Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_structuraltimeseries.wasp
Title produced by softwareStructural Time Series Models
Date of computationFri, 23 Dec 2016 10:31:51 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/23/t14824860038zx3vus29ls1shl.htm/, Retrieved Fri, 01 Nov 2024 03:29:50 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=302821, Retrieved Fri, 01 Nov 2024 03:29:50 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact88
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Structural Time Series Models] [N2071] [2016-12-23 09:31:51] [ca8d18f187365d46258cefbf7e3ea6e7] [Current]
Feedback Forum

Post a new message
Dataseries X:
4998
4480
4824
4814
4602
4499
4594
4600
4507
4606
4503
4801
4564
4142
4818
4408
4496
4587
4656
4799
4652
4638
4650
5185
5208
4477
4976
4670
4842
4713
4804
4996
4574
4841
4688
4766
4994
4514
4766
4642
4806
4645
4784
4979
4530
4942
4651
5150
4987
4532
5046
4783
4958
4815
5055
5152
4773
5147
4866
5311
5172
4734
5011
4957
4968
5049
5305
5067
5001
5252
4903
5408
5395
5150
5460
4968
5021
5118
5175
5420
5121
5450
5286
5693
5353
5017
5577
4987
5129
5249
5100
5382
5039
5364
5193
5846
5259
4809
5297
5034
5243
5150
5296
5596
4954
5250
5009
5113
5237
4575
5026
4842
5019
5063
5261
5327
5054
5269
5019
5315
5274
4899
5216
5029
5110
5093




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time4 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302821&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]4 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=302821&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302821&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R ServerBig Analytics Cloud Computing Center







Structural Time Series Model -- Interpolation
tObservedLevelSlopeSeasonalStand. Residuals
149984998000
244804727.3923408742-18.4019324121399-97.8429992993853-3.3722894094939
348244749.10352990152-15.748447627075453.54660276294750.507891430991537
448144780.13153810052-13.53402389081834.162616249182760.672382724906428
546024704.73767629025-15.6563127408127-60.4081091607256-0.935756315092027
644994606.86912175352-17.9202039942063-50.0654671425261-1.26615652946782
745944590.29809921933-17.88739007928542.743580823762280.0209149671308765
846004592.21732186929-17.435717431907-6.342144897494180.30779755517719
945074555.01502227398-17.8714749590365-33.8962129891561-0.307455929543582
1046064572.59155745894-17.10524708321738.072617874112590.551534818998117
1145034543.87846037047-17.3528288269676-32.5799342832193-0.180615374518146
1248014651.79075052804-14.708995337682759.6491597330011.94899588771539
1345644560.01765009145-9.9423398312466763.966537770068-1.46032982336277
1441424412.72091933338-12.6689203843102-185.768613903925-1.99216747750919
1548184544.37197696887-7.77808194721282190.8665793105242.00805139695843
1644084484.21714185672-9.370683122781-44.2441541283462-0.767975104227716
1744964488.80912771705-9.02971295936013-1.750884120956010.212072346432956
1845874541.43532714502-7.789029469662695.203552155377290.950777982185022
1946564587.64734250139-6.8297916345336732.6903510356070.837552421187189
2047994672.06147174387-5.3082979463426866.48185032380331.41810546027547
2146524686.29850287354-4.99069216952929-47.26341724358150.303972134709969
2246384660.17472557986-5.32880797340796-8.15061182337066-0.328718563406201
2346504674.68226298234-5.03005282527424-37.85746399950750.308538280182276
2451854841.02524288126-3.26634034895756229.6260179995592.67001045743291
2552084964.75353332506-4.80080913283692155.1259193265832.10263948337107
2644774883.06276904101-5.76213729836637-356.880561134483-1.17035362538857
2749764823.09042846157-7.04593401168794185.536751076528-0.791454353728875
2846704772.02437699692-8.12701430969474-75.1345758648307-0.653577868841304
2948424802.20064935254-7.287201670913115.73825537754710.581552437693761
3047134776.1118496738-7.64691287309199-51.0905969340473-0.289169483176817
3148044782.94717800463-7.3977217505556211.71399823625070.224039460450059
3249964840.56292190699-6.34908523452922113.359368765091.00812252794637
3345744756.59225880767-7.5549825421258-132.278595794569-1.2046379674309
3448414791.5913104948-6.9211392268386621.80390177299830.66049445219246
3546884799.34970787556-6.72508469197637-120.882604148390.227804266264539
3647664710.38893364378-7.50408242947776109.221545906391-1.27948514529948
3749944728.33230146902-7.44092128943118248.8022157165530.404181403128932
3845144771.10354125938-6.83018799634991-289.2388043741230.770977730515545
3947664689.68969457941-8.2704596036893122.288438635867-1.11429204832513
4046424693.86447598739-8.00637721143149-59.53353557166460.186603627292572
4148064726.52093916541-7.1794153893960654.03843663289250.617873206759664
4246454719.32742242495-7.17967903842355-74.3184838438041-0.000216449146859064
4347844744.17870122435-6.6268337114421919.36261507021260.494334088964439
4449794781.00908664462-5.92097680027835170.1294990178470.672314829334636
4545304742.95305673703-6.41833974143003-192.314838182105-0.497582045941296
4649424804.78053148142-5.4219745791961893.35383384779621.05670712098357
4746514784.01963277003-5.62345532153844-123.152768874263-0.237460095146315
4851504886.47903564884-4.46115724044972193.8187511165351.67677565449229
4949874843.66184092326-4.79017814999336168.224118209763-0.599131417886678
5045324817.68794657046-5.06662902153393-272.178262154609-0.325615681119011
5150464859.12832910003-4.25698645954704157.8671904389990.70292362491876
5247834861.65435263234-4.12657869136794-82.86644787290680.102436981377268
5349584878.30780752809-3.7286653894009966.68634580971770.31624703684004
5448154889.11395873645-3.46329722283497-83.29497196713440.222870330399443
5550554952.15537967729-2.3166785797117460.57100228479421.02451713598543
5651524967.16931366878-2.0332595973752173.776380172640.267580826954993
5747734979.17512802479-1.81481785801676-215.144479428060.216916739881982
5851475011.24192293884-1.31747810529082114.0977371144660.523435191447461
5948665021.75793768722-1.15740345478134-163.3266797004550.182792204834471
6053115053.95566871652-0.751007529462221235.6778612453230.515956895853735
6151725037.70477178643-0.930785142547891144.242402292285-0.240243310788691
6247345032.60273004638-0.988932486281077-295.951021529341-0.0640944969975715
6350114962.80703495296-2.1312066669986391.3470845935159-1.04633406964239
6449574989.7411600596-1.60692042548432-50.88768155103660.441135207401428
6549684961.9106173132-2.0860472434041722.5264336369758-0.39976753968185
6650495036.9892664251-0.711140798625499-36.66127242178771.18272212322267
6753055129.952186676040.892540740226754115.6685309963941.44119849920867
6850675052.1220437986-0.39813135742592664.9256027342968-1.21345743485715
6950015115.804078117780.606610355566644-155.5975404909780.988278002693228
7052525135.0528410940.884703016344468105.074381239760.287457673468632
7149035115.493809301870.596845952642823-199.469849944624-0.315217605305825
7254085132.572396916040.816704960123604264.918558888870.254343714993366
7353955177.483310169391.40201063308863189.393032433160.680695708896339
7451505279.244189200112.86935978784855-192.8935066890411.54135036600909
7554605332.913517131193.6960667662810595.13746892862570.775115230576365
