Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimabackwardselection.wasp
Title produced by softwareARIMA Backward Selection
Date of computationFri, 23 Dec 2016 10:25:09 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/23/t14824851733iw15h97qfh9mry.htm/, Retrieved Fri, 01 Nov 2024 03:29:52 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=302804, Retrieved Fri, 01 Nov 2024 03:29:52 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact106
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [ARIMA Forecasting] [ ARIMA FORECAST] [2016-12-15 19:00:32] [d1d385d9b7e195437bdc484ddbefdda4]
- RMPD  [ARIMA Backward Selection] [Arima Backward Se...] [2016-12-19 20:48:05] [d1d385d9b7e195437bdc484ddbefdda4]
-   P     [ARIMA Backward Selection] [Backward Selection ] [2016-12-21 13:12:29] [d1d385d9b7e195437bdc484ddbefdda4]
-             [ARIMA Backward Selection] [BAckward last] [2016-12-23 09:25:09] [b95f76f605693b3a3343a287ab24f42a] [Current]
Feedback Forum

Post a new message
Dataseries X:
3300
4100
3550
3650
3400
4050
2950
3300
3950
3950
3900
3700
3850
4350
4350
3550
3800
4150
3500
3850
4250
4150
4200
4100
4200
4350
4150
4200
3850
4100
3800
4250
4400
4400
4450
4050
4100
4450
4600
4100
4300
4850
3800
4450
4800
4900
4900
4350
4500
5050
5150
4450
4900
5450
4100
5050
5550
5450
5500
4950
5400
5750
5950
5950
5750
6450
5000
5950
6250
6300
6400
5700
5750
6450
6500
5950
6200
6750
5300
6450
6900
6800
6750
6050
6100
7400
7300
6200
6550
7500
5400
6750
7400
7450
7200
6500
7150
8000
7000
7600
7100
8050
5700
7550
7800
7800
8250
7150
7350
7800
8250
7500
8150
8550




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time3 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302804&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]3 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=302804&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302804&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R ServerBig Analytics Cloud Computing Center







ARIMA Parameter Estimation and Backward Selection
Iterationar1ar2ar3ma1sar1sar2sma1
Estimates ( 1 )0.0227-0.1206-0.2009-0.2112-0.4439-0.3785-0.2112
(p-val)(0.9463 )(0.6114 )(0.3225 )(0.7173 )(0.192 )(0.1494 )(0.7173 )
Estimates ( 2 )0-0.1229-0.2067-0.1986-0.4471-0.3818-0.1986
(p-val)(NA )(0.5892 )(0.2594 )(0.7458 )(0.193 )(0.1343 )(0.7458 )
Estimates ( 3 )0-0.13-0.20190-0.4962-0.3791-0.3438
(p-val)(NA )(0.6064 )(0.281 )(NA )(0.065 )(0.1462 )(0.1941 )
Estimates ( 4 )00-0.19480-0.4123-0.4225-0.4268
(p-val)(NA )(NA )(0.3073 )(NA )(0.0799 )(0.0259 )(0.0572 )
Estimates ( 5 )0000-0.2166-0.2705-0.6042
(p-val)(NA )(NA )(NA )(NA )(0.0714 )(0.0124 )(0 )
Estimates ( 6 )00000-0.1897-0.6971
(p-val)(NA )(NA )(NA )(NA )(NA )(0.0637 )(0 )
Estimates ( 7 )000000-1.352
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(0 )
Estimates ( 8 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 9 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 10 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 11 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 12 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 13 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )

\begin{tabular}{lllllllll}
\hline
ARIMA Parameter Estimation and Backward Selection \tabularnewline
