]4.06504[/C][/ROW]
[ROW][C]65[/C][C]99[/C][C]100.06[/C][C]100.417[/C][C]-0.356709[/C][C]-1.05996[/C][/ROW]
[ROW][C]66[/C][C]102[/C][C]100.658[/C][C]100.375[/C][C]0.283172[/C][C]1.34183[/C][/ROW]
[ROW][C]67[/C][C]100[/C][C]99.4922[/C][C]100.458[/C][C]-0.966084[/C][C]0.50775[/C][/ROW]
[ROW][C]68[/C][C]100[/C][C]100.409[/C][C]100.5[/C][C]-0.0910838[/C][C]-0.408916[/C][/ROW]
[ROW][C]69[/C][C]99[/C][C]100.55[/C][C]100.5[/C][C]0.0495412[/C][C]-1.54954[/C][/ROW]
[ROW][C]70[/C][C]102[/C][C]101.013[/C][C]100.333[/C][C]0.67975[/C][C]0.986917[/C][/ROW]
[ROW][C]71[/C][C]99[/C][C]100.878[/C][C]100.208[/C][C]0.669333[/C][C]-1.87767[/C][/ROW]
[ROW][C]72[/C][C]101[/C][C]100.32[/C][C]100.167[/C][C]0.153708[/C][C]0.679625[/C][/ROW]
[ROW][C]73[/C][C]100[/C][C]99.6433[/C][C]100[/C][C]-0.356709[/C][C]0.356709[/C][/ROW]
[ROW][C]74[/C][C]100[/C][C]100.268[/C][C]99.875[/C][C]0.393291[/C][C]-0.268291[/C][/ROW]
[ROW][C]75[/C][C]99[/C][C]98.8568[/C][C]99.8333[/C][C]-0.9765[/C][C]0.143167[/C][/ROW]
[ROW][C]76[/C][C]101[/C][C]100.185[/C][C]99.6667[/C][C]0.518291[/C][C]0.815042[/C][/ROW]
[ROW][C]77[/C][C]100[/C][C]99.3933[/C][C]99.75[/C][C]-0.356709[/C][C]0.606709[/C][/ROW]
[ROW][C]78[/C][C]100[/C][C]100.158[/C][C]99.875[/C][C]0.283172[/C][C]-0.158172[/C][/ROW]
[ROW][C]79[/C][C]98[/C][C]98.7839[/C][C]99.75[/C][C]-0.966084[/C][C]-0.783916[/C][/ROW]
[ROW][C]80[/C][C]99[/C][C]99.7006[/C][C]99.7917[/C][C]-0.0910838[/C][C]-0.700583[/C][/ROW]
[ROW][C]81[/C][C]99[/C][C]99.9662[/C][C]99.9167[/C][C]0.0495412[/C][C]-0.966208[/C][/ROW]
[ROW][C]82[/C][C]98[/C][C]100.638[/C][C]99.9583[/C][C]0.67975[/C][C]-2.63808[/C][/ROW]
[ROW][C]83[/C][C]105[/C][C]100.628[/C][C]99.9583[/C][C]0.669333[/C][C]4.37233[/C][/ROW]
[ROW][C]84[/C][C]98[/C][C]100.237[/C][C]100.083[/C][C]0.153708[/C][C]-2.23704[/C][/ROW]
[ROW][C]85[/C][C]100[/C][C]99.8933[/C][C]100.25[/C][C]-0.356709[/C][C]0.106709[/C][/ROW]
[ROW][C]86[/C][C]101[/C][C]100.768[/C][C]100.375[/C][C]0.393291[/C][C]0.231709[/C][/ROW]
[ROW][C]87[/C][C]101[/C][C]99.4402[/C][C]100.417[/C][C]-0.9765[/C][C]1.55983[/C][/ROW]
[ROW][C]88[/C][C]100[/C][C]101.102[/C][C]100.583[/C][C]0.518291[/C][C]-1.10162[/C][/ROW]
[ROW][C]89[/C][C]101[/C][C]100.268[/C][C]100.625[/C][C]-0.356709[/C][C]0.731709[/C][/ROW]
[ROW][C]90[/C][C]102[/C][C]100.783[/C][C]100.5[/C][C]0.283172[/C][C]1.21683[/C][/ROW]
[ROW][C]91[/C][C]100[/C][C]99.5339[/C][C]100.5[/C][C]-0.966084[/C][C]0.466084[/C][/ROW]
[ROW][C]92[/C][C]100[/C][C]100.409[/C][C]100.5[/C][C]-0.0910838[/C][C]-0.408916[/C][/ROW]
[ROW][C]93[/C][C]99[/C][C]100.425[/C][C]100.375[/C][C]0.0495412[/C][C]-1.42454[/C][/ROW]
[ROW][C]94[/C][C]102[/C][C]100.888[/C][C]100.208[/C][C]0.67975[/C][C]1.11192[/C][/ROW]
[ROW][C]95[/C][C]102[/C][C]100.753[/C][C]100.083[/C][C]0.669333[/C][C]1.24733[/C][/ROW]
[ROW][C]96[/C][C]98[/C][C]100.112[/C][C]99.9583[/C][C]0.153708[/C][C]-2.11204[/C][/ROW]
[ROW][C]97[/C][C]100[/C][C]99.56[/C][C]99.9167[/C][C]-0.356709[/C][C]0.440042[/C][/ROW]
[ROW][C]98[/C][C]101[/C][C]100.268[/C][C]99.875[/C][C]0.393291[/C][C]0.731709[/C][/ROW]