7649685217.853478778831.63808301215792-175.446349034309-1.8085091730037
7750215137.26715185510.187784841999904-64.6504216014213-1.25536085991953
7851185147.912366849710.370009397519262-36.5050157883270.160271209837317
7951755104.03301262688-0.38018792722102298.9684386143709-0.680163943516852
8054205208.855904747991.34412429344472144.4151518318431.61952083953923
8151215249.41946050021.96372599978839-153.321500141360.6039711585099
8254505291.709016402882.57626200579445132.6795246133370.620893933730694
8352865381.481263794633.84950738662189-150.8702926020111.3425167587473
8456935424.880815360574.41079378247803242.9835200477150.609243327396628
8553535346.670865926943.2311190261530158.8279316429172-1.27251768766413
8650175287.017849937232.28125350320421-230.201779734386-0.965431297281687
8755775333.892565035833.00156680671946215.0229554980930.681742953964713
8849875258.128876613411.67025239406728-221.66526526844-1.20223877877698
8951295226.696835753351.10118779009737-76.8905378588375-0.506004096779152
9052495245.674633892071.40692476643759-7.943084164739140.27399764767421
9151005172.54017197020.15558937675007-25.4215735595593-1.14504816664268
9253825201.08909839730.620211311195378162.930942747660.4366572879555
9350395212.348184309810.789370063371464-180.0903040815310.16365172480814
9453645236.473975568541.14959599195551112.7348644390670.358909462043545
9551935283.197082024471.83455619608473-119.0857029540310.700908333849585
9658465398.106034713783.50787551830239376.1960411164721.73959862677537
9752595324.541515036912.35861231798003-16.6859267081061-1.18540567658231
9848095208.828975219110.535536336239876-325.157340969137-1.81219957862899
9952975131.52959526343-0.718983946126695214.524308673143-1.1913343368005
10050345165.47635805951-0.142114425455614-153.2779829089680.529939573103396
10152435228.590384380050.925562653710233-25.38796669161670.967841231013479
10251505197.05752461270.378605737576117-26.5969470291107-0.497556060230099
10352965249.356803704981.242613400015713.84741694037360.797204299574909
10455965332.124646458212.5739682304151212.3108352711491.25283028828908
10549545272.279486618281.57649680565826-278.778252004578-0.959355403915016
10652505225.739276661660.82409774534924254.713285776201-0.739424641624057
10750095194.930963073030.338310516179853-165.909827962192-0.486107787741167
10851134991.03513100067-2.77080529758732251.254798901473-3.13918273850012
10952375048.60081195335-1.84622278552211150.2133761385410.92717396107059
11045754984.04711148354-2.82891576851837-369.421532048865-0.962274588666601
11150264916.77474659534-3.86747087936761149.853880916667-0.987085850580714
11248424948.69836008864-3.27769946589008-129.2290067502210.547715126824065
11350194986.15391859264-2.599010408092327.2007531252720.623666412206491
11450635040.9406403507-1.64287462270196-14.11723454328850.879777949385953
11552615135.88390867069-0.047084768625081964.13736677176571.48253856952027
11653275122.84608019713-0.258813284566959212.363561752902-0.199524651402667
11750545191.147263541690.840899199603979-180.4908182166491.05309945865328
11852695192.249687216530.84502891882825776.58497139900980.00401659732071801
11950195157.976495322560.297235757635983-116.773104167291-0.539364336360554
12053155123.53677384538-0.241832478477185213.428246946438-0.533582258363616
12152745107.17081896382-0.493328985366796177.022788257336-0.247629557397434
12248995161.229693758450.370188004108399-296.681922105350.837016534588807
12352165139.428829428720.012682573081509790.5515002916175-0.339753937016202
12450295156.619767120270.293977337077048-138.4401851660480.26306806030267
12551105152.240564815920.216814548177761-39.2968916519279-0.0715872975274651
12650935150.783634251340.189160548114827-56.7283998874426-0.0256629371872029

\begin{tabular}{lllllllll}
\hline
Structural Time Series Model -- Interpolation \tabularnewline
t & Observed & Level & Slope & Seasonal & Stand. Residuals \tabularnewline
1 & 4998 & 4998 & 0 & 0 & 0 \tabularnewline
2 & 4480 & 4727.3923408742 & -18.4019324121399 & -97.8429992993853 & -3.3722894094939 \tabularnewline
3 & 4824 & 4749.10352990152 & -15.7484476270754 & 53.5466027629475 & 0.507891430991537 \tabularnewline
4 & 4814 & 4780.13153810052 & -13.5340238908183 & 4.16261624918276 & 0.672382724906428 \tabularnewline
5 & 4602 & 4704.73767629025 & -15.6563127408127 & -60.4081091607256 & -0.935756315092027 \tabularnewline
6 & 4499 & 4606.86912175352 & -17.9202039942063 & -50.0654671425261 & -1.26615652946782 \tabularnewline
7 & 4594 & 4590.29809921933 & -17.8873900792854 & 2.74358082376228 & 0.0209149671308765 \tabularnewline
8 & 4600 & 4592.21732186929 & -17.435717431907 & -6.34214489749418 & 0.30779755517719 \tabularnewline
9 & 4507 & 4555.01502227398 & -17.8714749590365 & -33.8962129891561 & -0.307455929543582 \tabularnewline
10 & 4606 & 4572.59155745894 & -17.1052470832173 & 8.07261787411259 & 0.551534818998117 \tabularnewline
11 & 4503 & 4543.87846037047 & -17.3528288269676 & -32.5799342832193 & -0.180615374518146 \tabularnewline
12 & 4801 & 4651.79075052804 & -14.7089953376827 & 59.649159733001 & 1.94899588771539 \tabularnewline
13 & 4564 & 4560.01765009145 & -9.94233983124667 & 63.966537770068 & -1.46032982336277 \tabularnewline
14 & 4142 & 4412.72091933338 & -12.6689203843102 & -185.768613903925 & -1.99216747750919 \tabularnewline
15 & 4818 & 4544.37197696887 & -7.77808194721282 & 190.866579310524 & 2.00805139695843 \tabularnewline
16 & 4408 & 4484.21714185672 & -9.370683122781 & -44.2441541283462 & -0.767975104227716 \tabularnewline
17 & 4496 & 4488.80912771705 & -9.02971295936013 & -1.75088412095601 & 0.212072346432956 \tabularnewline
18 & 4587 & 4541.43532714502 & -7.78902946966269 & 5.20355215537729 & 0.950777982185022 \tabularnewline
19 & 4656 & 4587.64734250139 & -6.82979163453367 & 32.690351035607 & 0.837552421187189 \tabularnewline
20 & 4799 & 4672.06147174387 & -5.30829794634268 & 66.4818503238033 & 1.41810546027547 \tabularnewline
21 & 4652 & 4686.29850287354 & -4.99069216952929 & -47.2634172435815 & 0.303972134709969 \tabularnewline
22 & 4638 & 4660.17472557986 & -5.32880797340796 & -8.15061182337066 & -0.328718563406201 \tabularnewline
23 & 4650 & 4674.68226298234 & -5.03005282527424 & -37.8574639995075 & 0.308538280182276 \tabularnewline
24 & 5185 & 4841.02524288126 & -3.26634034895756 & 229.626017999559 & 2.67001045743291 \tabularnewline
25 & 5208 & 4964.75353332506 & -4.80080913283692 & 155.125919326583 & 2.10263948337107 \tabularnewline
26 & 4477 & 4883.06276904101 & -5.76213729836637 & -356.880561134483 & -1.17035362538857 \tabularnewline
27 & 4976 & 4823.09042846157 & -7.04593401168794 & 185.536751076528 & -0.791454353728875 \tabularnewline
28 & 4670 & 4772.02437699692 & -8.12701430969474 & -75.1345758648307 & -0.653577868841304 \tabularnewline
29 & 4842 & 4802.20064935254 & -7.2872016709131 & 15.7382553775471 & 0.581552437693761 \tabularnewline
30 & 4713 & 4776.1118496738 & -7.64691287309199 & -51.0905969340473 & -0.289169483176817 \tabularnewline
31 & 4804 & 4782.94717800463 & -7.39772175055562 & 11.7139982362507 & 0.224039460450059 \tabularnewline
32 & 4996 & 4840.56292190699 & -6.34908523452922 & 113.35936876509 & 1.00812252794637 \tabularnewline