Iteration & ar1 & ar2 & ar3 & ma1 & sar1 & sar2 & sma1 \tabularnewline
Estimates ( 1 ) & 0.0227 & -0.1206 & -0.2009 & -0.2112 & -0.4439 & -0.3785 & -0.2112 \tabularnewline
(p-val) & (0.9463 ) & (0.6114 ) & (0.3225 ) & (0.7173 ) & (0.192 ) & (0.1494 ) & (0.7173 ) \tabularnewline
Estimates ( 2 ) & 0 & -0.1229 & -0.2067 & -0.1986 & -0.4471 & -0.3818 & -0.1986 \tabularnewline
(p-val) & (NA ) & (0.5892 ) & (0.2594 ) & (0.7458 ) & (0.193 ) & (0.1343 ) & (0.7458 ) \tabularnewline
Estimates ( 3 ) & 0 & -0.13 & -0.2019 & 0 & -0.4962 & -0.3791 & -0.3438 \tabularnewline
(p-val) & (NA ) & (0.6064 ) & (0.281 ) & (NA ) & (0.065 ) & (0.1462 ) & (0.1941 ) \tabularnewline
Estimates ( 4 ) & 0 & 0 & -0.1948 & 0 & -0.4123 & -0.4225 & -0.4268 \tabularnewline
(p-val) & (NA ) & (NA ) & (0.3073 ) & (NA ) & (0.0799 ) & (0.0259 ) & (0.0572 ) \tabularnewline
Estimates ( 5 ) & 0 & 0 & 0 & 0 & -0.2166 & -0.2705 & -0.6042 \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (0.0714 ) & (0.0124 ) & (0 ) \tabularnewline
Estimates ( 6 ) & 0 & 0 & 0 & 0 & 0 & -0.1897 & -0.6971 \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (0.0637 ) & (0 ) \tabularnewline
Estimates ( 7 ) & 0 & 0 & 0 & 0 & 0 & 0 & -1.352 \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (0 ) \tabularnewline
Estimates ( 8 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 9 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 10 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 11 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 12 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 13 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302804&T=1

[TABLE]
[ROW][C]ARIMA Parameter Estimation and Backward Selection[/C][/ROW]
[ROW][C]Iteration[/C][C]ar1[/C][C]ar2[/C][C]ar3[/C][C]ma1[/C][C]sar1[/C][C]sar2[/C][C]sma1[/C][/ROW]
[ROW][C]Estimates ( 1 )[/C][C]0.0227[/C][C]-0.1206[/C][C]-0.2009[/C][C]-0.2112[/C][C]-0.4439[/C][C]-0.3785[/C][C]-0.2112[/C][/ROW]
[ROW][C](p-val)[/C][C](0.9463 )[/C][C](0.6114 )[/C][C](0.3225 )[/C][C](0.7173 )[/C][C](0.192 )[/C][C](0.1494 )[/C][C](0.7173 )[/C][/ROW]
[ROW][C]Estimates ( 2 )[/C][C]0[/C][C]-0.1229[/C][C]-0.2067[/C][C]-0.1986[/C][C]-0.4471[/C][C]-0.3818[/C][C]-0.1986[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](0.5892 )[/C][C](0.2594 )[/C][C](0.7458 )[/C][C](0.193 )[/C][C](0.1343 )[/C][C](0.7458 )[/C][/ROW]
[ROW][C]Estimates ( 3 )[/C][C]0[/C][C]-0.13[/C][C]-0.2019[/C][C]0[/C][C]-0.4962[/C][C]-0.3791[/C][C]-0.3438[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](0.6064 )[/C][C](0.281 )[/C][C](NA )[/C][C](0.065 )[/C][C](0.1462 )[/C][C](0.1941 )[/C][/ROW]
[ROW][C]Estimates ( 4 )[/C][C]0[/C][C]0[/C][C]-0.1948[/C][C]0[/C][C]-0.4123[/C][C]-0.4225[/C][C]-0.4268[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](0.3073 )[/C][C](NA )[/C][C](0.0799 )[/C][C](0.0259 )[/C][C](0.0572 )[/C][/ROW]
[ROW][C]Estimates ( 5 )[/C][C]0[/C][C]0[/C][C]0[/C][C]0[/C][C]-0.2166[/C][C]-0.2705[/C][C]-0.6042[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](0.0714 )[/C][C](0.0124 )[/C][C](0 )[/C][/ROW]
[ROW][C]Estimates ( 6 )[/C][C]0[/C][C]0[/C][C]0[/C][C]0[/C][C]0[/C][C]-0.1897[/C][C]-0.6971[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](0.0637 )[/C][C](0 )[/C][/ROW]