[ROW][C]99[/C][C]98[/C][C]98.8568[/C][C]99.8333[/C][C]-0.9765[/C][C]-0.856833[/C][/ROW]
[ROW][C]100[/C][C]99[/C][C]100.31[/C][C]99.7917[/C][C]0.518291[/C][C]-1.30996[/C][/ROW]
[ROW][C]101[/C][C]99[/C][C]99.2683[/C][C]99.625[/C][C]-0.356709[/C][C]-0.268291[/C][/ROW]
[ROW][C]102[/C][C]101[/C][C]NA[/C][C]NA[/C][C]0.283172[/C][C]NA[/C][/ROW]
[ROW][C]103[/C][C]100[/C][C]NA[/C][C]NA[/C][C]-0.966084[/C][C]NA[/C][/ROW]
[ROW][C]104[/C][C]99[/C][C]NA[/C][C]NA[/C][C]-0.0910838[/C][C]NA[/C][/ROW]
[ROW][C]105[/C][C]99[/C][C]NA[/C][C]NA[/C][C]0.0495412[/C][C]NA[/C][/ROW]
[ROW][C]106[/C][C]101[/C][C]NA[/C][C]NA[/C][C]0.67975[/C][C]NA[/C][/ROW]
[ROW][C]107[/C][C]99[/C][C]NA[/C][C]NA[/C][C]0.669333[/C][C]NA[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302823&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302823&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
199NANA-0.356709NA
2102NANA0.393291NA
3100NANA-0.9765NA
498NANA0.518291NA
598NANA-0.356709NA
699NANA0.283172NA
710098.992299.9583-0.9660841.00775
89999.867299.9583-0.0910838-0.86725
910099.924599.8750.04954120.0754588
1099100.59699.91670.67975-1.59642
11101100.836100.1670.6693330.164
12104100.487100.3330.1537083.51296
1310099.935100.292-0.3567090.0650422
14101100.685100.2920.3932910.315042
159999.3152100.292-0.9765-0.315166
16100101.018100.50.518291-1.01829
17102100.352100.708-0.3567091.64838
1899100.825100.5420.283172-1.82484
199999.4506100.417-0.966084-0.450583
20100100.326100.417-0.0910838-0.325583
2199100.466100.4170.0495412-1.46621
22105101.096100.4170.679753.90358
23100101.003100.3330.669333-1.00267
24101100.445100.2920.1537080.554625
25100100.018100.375-0.356709-0.0182912
26101100.852100.4580.3932910.148375
279999.6068100.583-0.9765-0.606833
28100100.977100.4580.518291-0.976625
2910099.8516100.208-0.3567090.148375
30100100.45100.1670.283172-0.449839
3110099.2422100.208-0.9660840.75775
32101100.159100.25-0.09108380.841084
33101100.341100.2920.04954120.658792
34100101.013100.3330.67975-1.01308
3599101.003100.3330.669333-2.00267
36101100.529100.3750.1537080.471292
3710199.9766100.333-0.3567091.02338
38101100.56100.1670.3932910.440042
3910099.0652100.042-0.97650.934834
40100100.56100.0420.518291-0.559958
4110099.7683100.125-0.3567090.231709
42101100.408100.1250.2831720.591828
439899.0339100-0.966084-1.03392
449999.783999.875-0.0910838-0.783916
4510099.841299.79170.04954120.158792
46101100.47199.79170.679750.528584
47100100.41999.750.669333-0.419333
4810099.778799.6250.1537080.221292
499999.268399.625-0.356709-0.268291
50100100.22799.83330.393291-0.226625
519999.2318100.208-0.9765-0.231833
52101100.893100.3750.5182910.106709
5398100.018100.375-0.356709-2.01829
54100100.7100.4170.283172-0.699839
559999.4506100.417-0.966084-0.450583
56103100.326100.417-0.09108382.67442
57105100.466100.4170.04954124.53379
58100101.263100.5830.67975-1.26308
59101101.461100.7920.669333-0.461
60100101.07100.9170.153708-1.07037
6199100.685101.042-0.356709-1.68496
62100101.352100.9580.393291-1.35162
639999.6068100.583-0.9765-0.606833