33 & 4574 & 4756.59225880767 & -7.5549825421258 & -132.278595794569 & -1.2046379674309 \tabularnewline
34 & 4841 & 4791.5913104948 & -6.92113922683866 & 21.8039017729983 & 0.66049445219246 \tabularnewline
35 & 4688 & 4799.34970787556 & -6.72508469197637 & -120.88260414839 & 0.227804266264539 \tabularnewline
36 & 4766 & 4710.38893364378 & -7.50408242947776 & 109.221545906391 & -1.27948514529948 \tabularnewline
37 & 4994 & 4728.33230146902 & -7.44092128943118 & 248.802215716553 & 0.404181403128932 \tabularnewline
38 & 4514 & 4771.10354125938 & -6.83018799634991 & -289.238804374123 & 0.770977730515545 \tabularnewline
39 & 4766 & 4689.68969457941 & -8.2704596036893 & 122.288438635867 & -1.11429204832513 \tabularnewline
40 & 4642 & 4693.86447598739 & -8.00637721143149 & -59.5335355716646 & 0.186603627292572 \tabularnewline
41 & 4806 & 4726.52093916541 & -7.17941538939606 & 54.0384366328925 & 0.617873206759664 \tabularnewline
42 & 4645 & 4719.32742242495 & -7.17967903842355 & -74.3184838438041 & -0.000216449146859064 \tabularnewline
43 & 4784 & 4744.17870122435 & -6.62683371144219 & 19.3626150702126 & 0.494334088964439 \tabularnewline
44 & 4979 & 4781.00908664462 & -5.92097680027835 & 170.129499017847 & 0.672314829334636 \tabularnewline
45 & 4530 & 4742.95305673703 & -6.41833974143003 & -192.314838182105 & -0.497582045941296 \tabularnewline
46 & 4942 & 4804.78053148142 & -5.42197457919618 & 93.3538338477962 & 1.05670712098357 \tabularnewline
47 & 4651 & 4784.01963277003 & -5.62345532153844 & -123.152768874263 & -0.237460095146315 \tabularnewline
48 & 5150 & 4886.47903564884 & -4.46115724044972 & 193.818751116535 & 1.67677565449229 \tabularnewline
49 & 4987 & 4843.66184092326 & -4.79017814999336 & 168.224118209763 & -0.599131417886678 \tabularnewline
50 & 4532 & 4817.68794657046 & -5.06662902153393 & -272.178262154609 & -0.325615681119011 \tabularnewline
51 & 5046 & 4859.12832910003 & -4.25698645954704 & 157.867190438999 & 0.70292362491876 \tabularnewline
52 & 4783 & 4861.65435263234 & -4.12657869136794 & -82.8664478729068 & 0.102436981377268 \tabularnewline
53 & 4958 & 4878.30780752809 & -3.72866538940099 & 66.6863458097177 & 0.31624703684004 \tabularnewline
54 & 4815 & 4889.11395873645 & -3.46329722283497 & -83.2949719671344 & 0.222870330399443 \tabularnewline
55 & 5055 & 4952.15537967729 & -2.31667857971174 & 60.5710022847942 & 1.02451713598543 \tabularnewline
56 & 5152 & 4967.16931366878 & -2.0332595973752 & 173.77638017264 & 0.267580826954993 \tabularnewline
57 & 4773 & 4979.17512802479 & -1.81481785801676 & -215.14447942806 & 0.216916739881982 \tabularnewline
58 & 5147 & 5011.24192293884 & -1.31747810529082 & 114.097737114466 & 0.523435191447461 \tabularnewline
59 & 4866 & 5021.75793768722 & -1.15740345478134 & -163.326679700455 & 0.182792204834471 \tabularnewline
60 & 5311 & 5053.95566871652 & -0.751007529462221 & 235.677861245323 & 0.515956895853735 \tabularnewline
61 & 5172 & 5037.70477178643 & -0.930785142547891 & 144.242402292285 & -0.240243310788691 \tabularnewline
62 & 4734 & 5032.60273004638 & -0.988932486281077 & -295.951021529341 & -0.0640944969975715 \tabularnewline
63 & 5011 & 4962.80703495296 & -2.13120666699863 & 91.3470845935159 & -1.04633406964239 \tabularnewline
64 & 4957 & 4989.7411600596 & -1.60692042548432 & -50.8876815510366 & 0.441135207401428 \tabularnewline
65 & 4968 & 4961.9106173132 & -2.08604724340417 & 22.5264336369758 & -0.39976753968185 \tabularnewline
66 & 5049 & 5036.9892664251 & -0.711140798625499 & -36.6612724217877 & 1.18272212322267 \tabularnewline
67 & 5305 & 5129.95218667604 & 0.892540740226754 & 115.668530996394 & 1.44119849920867 \tabularnewline
68 & 5067 & 5052.1220437986 & -0.398131357425926 & 64.9256027342968 & -1.21345743485715 \tabularnewline
69 & 5001 & 5115.80407811778 & 0.606610355566644 & -155.597540490978 & 0.988278002693228 \tabularnewline
70 & 5252 & 5135.052841094 & 0.884703016344468 & 105.07438123976 & 0.287457673468632 \tabularnewline
71 & 4903 & 5115.49380930187 & 0.596845952642823 & -199.469849944624 & -0.315217605305825 \tabularnewline
72 & 5408 & 5132.57239691604 & 0.816704960123604 & 264.91855888887 & 0.254343714993366 \tabularnewline
73 & 5395 & 5177.48331016939 & 1.40201063308863 & 189.39303243316 & 0.680695708896339 \tabularnewline
74 & 5150 & 5279.24418920011 & 2.86935978784855 & -192.893506689041 & 1.54135036600909 \tabularnewline
75 & 5460 & 5332.91351713119 & 3.69606676628105 & 95.1374689286257 & 0.775115230576365 \tabularnewline
76 & 4968 & 5217.85347877883 & 1.63808301215792 & -175.446349034309 & -1.8085091730037 \tabularnewline
77 & 5021 & 5137.2671518551 & 0.187784841999904 & -64.6504216014213 & -1.25536085991953 \tabularnewline
78 & 5118 & 5147.91236684971 & 0.370009397519262 & -36.505015788327 & 0.160271209837317 \tabularnewline
79 & 5175 & 5104.03301262688 & -0.380187927221022 & 98.9684386143709 & -0.680163943516852 \tabularnewline
80 & 5420 & 5208.85590474799 & 1.34412429344472 & 144.415151831843 & 1.61952083953923 \tabularnewline
81 & 5121 & 5249.4194605002 & 1.96372599978839 & -153.32150014136 & 0.6039711585099 \tabularnewline
82 & 5450 & 5291.70901640288 & 2.57626200579445 & 132.679524613337 & 0.620893933730694 \tabularnewline
83 & 5286 & 5381.48126379463 & 3.84950738662189 & -150.870292602011 & 1.3425167587473 \tabularnewline
84 & 5693 & 5424.88081536057 & 4.41079378247803 & 242.983520047715 & 0.609243327396628 \tabularnewline
85 & 5353 & 5346.67086592694 & 3.23111902615301 & 58.8279316429172 & -1.27251768766413 \tabularnewline
86 & 5017 & 5287.01784993723 & 2.28125350320421 & -230.201779734386 & -0.965431297281687 \tabularnewline
87 & 5577 & 5333.89256503583 & 3.00156680671946 & 215.022955498093 & 0.681742953964713 \tabularnewline
88 & 4987 & 5258.12887661341 & 1.67025239406728 & -221.66526526844 & -1.20223877877698 \tabularnewline
89 & 5129 & 5226.69683575335 & 1.10118779009737 & -76.8905378588375 & -0.506004096779152 \tabularnewline
90 & 5249 & 5245.67463389207 & 1.40692476643759 & -7.94308416473914 & 0.27399764767421 \tabularnewline
91 & 5100 & 5172.5401719702 & 0.15558937675007 & -25.4215735595593 & -1.14504816664268 \tabularnewline
92 & 5382 & 5201.0890983973 & 0.620211311195378 & 162.93094274766 & 0.4366572879555 \tabularnewline
93 & 5039 & 5212.34818430981 & 0.789370063371464 & -180.090304081531 & 0.16365172480814 \tabularnewline
94 & 5364 & 5236.47397556854 & 1.14959599195551 & 112.734864439067 & 0.358909462043545 \tabularnewline
95 & 5193 & 5283.19708202447 & 1.83455619608473 & -119.085702954031 & 0.700908333849585 \tabularnewline
96 & 5846 & 5398.10603471378 & 3.50787551830239 & 376.196041116472 & 1.73959862677537 \tabularnewline
97 & 5259 & 5324.54151503691 & 2.35861231798003 & -16.6859267081061 & -1.18540567658231 \tabularnewline
98 & 4809 & 5208.82897521911 & 0.535536336239876 & -325.157340969137 & -1.81219957862899 \tabularnewline
99 & 5297 & 5131.52959526343 & -0.718983946126695 & 214.524308673143 & -1.1913343368005 \tabularnewline
100 & 5034 & 5165.47635805951 & -0.142114425455614 & -153.277982908968 & 0.529939573103396 \tabularnewline
101 & 5243 & 5228.59038438005 & 0.925562653710233 & -25.3879666916167 & 0.967841231013479 \tabularnewline
102 & 5150 & 5197.0575246127 & 0.378605737576117 & -26.5969470291107 & -0.497556060230099 \tabularnewline