[ROW][C]Estimates ( 7 )[/C][C]0[/C][C]0[/C][C]0[/C][C]0[/C][C]0[/C][C]0[/C][C]-1.352[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](0 )[/C][/ROW]
[ROW][C]Estimates ( 8 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 9 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 10 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 11 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 12 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 13 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302804&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302804&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ARIMA Parameter Estimation and Backward Selection
Iterationar1ar2ar3ma1sar1sar2sma1
Estimates ( 1 )0.0227-0.1206-0.2009-0.2112-0.4439-0.3785-0.2112
(p-val)(0.9463 )(0.6114 )(0.3225 )(0.7173 )(0.192 )(0.1494 )(0.7173 )
Estimates ( 2 )0-0.1229-0.2067-0.1986-0.4471-0.3818-0.1986
(p-val)(NA )(0.5892 )(0.2594 )(0.7458 )(0.193 )(0.1343 )(0.7458 )
Estimates ( 3 )0-0.13-0.20190-0.4962-0.3791-0.3438
(p-val)(NA )(0.6064 )(0.281 )(NA )(0.065 )(0.1462 )(0.1941 )
Estimates ( 4 )00-0.19480-0.4123-0.4225-0.4268
(p-val)(NA )(NA )(0.3073 )(NA )(0.0799 )(0.0259 )(0.0572 )
Estimates ( 5 )0000-0.2166-0.2705-0.6042
(p-val)(NA )(NA )(NA )(NA )(0.0714 )(0.0124 )(0 )
Estimates ( 6 )00000-0.1897-0.6971
(p-val)(NA )(NA )(NA )(NA )(NA )(0.0637 )(0 )
Estimates ( 7 )000000-1.352
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(0 )
Estimates ( 8 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 9 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 10 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 11 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 12 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 13 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )







Estimated ARIMA Residuals
Value
8.79924648405059e-05
-0.00446804241594117
0.00133409589354687
-0.000905433734536891
0.00188283044918937
-0.00327566447627855
0.00630950036769254
0.000516714700819214
-0.0026916501036922
-0.00244357731086336
-0.00225918189669532
-0.000242196518985557
-0.00111580751826973
-0.00354679526829208
-0.00266365383431838
0.00266143304195049
0.000115651267545559
-0.00115351080302502
0.00317281658174129
-0.000642541956777689
-0.00208552411552487
-0.00133158651823936
-0.00168868165126776
-0.000472431055053494
-0.00097911582855122
-0.00142705573171918
4.42375937947675e-05
-0.00042640727737247
0.00208600079746168
-0.000172533300239599
0.00219144208075579
-0.00155526132534043
-0.00156783129322139
-0.00162140595583346
-0.00156369281624266
0.00121534308568816
0.00049138769232644
-0.00122140566398158
-0.00170527432724819
0.00122895201937421
-0.000463940594476366
-0.00267505886022757
0.00386624376316749
-0.00175401036398281
-0.00189981460124793
-0.00254980061205246
-0.00212033483912949
0.0012717045899655
6.69774149223007e-05
-0.00214016156445615
-0.00210174429647622
0.00146707763840766
-0.00135493753693693
-0.00274483909333995
0.00439936964932568
-0.00239549031523302
-0.0025524627137387
-0.00231570124169239
-0.00223183393854756
0.000946461862712772
-0.00138700442147675
-0.00192367762055481
-0.00248214330482086
-0.00199919891077922
-0.000777775393243058
-0.00306571910540031
0.00372019343191297
-0.00183517957883236
-0.00127539834482071