64105100.935100.4170.5182914.06504
6599100.06100.417-0.356709-1.05996
66102100.658100.3750.2831721.34183
6710099.4922100.458-0.9660840.50775
68100100.409100.5-0.0910838-0.408916
6999100.55100.50.0495412-1.54954
70102101.013100.3330.679750.986917
7199100.878100.2080.669333-1.87767
72101100.32100.1670.1537080.679625
7310099.6433100-0.3567090.356709
74100100.26899.8750.393291-0.268291
759998.856899.8333-0.97650.143167
76101100.18599.66670.5182910.815042
7710099.393399.75-0.3567090.606709
78100100.15899.8750.283172-0.158172
799898.783999.75-0.966084-0.783916
809999.700699.7917-0.0910838-0.700583
819999.966299.91670.0495412-0.966208
8298100.63899.95830.67975-2.63808
83105100.62899.95830.6693334.37233
8498100.237100.0830.153708-2.23704
8510099.8933100.25-0.3567090.106709
86101100.768100.3750.3932910.231709
8710199.4402100.417-0.97651.55983
88100101.102100.5830.518291-1.10162
89101100.268100.625-0.3567090.731709
90102100.783100.50.2831721.21683
9110099.5339100.5-0.9660840.466084
92100100.409100.5-0.0910838-0.408916
9399100.425100.3750.0495412-1.42454
94102100.888100.2080.679751.11192
95102100.753100.0830.6693331.24733
9698100.11299.95830.153708-2.11204
9710099.5699.9167-0.3567090.440042
98101100.26899.8750.3932910.731709
999898.856899.8333-0.9765-0.856833
10099100.3199.79170.518291-1.30996
1019999.268399.625-0.356709-0.268291
102101NANA0.283172NA
103100NANA-0.966084NA
10499NANA-0.0910838NA
10599NANA0.0495412NA
106101NANA0.67975NA
10799NANA0.669333NA



Parameters (Session):
par1 = additive ; par2 = 12 ;
Parameters (R input):
par1 = additive ; par2 = 12 ;
R code (references can be found in the software module):
par2 <- as.numeric(par2)
x <- ts(x,freq=par2)
m <- decompose(x,type=par1)
m$figure
bitmap(file='test1.png')
plot(m)
dev.off()
mylagmax <- length(x)/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(as.numeric(m$trend),na.action=na.pass,lag.max = mylagmax,main='Trend')
acf(as.numeric(m$seasonal),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(as.numeric(m$random),na.action=na.pass,lag.max = mylagmax,main='Random')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
spectrum(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
spectrum(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
cpgram(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
cpgram(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Classical Decomposition by Moving Averages',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observations',header=TRUE)
a<-table.element(a,'Fit',header=TRUE)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Random',header=TRUE)
a<-table.row.end(a)
for (i in 1:length(m$trend)) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
if (par1 == 'additive') a<-table.element(a,signif(m$trend[i]+m$seasonal[i],6)) else a<-table.element(a,signif(m$trend[i]*m$seasonal[i],6))
a<-table.element(a,signif(m$trend[i],6))
a<-table.element(a,signif(m$seasonal[i],6))
a<-table.element(a,signif(m$random[i],6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')