103 & 5296 & 5249.35680370498 & 1.2426134000157 & 13.8474169403736 & 0.797204299574909 \tabularnewline
104 & 5596 & 5332.12464645821 & 2.5739682304151 & 212.310835271149 & 1.25283028828908 \tabularnewline
105 & 4954 & 5272.27948661828 & 1.57649680565826 & -278.778252004578 & -0.959355403915016 \tabularnewline
106 & 5250 & 5225.73927666166 & 0.824097745349242 & 54.713285776201 & -0.739424641624057 \tabularnewline
107 & 5009 & 5194.93096307303 & 0.338310516179853 & -165.909827962192 & -0.486107787741167 \tabularnewline
108 & 5113 & 4991.03513100067 & -2.77080529758732 & 251.254798901473 & -3.13918273850012 \tabularnewline
109 & 5237 & 5048.60081195335 & -1.84622278552211 & 150.213376138541 & 0.92717396107059 \tabularnewline
110 & 4575 & 4984.04711148354 & -2.82891576851837 & -369.421532048865 & -0.962274588666601 \tabularnewline
111 & 5026 & 4916.77474659534 & -3.86747087936761 & 149.853880916667 & -0.987085850580714 \tabularnewline
112 & 4842 & 4948.69836008864 & -3.27769946589008 & -129.229006750221 & 0.547715126824065 \tabularnewline
113 & 5019 & 4986.15391859264 & -2.59901040809232 & 7.200753125272 & 0.623666412206491 \tabularnewline
114 & 5063 & 5040.9406403507 & -1.64287462270196 & -14.1172345432885 & 0.879777949385953 \tabularnewline
115 & 5261 & 5135.88390867069 & -0.0470847686250819 & 64.1373667717657 & 1.48253856952027 \tabularnewline
116 & 5327 & 5122.84608019713 & -0.258813284566959 & 212.363561752902 & -0.199524651402667 \tabularnewline
117 & 5054 & 5191.14726354169 & 0.840899199603979 & -180.490818216649 & 1.05309945865328 \tabularnewline
118 & 5269 & 5192.24968721653 & 0.845028918828257 & 76.5849713990098 & 0.00401659732071801 \tabularnewline
119 & 5019 & 5157.97649532256 & 0.297235757635983 & -116.773104167291 & -0.539364336360554 \tabularnewline
120 & 5315 & 5123.53677384538 & -0.241832478477185 & 213.428246946438 & -0.533582258363616 \tabularnewline
121 & 5274 & 5107.17081896382 & -0.493328985366796 & 177.022788257336 & -0.247629557397434 \tabularnewline
122 & 4899 & 5161.22969375845 & 0.370188004108399 & -296.68192210535 & 0.837016534588807 \tabularnewline
123 & 5216 & 5139.42882942872 & 0.0126825730815097 & 90.5515002916175 & -0.339753937016202 \tabularnewline
124 & 5029 & 5156.61976712027 & 0.293977337077048 & -138.440185166048 & 0.26306806030267 \tabularnewline
125 & 5110 & 5152.24056481592 & 0.216814548177761 & -39.2968916519279 & -0.0715872975274651 \tabularnewline
126 & 5093 & 5150.78363425134 & 0.189160548114827 & -56.7283998874426 & -0.0256629371872029 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302821&T=1

[TABLE]
[ROW][C]Structural Time Series Model -- Interpolation[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Level[/C][C]Slope[/C][C]Seasonal[/C][C]Stand. Residuals[/C][/ROW]
[ROW][C]1[/C][C]4998[/C][C]4998[/C][C]0[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]4480[/C][C]4727.3923408742[/C][C]-18.4019324121399[/C][C]-97.8429992993853[/C][C]-3.3722894094939[/C][/ROW]
[ROW][C]3[/C][C]4824[/C][C]4749.10352990152[/C][C]-15.7484476270754[/C][C]53.5466027629475[/C][C]0.507891430991537[/C][/ROW]
[ROW][C]4[/C][C]4814[/C][C]4780.13153810052[/C][C]-13.5340238908183[/C][C]4.16261624918276[/C][C]0.672382724906428[/C][/ROW]
[ROW][C]5[/C][C]4602[/C][C]4704.73767629025[/C][C]-15.6563127408127[/C][C]-60.4081091607256[/C][C]-0.935756315092027[/C][/ROW]
[ROW][C]6[/C][C]4499[/C][C]4606.86912175352[/C][C]-17.9202039942063[/C][C]-50.0654671425261[/C][C]-1.26615652946782[/C][/ROW]
[ROW][C]7[/C][C]4594[/C][C]4590.29809921933[/C][C]-17.8873900792854[/C][C]2.74358082376228[/C][C]0.0209149671308765[/C][/ROW]
[ROW][C]8[/C][C]4600[/C][C]4592.21732186929[/C][C]-17.435717431907[/C][C]-6.34214489749418[/C][C]0.30779755517719[/C][/ROW]
[ROW][C]9[/C][C]4507[/C][C]4555.01502227398[/C][C]-17.8714749590365[/C][C]-33.8962129891561[/C][C]-0.307455929543582[/C][/ROW]
[ROW][C]10[/C][C]4606[/C][C]4572.59155745894[/C][C]-17.1052470832173[/C][C]8.07261787411259[/C][C]0.551534818998117[/C][/ROW]
[ROW][C]11[/C][C]4503[/C][C]4543.87846037047[/C][C]-17.3528288269676[/C][C]-32.5799342832193[/C][C]-0.180615374518146[/C][/ROW]
[ROW][C]12[/C][C]4801[/C][C]4651.79075052804[/C][C]-14.7089953376827[/C][C]59.649159733001[/C][C]1.94899588771539[/C][/ROW]
[ROW][C]13[/C][C]4564[/C][C]4560.01765009145[/C][C]-9.94233983124667[/C][C]63.966537770068[/C][C]-1.46032982336277[/C][/ROW]
[ROW][C]14[/C][C]4142[/C][C]4412.72091933338[/C][C]-12.6689203843102[/C][C]-185.768613903925[/C][C]-1.99216747750919[/C][/ROW]
[ROW][C]15[/C][C]4818[/C][C]4544.37197696887[/C][C]-7.77808194721282[/C][C]190.866579310524[/C][C]2.00805139695843[/C][/ROW]
[ROW][C]16[/C][C]4408[/C][C]4484.21714185672[/C][C]-9.370683122781[/C][C]-44.2441541283462[/C][C]-0.767975104227716[/C][/ROW]
[ROW][C]17[/C][C]4496[/C][C]4488.80912771705[/C][C]-9.02971295936013[/C][C]-1.75088412095601[/C][C]0.212072346432956[/C][/ROW]
[ROW][C]18[/C][C]4587[/C][C]4541.43532714502[/C][C]-7.78902946966269[/C][C]5.20355215537729[/C][C]0.950777982185022[/C][/ROW]
[ROW][C]19[/C][C]4656[/C][C]4587.64734250139[/C][C]-6.82979163453367[/C][C]32.690351035607[/C][C]0.837552421187189[/C][/ROW]
[ROW][C]20[/C][C]4799[/C][C]4672.06147174387[/C][C]-5.30829794634268[/C][C]66.4818503238033[/C][C]1.41810546027547[/C][/ROW]
[ROW][C]21[/C][C]4652[/C][C]4686.29850287354[/C][C]-4.99069216952929[/C][C]-47.2634172435815[/C][C]0.303972134709969[/C][/ROW]
[ROW][C]22[/C][C]4638[/C][C]4660.17472557986[/C][C]-5.32880797340796[/C][C]-8.15061182337066[/C][C]-0.328718563406201[/C][/ROW]
[ROW][C]23[/C][C]4650[/C][C]4674.68226298234[/C][C]-5.03005282527424[/C][C]-37.8574639995075[/C][C]0.308538280182276[/C][/ROW]
[ROW][C]24[/C][C]5185[/C][C]4841.02524288126[/C][C]-3.26634034895756[/C][C]229.626017999559[/C][C]2.67001045743291[/C][/ROW]
[ROW][C]25[/C][C]5208[/C][C]4964.75353332506[/C][C]-4.80080913283692[/C][C]155.125919326583[/C][C]2.10263948337107[/C][/ROW]
[ROW][C]26[/C][C]4477[/C][C]4883.06276904101[/C][C]-5.76213729836637[/C][C]-356.880561134483[/C][C]-1.17035362538857[/C][/ROW]
[ROW][C]27[/C][C]4976[/C][C]4823.09042846157[/C][C]-7.04593401168794[/C][C]185.536751076528[/C][C]-0.791454353728875[/C][/ROW]
[ROW][C]28[/C][C]4670[/C][C]4772.02437699692[/C][C]-8.12701430969474[/C][C]-75.1345758648307[/C][C]-0.653577868841304[/C][/ROW]
[ROW][C]29[/C][C]4842[/C][C]4802.20064935254[/C][C]-7.2872016709131[/C][C]15.7382553775471[/C][C]0.581552437693761[/C][/ROW]
[ROW][C]30[/C][C]4713[/C][C]4776.1118496738[/C][C]-7.64691287309199[/C][C]-51.0905969340473[/C][C]-0.289169483176817[/C][/ROW]
[ROW][C]31[/C][C]4804[/C][C]4782.94717800463[/C][C]-7.39772175055562[/C][C]11.7139982362507[/C][C]0.224039460450059[/C][/ROW]
[ROW][C]32[/C][C]4996[/C][C]4840.56292190699[/C][C]-6.34908523452922[/C][C]113.35936876509[/C][C]1.00812252794637[/C][/ROW]
[ROW][C]33[/C][C]4574[/C][C]4756.59225880767[/C][C]-7.5549825421258[/C][C]-132.278595794569[/C][C]-1.2046379674309[/C][/ROW]
[ROW][C]34[/C][C]4841[/C][C]4791.5913104948[/C][C]-6.92113922683866[/C][C]21.8039017729983[/C][C]0.66049445219246[/C][/ROW]
[ROW][C]35[/C][C]4688[/C][C]4799.34970787556[/C][C]-6.72508469197637[/C][C]-120.88260414839[/C][C]0.227804266264539[/C][/ROW]
[ROW][C]36[/C][C]4766[/C][C]4710.38893364378[/C][C]-7.50408242947776[/C][C]109.221545906391[/C][C]-1.27948514529948[/C][/ROW]