-0.00181203017674905
-0.00180976831332168
0.00125615434969442
0.000615464181209224
-0.00161046771721436
-0.00132632066776865
0.00052642275046727
-0.00056938844751217
-0.00186419234668395
0.00387068396683826
-0.00201656525663026
-0.00183366229812063
-0.00179736986017025
-0.00136950279155998
0.00147447082676842
0.000876776392476089
-0.00305982982539442
-0.00188498228014206
0.00138627598975133
-0.00016993258290128
-0.00231004770537908
0.00528773036303846
-0.00177003191649751
-0.00181354284843503
-0.00233625392775433
-0.00128575626666001
0.00124684658794712
-0.00102009834169581
-0.0026116760407785
0.000552725934124865
-0.00176466325643812
0.000706073516523034
-0.00241770335583888
0.00593020992650155
-0.00239597366368648
-0.000943788626094427
-0.00180390695670789
-0.00251853137347233
0.0011763702949486
2.9754864467213e-05
-0.000645634299118125
-0.00169351002857367
0.000526261934507291
-0.001542209999123
-0.00166469029683559

\begin{tabular}{lllllllll}
\hline
Estimated ARIMA Residuals \tabularnewline
Value \tabularnewline
8.79924648405059e-05 \tabularnewline
-0.00446804241594117 \tabularnewline
0.00133409589354687 \tabularnewline
-0.000905433734536891 \tabularnewline
0.00188283044918937 \tabularnewline
-0.00327566447627855 \tabularnewline
0.00630950036769254 \tabularnewline
0.000516714700819214 \tabularnewline
-0.0026916501036922 \tabularnewline
-0.00244357731086336 \tabularnewline
-0.00225918189669532 \tabularnewline
-0.000242196518985557 \tabularnewline
-0.00111580751826973 \tabularnewline
-0.00354679526829208 \tabularnewline
-0.00266365383431838 \tabularnewline
0.00266143304195049 \tabularnewline
0.000115651267545559 \tabularnewline
-0.00115351080302502 \tabularnewline
0.00317281658174129 \tabularnewline
-0.000642541956777689 \tabularnewline
-0.00208552411552487 \tabularnewline
-0.00133158651823936 \tabularnewline
-0.00168868165126776 \tabularnewline
-0.000472431055053494 \tabularnewline
-0.00097911582855122 \tabularnewline
-0.00142705573171918 \tabularnewline
4.42375937947675e-05 \tabularnewline
-0.00042640727737247 \tabularnewline
0.00208600079746168 \tabularnewline
-0.000172533300239599 \tabularnewline
0.00219144208075579 \tabularnewline
-0.00155526132534043 \tabularnewline
-0.00156783129322139 \tabularnewline
-0.00162140595583346 \tabularnewline
-0.00156369281624266 \tabularnewline
0.00121534308568816 \tabularnewline
0.00049138769232644 \tabularnewline
-0.00122140566398158 \tabularnewline
-0.00170527432724819 \tabularnewline
0.00122895201937421 \tabularnewline
-0.000463940594476366 \tabularnewline
-0.00267505886022757 \tabularnewline
0.00386624376316749 \tabularnewline
-0.00175401036398281 \tabularnewline
-0.00189981460124793 \tabularnewline
-0.00254980061205246 \tabularnewline
-0.00212033483912949 \tabularnewline
0.0012717045899655 \tabularnewline
6.69774149223007e-05 \tabularnewline
-0.00214016156445615 \tabularnewline
-0.00210174429647622 \tabularnewline
0.00146707763840766 \tabularnewline
-0.00135493753693693 \tabularnewline
-0.00274483909333995 \tabularnewline
0.00439936964932568 \tabularnewline
-0.00239549031523302 \tabularnewline
-0.0025524627137387 \tabularnewline
-0.00231570124169239 \tabularnewline
-0.00223183393854756 \tabularnewline
0.000946461862712772 \tabularnewline
-0.00138700442147675 \tabularnewline
-0.00192367762055481 \tabularnewline
-0.00248214330482086 \tabularnewline
-0.00199919891077922 \tabularnewline
-0.000777775393243058 \tabularnewline
-0.00306571910540031 \tabularnewline
0.00372019343191297 \tabularnewline
-0.00183517957883236 \tabularnewline
-0.00127539834482071 \tabularnewline
-0.00181203017674905 \tabularnewline
-0.00180976831332168 \tabularnewline
0.00125615434969442 \tabularnewline
0.000615464181209224 \tabularnewline
-0.00161046771721436 \tabularnewline
-0.00132632066776865 \tabularnewline
0.00052642275046727 \tabularnewline
-0.00056938844751217 \tabularnewline
-0.00186419234668395 \tabularnewline
0.00387068396683826 \tabularnewline
-0.00201656525663026 \tabularnewline
-0.00183366229812063 \tabularnewline
-0.00179736986017025 \tabularnewline
-0.00136950279155998 \tabularnewline
0.00147447082676842 \tabularnewline
0.000876776392476089 \tabularnewline
-0.00305982982539442 \tabularnewline
-0.00188498228014206 \tabularnewline
0.00138627598975133 \tabularnewline
-0.00016993258290128 \tabularnewline
-0.00231004770537908 \tabularnewline
0.00528773036303846 \tabularnewline
-0.00177003191649751 \tabularnewline
-0.00181354284843503 \tabularnewline
-0.00233625392775433 \tabularnewline
-0.00128575626666001 \tabularnewline
0.00124684658794712 \tabularnewline
-0.00102009834169581 \tabularnewline
-0.0026116760407785 \tabularnewline
0.000552725934124865 \tabularnewline
-0.00176466325643812 \tabularnewline
0.000706073516523034 \tabularnewline
-0.00241770335583888 \tabularnewline
0.00593020992650155 \tabularnewline
-0.00239597366368648 \tabularnewline
-0.000943788626094427 \tabularnewline
-0.00180390695670789 \tabularnewline
-0.00251853137347233 \tabularnewline
0.0011763702949486 \tabularnewline
2.9754864467213e-05 \tabularnewline
-0.000645634299118125 \tabularnewline
-0.00169351002857367 \tabularnewline
0.000526261934507291 \tabularnewline
-0.001542209999123 \tabularnewline
-0.00166469029683559 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302804&T=2

[TABLE]
[ROW][C]Estimated ARIMA Residuals[/C][/ROW]
[ROW][C]Value[/C][/ROW]
[ROW][C]8.79924648405059e-05[/C][/ROW]
[ROW][C]-0.00446804241594117[/C][/ROW]
[ROW][C]0.00133409589354687[/C][/ROW]
[ROW][C]-0.000905433734536891[/C][/ROW]
[ROW][C]0.00188283044918937[/C][/ROW]
[ROW][C]-0.00327566447627855[/C][/ROW]
[ROW][C]0.00630950036769254[/C][/ROW]
[ROW][C]0.000516714700819214[/C][/ROW]
[ROW][C]-0.0026916501036922[/C][/ROW]
[ROW][C]-0.00244357731086336[/C][/ROW]
[ROW][C]-0.00225918189669532[/C][/ROW]
[ROW][C]-0.000242196518985557[/C][/ROW]
[ROW][C]-0.00111580751826973[/C][/ROW]
[ROW][C]-0.00354679526829208[/C][/ROW]
[ROW][C]-0.00266365383431838[/C][/ROW]
[ROW][C]0.00266143304195049[/C][/ROW]
[ROW][C]0.000115651267545559[/C][/ROW]
[ROW][C]-0.00115351080302502[/C][/ROW]
[ROW][C]0.00317281658174129[/C][/ROW]
[ROW][C]-0.000642541956777689[/C][/ROW]
[ROW][C]-0.00208552411552487[/C][/ROW]
[ROW][C]-0.00133158651823936[/C][/ROW]
[ROW][C]-0.00168868165126776[/C][/ROW]
[ROW][C]-0.000472431055053494[/C][/ROW]
[ROW][C]-0.00097911582855122[/C][/ROW]
[ROW][C]-0.00142705573171918[/C][/ROW]
[ROW][C]4.42375937947675e-05[/C][/ROW]
[ROW][C]-0.00042640727737247[/C][/ROW]
[ROW][C]0.00208600079746168[/C][/ROW]
[ROW][C]-0.000172533300239599[/C][/ROW]