[ROW][C]37[/C][C]4994[/C][C]4728.33230146902[/C][C]-7.44092128943118[/C][C]248.802215716553[/C][C]0.404181403128932[/C][/ROW]
[ROW][C]38[/C][C]4514[/C][C]4771.10354125938[/C][C]-6.83018799634991[/C][C]-289.238804374123[/C][C]0.770977730515545[/C][/ROW]
[ROW][C]39[/C][C]4766[/C][C]4689.68969457941[/C][C]-8.2704596036893[/C][C]122.288438635867[/C][C]-1.11429204832513[/C][/ROW]
[ROW][C]40[/C][C]4642[/C][C]4693.86447598739[/C][C]-8.00637721143149[/C][C]-59.5335355716646[/C][C]0.186603627292572[/C][/ROW]
[ROW][C]41[/C][C]4806[/C][C]4726.52093916541[/C][C]-7.17941538939606[/C][C]54.0384366328925[/C][C]0.617873206759664[/C][/ROW]
[ROW][C]42[/C][C]4645[/C][C]4719.32742242495[/C][C]-7.17967903842355[/C][C]-74.3184838438041[/C][C]-0.000216449146859064[/C][/ROW]
[ROW][C]43[/C][C]4784[/C][C]4744.17870122435[/C][C]-6.62683371144219[/C][C]19.3626150702126[/C][C]0.494334088964439[/C][/ROW]
[ROW][C]44[/C][C]4979[/C][C]4781.00908664462[/C][C]-5.92097680027835[/C][C]170.129499017847[/C][C]0.672314829334636[/C][/ROW]
[ROW][C]45[/C][C]4530[/C][C]4742.95305673703[/C][C]-6.41833974143003[/C][C]-192.314838182105[/C][C]-0.497582045941296[/C][/ROW]
[ROW][C]46[/C][C]4942[/C][C]4804.78053148142[/C][C]-5.42197457919618[/C][C]93.3538338477962[/C][C]1.05670712098357[/C][/ROW]
[ROW][C]47[/C][C]4651[/C][C]4784.01963277003[/C][C]-5.62345532153844[/C][C]-123.152768874263[/C][C]-0.237460095146315[/C][/ROW]
[ROW][C]48[/C][C]5150[/C][C]4886.47903564884[/C][C]-4.46115724044972[/C][C]193.818751116535[/C][C]1.67677565449229[/C][/ROW]
[ROW][C]49[/C][C]4987[/C][C]4843.66184092326[/C][C]-4.79017814999336[/C][C]168.224118209763[/C][C]-0.599131417886678[/C][/ROW]
[ROW][C]50[/C][C]4532[/C][C]4817.68794657046[/C][C]-5.06662902153393[/C][C]-272.178262154609[/C][C]-0.325615681119011[/C][/ROW]
[ROW][C]51[/C][C]5046[/C][C]4859.12832910003[/C][C]-4.25698645954704[/C][C]157.867190438999[/C][C]0.70292362491876[/C][/ROW]
[ROW][C]52[/C][C]4783[/C][C]4861.65435263234[/C][C]-4.12657869136794[/C][C]-82.8664478729068[/C][C]0.102436981377268[/C][/ROW]
[ROW][C]53[/C][C]4958[/C][C]4878.30780752809[/C][C]-3.72866538940099[/C][C]66.6863458097177[/C][C]0.31624703684004[/C][/ROW]
[ROW][C]54[/C][C]4815[/C][C]4889.11395873645[/C][C]-3.46329722283497[/C][C]-83.2949719671344[/C][C]0.222870330399443[/C][/ROW]
[ROW][C]55[/C][C]5055[/C][C]4952.15537967729[/C][C]-2.31667857971174[/C][C]60.5710022847942[/C][C]1.02451713598543[/C][/ROW]
[ROW][C]56[/C][C]5152[/C][C]4967.16931366878[/C][C]-2.0332595973752[/C][C]173.77638017264[/C][C]0.267580826954993[/C][/ROW]
[ROW][C]57[/C][C]4773[/C][C]4979.17512802479[/C][C]-1.81481785801676[/C][C]-215.14447942806[/C][C]0.216916739881982[/C][/ROW]
[ROW][C]58[/C][C]5147[/C][C]5011.24192293884[/C][C]-1.31747810529082[/C][C]114.097737114466[/C][C]0.523435191447461[/C][/ROW]
[ROW][C]59[/C][C]4866[/C][C]5021.75793768722[/C][C]-1.15740345478134[/C][C]-163.326679700455[/C][C]0.182792204834471[/C][/ROW]
[ROW][C]60[/C][C]5311[/C][C]5053.95566871652[/C][C]-0.751007529462221[/C][C]235.677861245323[/C][C]0.515956895853735[/C][/ROW]
[ROW][C]61[/C][C]5172[/C][C]5037.70477178643[/C][C]-0.930785142547891[/C][C]144.242402292285[/C][C]-0.240243310788691[/C][/ROW]
[ROW][C]62[/C][C]4734[/C][C]5032.60273004638[/C][C]-0.988932486281077[/C][C]-295.951021529341[/C][C]-0.0640944969975715[/C][/ROW]
[ROW][C]63[/C][C]5011[/C][C]4962.80703495296[/C][C]-2.13120666699863[/C][C]91.3470845935159[/C][C]-1.04633406964239[/C][/ROW]
[ROW][C]64[/C][C]4957[/C][C]4989.7411600596[/C][C]-1.60692042548432[/C][C]-50.8876815510366[/C][C]0.441135207401428[/C][/ROW]
[ROW][C]65[/C][C]4968[/C][C]4961.9106173132[/C][C]-2.08604724340417[/C][C]22.5264336369758[/C][C]-0.39976753968185[/C][/ROW]
[ROW][C]66[/C][C]5049[/C][C]5036.9892664251[/C][C]-0.711140798625499[/C][C]-36.6612724217877[/C][C]1.18272212322267[/C][/ROW]
[ROW][C]67[/C][C]5305[/C][C]5129.95218667604[/C][C]0.892540740226754[/C][C]115.668530996394[/C][C]1.44119849920867[/C][/ROW]
[ROW][C]68[/C][C]5067[/C][C]5052.1220437986[/C][C]-0.398131357425926[/C][C]64.9256027342968[/C][C]-1.21345743485715[/C][/ROW]
[ROW][C]69[/C][C]5001[/C][C]5115.80407811778[/C][C]0.606610355566644[/C][C]-155.597540490978[/C][C]0.988278002693228[/C][/ROW]
[ROW][C]70[/C][C]5252[/C][C]5135.052841094[/C][C]0.884703016344468[/C][C]105.07438123976[/C][C]0.287457673468632[/C][/ROW]
[ROW][C]71[/C][C]4903[/C][C]5115.49380930187[/C][C]0.596845952642823[/C][C]-199.469849944624[/C][C]-0.315217605305825[/C][/ROW]
[ROW][C]72[/C][C]5408[/C][C]5132.57239691604[/C][C]0.816704960123604[/C][C]264.91855888887[/C][C]0.254343714993366[/C][/ROW]
[ROW][C]73[/C][C]5395[/C][C]5177.48331016939[/C][C]1.40201063308863[/C][C]189.39303243316[/C][C]0.680695708896339[/C][/ROW]
[ROW][C]74[/C][C]5150[/C][C]5279.24418920011[/C][C]2.86935978784855[/C][C]-192.893506689041[/C][C]1.54135036600909[/C][/ROW]
[ROW][C]75[/C][C]5460[/C][C]5332.91351713119[/C][C]3.69606676628105[/C][C]95.1374689286257[/C][C]0.775115230576365[/C][/ROW]
[ROW][C]76[/C][C]4968[/C][C]5217.85347877883[/C][C]1.63808301215792[/C][C]-175.446349034309[/C][C]-1.8085091730037[/C][/ROW]
[ROW][C]77[/C][C]5021[/C][C]5137.2671518551[/C][C]0.187784841999904[/C][C]-64.6504216014213[/C][C]-1.25536085991953[/C][/ROW]
[ROW][C]78[/C][C]5118[/C][C]5147.91236684971[/C][C]0.370009397519262[/C][C]-36.505015788327[/C][C]0.160271209837317[/C][/ROW]
[ROW][C]79[/C][C]5175[/C][C]5104.03301262688[/C][C]-0.380187927221022[/C][C]98.9684386143709[/C][C]-0.680163943516852[/C][/ROW]
[ROW][C]80[/C][C]5420[/C][C]5208.85590474799[/C][C]1.34412429344472[/C][C]144.415151831843[/C][C]1.61952083953923[/C][/ROW]
[ROW][C]81[/C][C]5121[/C][C]5249.4194605002[/C][C]1.96372599978839[/C][C]-153.32150014136[/C][C]0.6039711585099[/C][/ROW]
[ROW][C]82[/C][C]5450[/C][C]5291.70901640288[/C][C]2.57626200579445[/C][C]132.679524613337[/C][C]0.620893933730694[/C][/ROW]
[ROW][C]83[/C][C]5286[/C][C]5381.48126379463[/C][C]3.84950738662189[/C][C]-150.870292602011[/C][C]1.3425167587473[/C][/ROW]
[ROW][C]84[/C][C]5693[/C][C]5424.88081536057[/C][C]4.41079378247803[/C][C]242.983520047715[/C][C]0.609243327396628[/C][/ROW]
[ROW][C]85[/C][C]5353[/C][C]5346.67086592694[/C][C]3.23111902615301[/C][C]58.8279316429172[/C][C]-1.27251768766413[/C][/ROW]
[ROW][C]86[/C][C]5017[/C][C]5287.01784993723[/C][C]2.28125350320421[/C][C]-230.201779734386[/C][C]-0.965431297281687[/C][/ROW]
[ROW][C]87[/C][C]5577[/C][C]5333.89256503583[/C][C]3.00156680671946[/C][C]215.022955498093[/C][C]0.681742953964713[/C][/ROW]
[ROW][C]88[/C][C]4987[/C][C]5258.12887661341[/C][C]1.67025239406728[/C][C]-221.66526526844[/C][C]-1.20223877877698[/C][/ROW]
[ROW][C]89[/C][C]5129[/C][C]5226.69683575335[/C][C]1.10118779009737[/C][C]-76.8905378588375[/C][C]-0.506004096779152[/C][/ROW]
[ROW][C]90[/C][C]5249[/C][C]5245.67463389207[/C][C]1.40692476643759[/C][C]-7.94308416473914[/C][C]0.27399764767421[/C][/ROW]
[ROW][C]91[/C][C]5100[/C][C]5172.5401719702[/C][C]0.15558937675007[/C][C]-25.4215735595593[/C][C]-1.14504816664268[/C][/ROW]
[ROW][C]92[/C][C]5382[/C][C]5201.0890983973[/C][C]0.620211311195378[/C][C]162.93094274766[/C][C]0.4366572879555[/C][/ROW]
[ROW][C]93[/C][C]5039[/C][C]5212.34818430981[/C][C]0.789370063371464[/C][C]-180.090304081531[/C][C]0.16365172480814[/C][/ROW]