[ROW][C]0.00219144208075579[/C][/ROW]
[ROW][C]-0.00155526132534043[/C][/ROW]
[ROW][C]-0.00156783129322139[/C][/ROW]
[ROW][C]-0.00162140595583346[/C][/ROW]
[ROW][C]-0.00156369281624266[/C][/ROW]
[ROW][C]0.00121534308568816[/C][/ROW]
[ROW][C]0.00049138769232644[/C][/ROW]
[ROW][C]-0.00122140566398158[/C][/ROW]
[ROW][C]-0.00170527432724819[/C][/ROW]
[ROW][C]0.00122895201937421[/C][/ROW]
[ROW][C]-0.000463940594476366[/C][/ROW]
[ROW][C]-0.00267505886022757[/C][/ROW]
[ROW][C]0.00386624376316749[/C][/ROW]
[ROW][C]-0.00175401036398281[/C][/ROW]
[ROW][C]-0.00189981460124793[/C][/ROW]
[ROW][C]-0.00254980061205246[/C][/ROW]
[ROW][C]-0.00212033483912949[/C][/ROW]
[ROW][C]0.0012717045899655[/C][/ROW]
[ROW][C]6.69774149223007e-05[/C][/ROW]
[ROW][C]-0.00214016156445615[/C][/ROW]
[ROW][C]-0.00210174429647622[/C][/ROW]
[ROW][C]0.00146707763840766[/C][/ROW]
[ROW][C]-0.00135493753693693[/C][/ROW]
[ROW][C]-0.00274483909333995[/C][/ROW]
[ROW][C]0.00439936964932568[/C][/ROW]
[ROW][C]-0.00239549031523302[/C][/ROW]
[ROW][C]-0.0025524627137387[/C][/ROW]
[ROW][C]-0.00231570124169239[/C][/ROW]
[ROW][C]-0.00223183393854756[/C][/ROW]
[ROW][C]0.000946461862712772[/C][/ROW]
[ROW][C]-0.00138700442147675[/C][/ROW]
[ROW][C]-0.00192367762055481[/C][/ROW]
[ROW][C]-0.00248214330482086[/C][/ROW]
[ROW][C]-0.00199919891077922[/C][/ROW]
[ROW][C]-0.000777775393243058[/C][/ROW]
[ROW][C]-0.00306571910540031[/C][/ROW]
[ROW][C]0.00372019343191297[/C][/ROW]
[ROW][C]-0.00183517957883236[/C][/ROW]
[ROW][C]-0.00127539834482071[/C][/ROW]
[ROW][C]-0.00181203017674905[/C][/ROW]
[ROW][C]-0.00180976831332168[/C][/ROW]
[ROW][C]0.00125615434969442[/C][/ROW]
[ROW][C]0.000615464181209224[/C][/ROW]
[ROW][C]-0.00161046771721436[/C][/ROW]
[ROW][C]-0.00132632066776865[/C][/ROW]
[ROW][C]0.00052642275046727[/C][/ROW]
[ROW][C]-0.00056938844751217[/C][/ROW]
[ROW][C]-0.00186419234668395[/C][/ROW]
[ROW][C]0.00387068396683826[/C][/ROW]
[ROW][C]-0.00201656525663026[/C][/ROW]
[ROW][C]-0.00183366229812063[/C][/ROW]
[ROW][C]-0.00179736986017025[/C][/ROW]
[ROW][C]-0.00136950279155998[/C][/ROW]
[ROW][C]0.00147447082676842[/C][/ROW]
[ROW][C]0.000876776392476089[/C][/ROW]
[ROW][C]-0.00305982982539442[/C][/ROW]
[ROW][C]-0.00188498228014206[/C][/ROW]
[ROW][C]0.00138627598975133[/C][/ROW]
[ROW][C]-0.00016993258290128[/C][/ROW]
[ROW][C]-0.00231004770537908[/C][/ROW]
[ROW][C]0.00528773036303846[/C][/ROW]
[ROW][C]-0.00177003191649751[/C][/ROW]
[ROW][C]-0.00181354284843503[/C][/ROW]
[ROW][C]-0.00233625392775433[/C][/ROW]
[ROW][C]-0.00128575626666001[/C][/ROW]
[ROW][C]0.00124684658794712[/C][/ROW]
[ROW][C]-0.00102009834169581[/C][/ROW]
[ROW][C]-0.0026116760407785[/C][/ROW]
[ROW][C]0.000552725934124865[/C][/ROW]
[ROW][C]-0.00176466325643812[/C][/ROW]
[ROW][C]0.000706073516523034[/C][/ROW]
[ROW][C]-0.00241770335583888[/C][/ROW]
[ROW][C]0.00593020992650155[/C][/ROW]
[ROW][C]-0.00239597366368648[/C][/ROW]
[ROW][C]-0.000943788626094427[/C][/ROW]
[ROW][C]-0.00180390695670789[/C][/ROW]
[ROW][C]-0.00251853137347233[/C][/ROW]
[ROW][C]0.0011763702949486[/C][/ROW]
[ROW][C]2.9754864467213e-05[/C][/ROW]
[ROW][C]-0.000645634299118125[/C][/ROW]
[ROW][C]-0.00169351002857367[/C][/ROW]
[ROW][C]0.000526261934507291[/C][/ROW]
[ROW][C]-0.001542209999123[/C][/ROW]
[ROW][C]-0.00166469029683559[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302804&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302804&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimated ARIMA Residuals
Value
8.79924648405059e-05
-0.00446804241594117
0.00133409589354687
-0.000905433734536891
0.00188283044918937
-0.00327566447627855
0.00630950036769254
0.000516714700819214
-0.0026916501036922
-0.00244357731086336
-0.00225918189669532
-0.000242196518985557
-0.00111580751826973
-0.00354679526829208
-0.00266365383431838
0.00266143304195049
0.000115651267545559
-0.00115351080302502
0.00317281658174129
-0.000642541956777689
-0.00208552411552487
-0.00133158651823936
-0.00168868165126776
-0.000472431055053494
-0.00097911582855122
-0.00142705573171918
4.42375937947675e-05
-0.00042640727737247
0.00208600079746168
-0.000172533300239599
0.00219144208075579
-0.00155526132534043
-0.00156783129322139
-0.00162140595583346
-0.00156369281624266
0.00121534308568816
0.00049138769232644
-0.00122140566398158
-0.00170527432724819
0.00122895201937421
-0.000463940594476366
-0.00267505886022757
0.00386624376316749
-0.00175401036398281
-0.00189981460124793
-0.00254980061205246
-0.00212033483912949
0.0012717045899655
6.69774149223007e-05
-0.00214016156445615
-0.00210174429647622
0.00146707763840766
-0.00135493753693693
-0.00274483909333995
0.00439936964932568
-0.00239549031523302
-0.0025524627137387
-0.00231570124169239
-0.00223183393854756
0.000946461862712772
-0.00138700442147675
-0.00192367762055481
-0.00248214330482086
-0.00199919891077922
-0.000777775393243058
-0.00306571910540031
0.00372019343191297
-0.00183517957883236
-0.00127539834482071
-0.00181203017674905
-0.00180976831332168
0.00125615434969442
0.000615464181209224
-0.00161046771721436
-0.00132632066776865
0.00052642275046727
-0.00056938844751217
-0.00186419234668395
0.00387068396683826
-0.00201656525663026
-0.00183366229812063
-0.00179736986017025
-0.00136950279155998
0.00147447082676842
0.000876776392476089
-0.00305982982539442
-0.00188498228014206
0.00138627598975133
-0.00016993258290128
-0.00231004770537908
0.00528773036303846
-0.00177003191649751
-0.00181354284843503
-0.00233625392775433
-0.00128575626666001
0.00124684658794712
-0.00102009834169581
-0.0026116760407785
0.000552725934124865
-0.00176466325643812
0.000706073516523034
-0.00241770335583888
0.00593020992650155
-0.00239597366368648
-0.000943788626094427
-0.00180390695670789
-0.00251853137347233
0.0011763702949486
2.9754864467213e-05
-0.000645634299118125
-0.00169351002857367
0.000526261934507291
-0.001542209999123
-0.00166469029683559



Parameters (Session):
par1 = 1 ; par2 = 2 ; par3 = 3 ; par4 = TRUE ;
Parameters (R input):
par1 = 1 ; par2 = -0.3 ; par3 = 0 ; par4 = 1 ; par5 = 1 ; par6 = 3 ; par7 = 1 ; par8 = 2 ; par9 = 1 ;
R code (references can be found in the software module):
library(lattice)
if (par1 == 'TRUE') par1 <- TRUE
if (par1 == 'FALSE') par1 <- FALSE
par2 <- as.numeric(par2) #Box-Cox lambda transformation parameter
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #degree (p) of the non-seasonal AR(p) polynomial
par7 <- as.numeric(par7) #degree (q) of the non-seasonal MA(q) polynomial
par8 <- as.numeric(par8) #degree (P) of the seasonal AR(P) polynomial