[ROW][C]94[/C][C]5364[/C][C]5236.47397556854[/C][C]1.14959599195551[/C][C]112.734864439067[/C][C]0.358909462043545[/C][/ROW]
[ROW][C]95[/C][C]5193[/C][C]5283.19708202447[/C][C]1.83455619608473[/C][C]-119.085702954031[/C][C]0.700908333849585[/C][/ROW]
[ROW][C]96[/C][C]5846[/C][C]5398.10603471378[/C][C]3.50787551830239[/C][C]376.196041116472[/C][C]1.73959862677537[/C][/ROW]
[ROW][C]97[/C][C]5259[/C][C]5324.54151503691[/C][C]2.35861231798003[/C][C]-16.6859267081061[/C][C]-1.18540567658231[/C][/ROW]
[ROW][C]98[/C][C]4809[/C][C]5208.82897521911[/C][C]0.535536336239876[/C][C]-325.157340969137[/C][C]-1.81219957862899[/C][/ROW]
[ROW][C]99[/C][C]5297[/C][C]5131.52959526343[/C][C]-0.718983946126695[/C][C]214.524308673143[/C][C]-1.1913343368005[/C][/ROW]
[ROW][C]100[/C][C]5034[/C][C]5165.47635805951[/C][C]-0.142114425455614[/C][C]-153.277982908968[/C][C]0.529939573103396[/C][/ROW]
[ROW][C]101[/C][C]5243[/C][C]5228.59038438005[/C][C]0.925562653710233[/C][C]-25.3879666916167[/C][C]0.967841231013479[/C][/ROW]
[ROW][C]102[/C][C]5150[/C][C]5197.0575246127[/C][C]0.378605737576117[/C][C]-26.5969470291107[/C][C]-0.497556060230099[/C][/ROW]
[ROW][C]103[/C][C]5296[/C][C]5249.35680370498[/C][C]1.2426134000157[/C][C]13.8474169403736[/C][C]0.797204299574909[/C][/ROW]
[ROW][C]104[/C][C]5596[/C][C]5332.12464645821[/C][C]2.5739682304151[/C][C]212.310835271149[/C][C]1.25283028828908[/C][/ROW]
[ROW][C]105[/C][C]4954[/C][C]5272.27948661828[/C][C]1.57649680565826[/C][C]-278.778252004578[/C][C]-0.959355403915016[/C][/ROW]
[ROW][C]106[/C][C]5250[/C][C]5225.73927666166[/C][C]0.824097745349242[/C][C]54.713285776201[/C][C]-0.739424641624057[/C][/ROW]
[ROW][C]107[/C][C]5009[/C][C]5194.93096307303[/C][C]0.338310516179853[/C][C]-165.909827962192[/C][C]-0.486107787741167[/C][/ROW]
[ROW][C]108[/C][C]5113[/C][C]4991.03513100067[/C][C]-2.77080529758732[/C][C]251.254798901473[/C][C]-3.13918273850012[/C][/ROW]
[ROW][C]109[/C][C]5237[/C][C]5048.60081195335[/C][C]-1.84622278552211[/C][C]150.213376138541[/C][C]0.92717396107059[/C][/ROW]
[ROW][C]110[/C][C]4575[/C][C]4984.04711148354[/C][C]-2.82891576851837[/C][C]-369.421532048865[/C][C]-0.962274588666601[/C][/ROW]
[ROW][C]111[/C][C]5026[/C][C]4916.77474659534[/C][C]-3.86747087936761[/C][C]149.853880916667[/C][C]-0.987085850580714[/C][/ROW]
[ROW][C]112[/C][C]4842[/C][C]4948.69836008864[/C][C]-3.27769946589008[/C][C]-129.229006750221[/C][C]0.547715126824065[/C][/ROW]
[ROW][C]113[/C][C]5019[/C][C]4986.15391859264[/C][C]-2.59901040809232[/C][C]7.200753125272[/C][C]0.623666412206491[/C][/ROW]
[ROW][C]114[/C][C]5063[/C][C]5040.9406403507[/C][C]-1.64287462270196[/C][C]-14.1172345432885[/C][C]0.879777949385953[/C][/ROW]
[ROW][C]115[/C][C]5261[/C][C]5135.88390867069[/C][C]-0.0470847686250819[/C][C]64.1373667717657[/C][C]1.48253856952027[/C][/ROW]
[ROW][C]116[/C][C]5327[/C][C]5122.84608019713[/C][C]-0.258813284566959[/C][C]212.363561752902[/C][C]-0.199524651402667[/C][/ROW]
[ROW][C]117[/C][C]5054[/C][C]5191.14726354169[/C][C]0.840899199603979[/C][C]-180.490818216649[/C][C]1.05309945865328[/C][/ROW]
[ROW][C]118[/C][C]5269[/C][C]5192.24968721653[/C][C]0.845028918828257[/C][C]76.5849713990098[/C][C]0.00401659732071801[/C][/ROW]
[ROW][C]119[/C][C]5019[/C][C]5157.97649532256[/C][C]0.297235757635983[/C][C]-116.773104167291[/C][C]-0.539364336360554[/C][/ROW]
[ROW][C]120[/C][C]5315[/C][C]5123.53677384538[/C][C]-0.241832478477185[/C][C]213.428246946438[/C][C]-0.533582258363616[/C][/ROW]
[ROW][C]121[/C][C]5274[/C][C]5107.17081896382[/C][C]-0.493328985366796[/C][C]177.022788257336[/C][C]-0.247629557397434[/C][/ROW]
[ROW][C]122[/C][C]4899[/C][C]5161.22969375845[/C][C]0.370188004108399[/C][C]-296.68192210535[/C][C]0.837016534588807[/C][/ROW]
[ROW][C]123[/C][C]5216[/C][C]5139.42882942872[/C][C]0.0126825730815097[/C][C]90.5515002916175[/C][C]-0.339753937016202[/C][/ROW]
[ROW][C]124[/C][C]5029[/C][C]5156.61976712027[/C][C]0.293977337077048[/C][C]-138.440185166048[/C][C]0.26306806030267[/C][/ROW]
[ROW][C]125[/C][C]5110[/C][C]5152.24056481592[/C][C]0.216814548177761[/C][C]-39.2968916519279[/C][C]-0.0715872975274651[/C][/ROW]
[ROW][C]126[/C][C]5093[/C][C]5150.78363425134[/C][C]0.189160548114827[/C][C]-56.7283998874426[/C][C]-0.0256629371872029[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302821&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302821&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Structural Time Series Model -- Interpolation
tObservedLevelSlopeSeasonalStand. Residuals
149984998000
244804727.3923408742-18.4019324121399-97.8429992993853-3.3722894094939
348244749.10352990152-15.748447627075453.54660276294750.507891430991537
448144780.13153810052-13.53402389081834.162616249182760.672382724906428
546024704.73767629025-15.6563127408127-60.4081091607256-0.935756315092027
644994606.86912175352-17.9202039942063-50.0654671425261-1.26615652946782
745944590.29809921933-17.88739007928542.743580823762280.0209149671308765
846004592.21732186929-17.435717431907-6.342144897494180.30779755517719
945074555.01502227398-17.8714749590365-33.8962129891561-0.307455929543582
1046064572.59155745894-17.10524708321738.072617874112590.551534818998117
1145034543.87846037047-17.3528288269676-32.5799342832193-0.180615374518146
1248014651.79075052804-14.708995337682759.6491597330011.94899588771539
1345644560.01765009145-9.9423398312466763.966537770068-1.46032982336277
1441424412.72091933338-12.6689203843102-185.768613903925-1.99216747750919
1548184544.37197696887-7.77808194721282190.8665793105242.00805139695843
1644084484.21714185672-9.370683122781-44.2441541283462-0.767975104227716
1744964488.80912771705-9.02971295936013-1.750884120956010.212072346432956
1845874541.43532714502-7.789029469662695.203552155377290.950777982185022
1946564587.64734250139-6.8297916345336732.6903510356070.837552421187189
2047994672.06147174387-5.3082979463426866.48185032380331.41810546027547
2146524686.29850287354-4.99069216952929-47.26341724358150.303972134709969
2246384660.17472557986-5.32880797340796-8.15061182337066-0.328718563406201
2346504674.68226298234-5.03005282527424-37.85746399950750.308538280182276
2451854841.02524288126-3.26634034895756229.6260179995592.67001045743291
2552084964.75353332506-4.80080913283692155.1259193265832.10263948337107
2644774883.06276904101-5.76213729836637-356.880561134483-1.17035362538857
2749764823.09042846157-7.04593401168794185.536751076528-0.791454353728875
2846704772.02437699692-8.12701430969474-75.1345758648307-0.653577868841304
2948424802.20064935254-7.287201670913115.73825537754710.581552437693761
3047134776.1118496738-7.64691287309199-51.0905969340473-0.289169483176817
3148044782.94717800463-7.3977217505556211.71399823625070.224039460450059
3249964840.56292190699-6.34908523452922113.359368765091.00812252794637
3345744756.59225880767-7.5549825421258-132.278595794569-1.2046379674309
3448414791.5913104948-6.9211392268386621.80390177299830.66049445219246
3546884799.34970787556-6.72508469197637-120.882604148390.227804266264539
3647664710.38893364378-7.50408242947776109.221545906391-1.27948514529948
3749944728.33230146902-7.44092128943118248.8022157165530.404181403128932
3845144771.10354125938-6.83018799634991-289.2388043741230.770977730515545
3947664689.68969457941-8.2704596036893122.288438635867-1.11429204832513
4046424693.86447598739-8.00637721143149-59.53353557166460.186603627292572
4148064726.52093916541-7.1794153893960654.03843663289250.617873206759664
4246454719.32742242495-7.17967903842355-74.3184838438041-0.000216449146859064
4347844744.17870122435-6.6268337114421919.36261507021260.494334088964439
4449794781.00908664462-5.92097680027835170.1294990178470.672314829334636
4545304742.95305673703-6.41833974143003-192.314838182105-0.497582045941296
4649424804.78053148142-5.4219745791961893.35383384779621.05670712098357
4746514784.01963277003-5.62345532153844-123.152768874263-0.237460095146315
4851504886.47903564884-4.46115724044972193.8187511165351.67677565449229
4949874843.66184092326-4.79017814999336168.224118209763-0.599131417886678
5045324817.68794657046-5.06662902153393-272.178262154609-0.325615681119011
5150464859.12832910003-4.25698645954704157.8671904389990.70292362491876
5247834861.65435263234-4.12657869136794-82.86644787290680.102436981377268
5349584878.30780752809-3.7286653894009966.68634580971770.31624703684004
5448154889.11395873645-3.46329722283497-83.29497196713440.222870330399443
5550554952.15537967729-2.3166785797117460.57100228479421.02451713598543
5651524967.16931366878-2.0332595973752173.776380172640.267580826954993
5747734979.17512802479-1.81481785801676-215.144479428060.216916739881982
5851475011.24192293884-1.31747810529082114.0977371144660.523435191447461
5948665021.75793768722-1.15740345478134-163.3266797004550.182792204834471
6053115053.95566871652-0.751007529462221235.6778612453230.515956895853735
6151725037.70477178643-0.930785142547891144.242402292285-0.240243310788691
6247345032.60273004638-0.988932486281077-295.951021529341-0.0640944969975715
6350114962.80703495296-2.1312066669986391.3470845935159-1.04633406964239
6449574989.7411600596-1.60692042548432-50.88768155103660.441135207401428
6549684961.9106173132-2.0860472434041722.5264336369758-0.39976753968185
6650495036.9892664251-0.711140798625499-36.66127242178771.18272212322267
6753055129.952186676040.892540740226754115.6685309963941.44119849920867
6850675052.1220437986-0.39813135742592664.9256027342968-1.21345743485715
6950015115.804078117780.606610355566644-155.5975404909780.988278002693228
7052525135.0528410940.884703016344468105.074381239760.287457673468632
7149035115.493809301870.596845952642823-199.469849944624-0.315217605305825
7254085132.572396916040.816704960123604264.918558888870.254343714993366
7353955177.483310169391.40201063308863189.393032433160.680695708896339
7451505279.244189200112.86935978784855-192.8935066890411.54135036600909
7554605332.913517131193.6960667662810595.13746892862570.775115230576365
7649685217.853478778831.63808301215792-175.446349034309-1.8085091730037
7750215137.26715185510.187784841999904-64.6504216014213-1.25536085991953
7851185147.912366849710.370009397519262-36.5050157883270.160271209837317
7951755104.03301262688-0.38018792722102298.9684386143709-0.680163943516852
8054205208.855904747991.34412429344472144.4151518318431.61952083953923
8151215249.41946050021.96372599978839-153.321500141360.6039711585099
8254505291.709016402882.57626200579445132.6795246133370.620893933730694
8352865381.481263794633.84950738662189-150.8702926020111.3425167587473
8456935424.880815360574.41079378247803242.9835200477150.609243327396628
8553535346.670865926943.2311190261530158.8279316429172-1.27251768766413
8650175287.017849937232.28125350320421-230.201779734386-0.965431297281687
8755775333.892565035833.00156680671946215.0229554980930.681742953964713
8849875258.128876613411.67025239406728-221.66526526844-1.20223877877698
8951295226.696835753351.10118779009737-76.8905378588375-0.506004096779152
9052495245.674633892071.40692476643759-7.943084164739140.27399764767421
9151005172.54017197020.15558937675007-25.4215735595593-1.14504816664268
9253825201.08909839730.620211311195378162.930942747660.4366572879555
9350395212.348184309810.789370063371464-180.0903040815310.16365172480814
9453645236.473975568541.14959599195551112.7348644390670.358909462043545
9551935283.197082024471.83455619608473-119.0857029540310.700908333849585
9658465398.106034713783.50787551830239376.1960411164721.73959862677537
9752595324.541515036912.35861231798003-16.6859267081061-1.18540567658231
9848095208.828975219110.535536336239876-325.157340969137-1.81219957862899
9952975131.52959526343-0.718983946126695214.524308673143-1.1913343368005
10050345165.47635805951-0.142114425455614-153.2779829089680.529939573103396
10152435228.590384380050.925562653710233-25.38796669161670.967841231013479
10251505197.05752461270.378605737576117-26.5969470291107-0.497556060230099
10352965249.356803704981.242613400015713.84741694037360.797204299574909
10455965332.124646458212.5739682304151212.3108352711491.25283028828908
10549545272.279486618281.57649680565826-278.778252004578-0.959355403915016
10652505225.739276661660.82409774534924254.713285776201-0.739424641624057
10750095194.930963073030.338310516179853-165.909827962192-0.486107787741167
10851134991.03513100067-2.77080529758732251.254798901473-3.13918273850012
10952375048.60081195335-1.84622278552211150.2133761385410.92717396107059
11045754984.04711148354-2.82891576851837-369.421532048865-0.962274588666601
11150264916.77474659534-3.86747087936761149.853880916667-0.987085850580714
11248424948.69836008864-3.27769946589008-129.2290067502210.547715126824065
11350194986.15391859264-2.599010408092327.2007531252720.623666412206491
11450635040.9406403507-1.64287462270196-14.11723454328850.879777949385953
11552615135.88390867069-0.047084768625081964.13736677176571.48253856952027
11653275122.84608019713-0.258813284566959212.363561752902-0.199524651402667
11750545191.147263541690.840899199603979-180.4908182166491.05309945865328
11852695192.249687216530.84502891882825776.58497139900980.00401659732071801
11950195157.976495322560.297235757635983-116.773104167291-0.539364336360554
12053155123.53677384538-0.241832478477185213.428246946438-0.533582258363616
12152745107.17081896382-0.493328985366796177.022788257336-0.247629557397434
12248995161.229693758450.370188004108399-296.681922105350.837016534588807
12352165139.428829428720.012682573081509790.5515002916175-0.339753937016202
12450295156.619767120270.293977337077048-138.4401851660480.26306806030267
12551105152.240564815920.216814548177761-39.2968916519279-0.0715872975274651
12650935150.783634251340.189160548114827-56.7283998874426-0.0256629371872029







Structural Time Series Model -- Extrapolation
tObservedLevelSeasonal
15278.53525262465178.6760533404399.8591992841687
25374.149880675925181.81776552336192.332115152562
35058.772966283625184.95947770628-126.18651142266
45311.874991400725188.10118988921123.773801511514
55098.992333282385191.24290207213-92.2505687897542
65391.750023188015194.38461425506197.365408932955
75346.934841971025197.52632643798149.40851553304
84912.235687054495200.66803862091-288.43235156642
95243.250657665095203.8097508038339.4409068612572
105052.387046125375206.95146298676-154.564416861381
115147.55384752885210.09317516968-62.5393276408805
125135.02811635825213.2348873526-78.2067709944002

\begin{tabular}{lllllllll}
\hline
Structural Time Series Model -- Extrapolation \tabularnewline
t & Observed & Level & Seasonal \tabularnewline
1 & 5278.5352526246 & 5178.67605334043 & 99.8591992841687 \tabularnewline
2 & 5374.14988067592 & 5181.81776552336 & 192.332115152562 \tabularnewline
3 & 5058.77296628362 & 5184.95947770628 & -126.18651142266 \tabularnewline
4 & 5311.87499140072 & 5188.10118988921 & 123.773801511514 \tabularnewline
5 & 5098.99233328238 & 5191.24290207213 & -92.2505687897542 \tabularnewline
6 & 5391.75002318801 & 5194.38461425506 & 197.365408932955 \tabularnewline
7 & 5346.93484197102 & 5197.52632643798 & 149.40851553304 \tabularnewline
8 & 4912.23568705449 & 5200.66803862091 & -288.43235156642 \tabularnewline
9 & 5243.25065766509 & 5203.80975080383 & 39.4409068612572 \tabularnewline
10 & 5052.38704612537 & 5206.95146298676 & -154.564416861381 \tabularnewline
11 & 5147.5538475288 & 5210.09317516968 & -62.5393276408805 \tabularnewline
12 & 5135.0281163582 & 5213.2348873526 & -78.2067709944002 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302821&T=2

[TABLE]
[ROW][C]Structural Time Series Model -- Extrapolation[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Level[/C][C]Seasonal[/C][/ROW]
[ROW][C]1[/C][C]5278.5352526246[/C][C]5178.67605334043[/C][C]99.8591992841687[/C][/ROW]
[ROW][C]2[/C][C]5374.14988067592[/C][C]5181.81776552336[/C][C]192.332115152562[/C][/ROW]
[ROW][C]3[/C][C]5058.77296628362[/C][C]5184.95947770628[/C][C]-126.18651142266[/C][/ROW]
[ROW][C]4[/C][C]5311.87499140072[/C][C]5188.10118988921[/C][C]123.773801511514[/C][/ROW]
[ROW][C]5[/C][C]5098.99233328238[/C][C]5191.24290207213[/C][C]-92.2505687897542[/C][/ROW]
[ROW][C]6[/C][C]5391.75002318801[/C][C]5194.38461425506[/C][C]197.365408932955[/C][/ROW]
[ROW][C]7[/C][C]5346.93484197102[/C][C]5197.52632643798[/C][C]149.40851553304[/C][/ROW]
[ROW][C]8[/C][C]4912.23568705449[/C][C]5200.66803862091[/C][C]-288.43235156642[/C][/ROW]
[ROW][C]9[/C][C]5243.25065766509[/C][C]5203.80975080383[/C][C]39.4409068612572[/C][/ROW]
[ROW][C]10[/C][C]5052.38704612537[/C][C]5206.95146298676[/C][C]-154.564416861381[/C][/ROW]
[ROW][C]11[/C][C]5147.5538475288[/C][C]5210.09317516968[/C][C]-62.5393276408805[/C][/ROW]
[ROW][C]12[/C][C]5135.0281163582[/C][C]5213.2348873526[/C][C]-78.2067709944002[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302821&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302821&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Structural Time Series Model -- Extrapolation
tObservedLevelSeasonal
15278.53525262465178.6760533404399.8591992841687
25374.149880675925181.81776552336192.332115152562
35058.772966283625184.95947770628-126.18651142266
45311.874991400725188.10118988921123.773801511514
55098.992333282385191.24290207213-92.2505687897542
65391.750023188015194.38461425506197.365408932955
75346.934841971025197.52632643798149.40851553304
84912.235687054495200.66803862091-288.43235156642
95243.250657665095203.8097508038339.4409068612572
105052.387046125375206.95146298676-154.564416861381
115147.55384752885210.09317516968-62.5393276408805
125135.02811635825213.2348873526-78.2067709944002



Parameters (Session):
par1 = 12 ; par2 = 12 ; par3 = BFGS ;
Parameters (R input):
par1 = 12 ; par2 = 12 ; par3 = BFGS ;
R code (references can be found in the software module):
require('stsm')
require('stsm.class')
require('KFKSDS')
par1 <- as.numeric(par1)
par2 <- as.numeric(par2)
nx <- length(x)
x <- ts(x,frequency=par1)
m <- StructTS(x,type='BSM')
print(m$coef)
print(m$fitted)
print(m$resid)
mylevel <- as.numeric(m$fitted[,'level'])
myslope <- as.numeric(m$fitted[,'slope'])
myseas <- as.numeric(m$fitted[,'sea'])
myresid <- as.numeric(m$resid)
myfit <- mylevel+myseas
mm <- stsm.model(model = 'BSM', y = x, transPars = 'StructTS')
fit2 <- stsmFit(mm, stsm.method = 'maxlik.td.optim', method = par3, KF.args = list(P0cov = TRUE))
(fit2.comps <- tsSmooth(fit2, P0cov = FALSE)$states)
m2 <- set.pars(mm, pmax(fit2$par, .Machine$double.eps))
(ss <- char2numeric(m2))
(pred <- predict(ss, x, n.ahead = par2))
mylagmax <- nx/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(mylevel,na.action=na.pass,lag.max = mylagmax,main='Level')
acf(myseas,na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(myresid,na.action=na.pass,lag.max = mylagmax,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(mylevel,main='Level')
spectrum(myseas,main='Seasonal')
spectrum(myresid,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(mylevel,main='Level')
cpgram(myseas,main='Seasonal')
cpgram(myresid,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test1.png')
plot(as.numeric(m$resid),main='Standardized Residuals',ylab='Residuals',xlab='time',type='b')
grid()
dev.off()
bitmap(file='test5.png')
op <- par(mfrow = c(2,2))
hist(m$resid,main='Residual Histogram')
plot(density(m$resid),main='Residual Kernel Density')
qqnorm(m$resid,main='Residual Normal QQ Plot')
qqline(m$resid)
plot(m$resid^2, myfit^2,main='Sq.Resid vs. Sq.Fit',xlab='Squared residuals',ylab='Squared Fit')
par(op)
dev.off()
bitmap(file='test6.png')
par(mfrow = c(3,1), mar = c(3,3,3,3))
plot(cbind(x, pred$pred), type = 'n', plot.type = 'single', ylab = '')
lines(x)
polygon(c(time(pred$pred), rev(time(pred$pred))), c(pred$pred + 2 * pred$se, rev(pred$pred)), col = 'gray85', border = NA)
polygon(c(time(pred$pred), rev(time(pred$pred))), c(pred$pred - 2 * pred$se, rev(pred$pred)), col = ' gray85', border = NA)
lines(pred$pred, col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the observed series', side = 3, adj = 0)
plot(cbind(x, pred$a[,1]), type = 'n', plot.type = 'single', ylab = '')
lines(x)
polygon(c(time(pred$a[,1]), rev(time(pred$a[,1]))), c(pred$a[,1] + 2 * sqrt(pred$P[,1]), rev(pred$a[,1])), col = 'gray85', border = NA)
polygon(c(time(pred$a[,1]), rev(time(pred$a[,1]))), c(pred$a[,1] - 2 * sqrt(pred$P[,1]), rev(pred$a[,1])), col = ' gray85', border = NA)
lines(pred$a[,1], col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the level component', side = 3, adj = 0)
plot(cbind(fit2.comps[,3], pred$a[,3]), type = 'n', plot.type = 'single', ylab = '')
lines(fit2.comps[,3])
polygon(c(time(pred$a[,3]), rev(time(pred$a[,3]))), c(pred$a[,3] + 2 * sqrt(pred$P[,3]), rev(pred$a[,3])), col = 'gray85', border = NA)
polygon(c(time(pred$a[,3]), rev(time(pred$a[,3]))), c(pred$a[,3] - 2 * sqrt(pred$P[,3]), rev(pred$a[,3])), col = ' gray85', border = NA)
lines(pred$a[,3], col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the seasonal component', side = 3, adj = 0)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Structural Time Series Model -- Interpolation',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Level',header=TRUE)
a<-table.element(a,'Slope',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Stand. Residuals',header=TRUE)
a<-table.row.end(a)
for (i in 1:nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,mylevel[i])
a<-table.element(a,myslope[i])
a<-table.element(a,myseas[i])
a<-table.element(a,myresid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Structural Time Series Model -- Extrapolation',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Level',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.row.end(a)
for (i in 1:par2) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,pred$pred[i])
a<-table.element(a,pred$a[i,1])
a<-table.element(a,pred$a[i,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')