par9 <- as.numeric(par9) #degree (Q) of the seasonal MA(Q) polynomial
armaGR <- function(arima.out, names, n){
try1 <- arima.out$coef
try2 <- sqrt(diag(arima.out$var.coef))
try.data.frame <- data.frame(matrix(NA,ncol=4,nrow=length(names)))
dimnames(try.data.frame) <- list(names,c('coef','std','tstat','pv'))
try.data.frame[,1] <- try1
for(i in 1:length(try2)) try.data.frame[which(rownames(try.data.frame)==names(try2)[i]),2] <- try2[i]
try.data.frame[,3] <- try.data.frame[,1] / try.data.frame[,2]
try.data.frame[,4] <- round((1-pt(abs(try.data.frame[,3]),df=n-(length(try2)+1)))*2,5)
vector <- rep(NA,length(names))
vector[is.na(try.data.frame[,4])] <- 0
maxi <- which.max(try.data.frame[,4])
continue <- max(try.data.frame[,4],na.rm=TRUE) > .05
vector[maxi] <- 0
list(summary=try.data.frame,next.vector=vector,continue=continue)
}
arimaSelect <- function(series, order=c(13,0,0), seasonal=list(order=c(2,0,0),period=12), include.mean=F){
nrc <- order[1]+order[3]+seasonal$order[1]+seasonal$order[3]
coeff <- matrix(NA, nrow=nrc*2, ncol=nrc)
pval <- matrix(NA, nrow=nrc*2, ncol=nrc)
mylist <- rep(list(NULL), nrc)
names <- NULL
if(order[1] > 0) names <- paste('ar',1:order[1],sep='')
if(order[3] > 0) names <- c( names , paste('ma',1:order[3],sep='') )
if(seasonal$order[1] > 0) names <- c(names, paste('sar',1:seasonal$order[1],sep=''))
if(seasonal$order[3] > 0) names <- c(names, paste('sma',1:seasonal$order[3],sep=''))
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML')
mylist[[1]] <- arima.out
last.arma <- armaGR(arima.out, names, length(series))
mystop <- FALSE
i <- 1
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- 2
aic <- arima.out$aic
while(!mystop){
mylist[[i]] <- arima.out
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML', fixed=last.arma$next.vector)
aic <- c(aic, arima.out$aic)
last.arma <- armaGR(arima.out, names, length(series))
mystop <- !last.arma$continue
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- i+1
}
list(coeff, pval, mylist, aic=aic)
}
arimaSelectplot <- function(arimaSelect.out,noms,choix){
noms <- names(arimaSelect.out[[3]][[1]]$coef)
coeff <- arimaSelect.out[[1]]
k <- min(which(is.na(coeff[,1])))-1
coeff <- coeff[1:k,]
pval <- arimaSelect.out[[2]][1:k,]
aic <- arimaSelect.out$aic[1:k]
coeff[coeff==0] <- NA
n <- ncol(coeff)
if(missing(choix)) choix <- k
layout(matrix(c(1,1,1,2,
3,3,3,2,
3,3,3,4,
5,6,7,7),nr=4),
widths=c(10,35,45,15),
heights=c(30,30,15,15))
couleurs <- rainbow(75)[1:50]#(50)
ticks <- pretty(coeff)
par(mar=c(1,1,3,1))
plot(aic,k:1-.5,type='o',pch=21,bg='blue',cex=2,axes=F,lty=2,xpd=NA)
points(aic[choix],k-choix+.5,pch=21,cex=4,bg=2,xpd=NA)
title('aic',line=2)
par(mar=c(3,0,0,0))
plot(0,axes=F,xlab='',ylab='',xlim=range(ticks),ylim=c(.1,1))
rect(xleft = min(ticks) + (0:49)/50*(max(ticks)-min(ticks)),
xright = min(ticks) + (1:50)/50*(max(ticks)-min(ticks)),
ytop = rep(1,50),
ybottom= rep(0,50),col=couleurs,border=NA)
axis(1,ticks)
rect(xleft=min(ticks),xright=max(ticks),ytop=1,ybottom=0)
text(mean(coeff,na.rm=T),.5,'coefficients',cex=2,font=2)
par(mar=c(1,1,3,1))
image(1:n,1:k,t(coeff[k:1,]),axes=F,col=couleurs,zlim=range(ticks))
for(i in 1:n) for(j in 1:k) if(!is.na(coeff[j,i])) {
if(pval[j,i]<.01) symb = 'green'
else if( (pval[j,i]<.05) & (pval[j,i]>=.01)) symb = 'orange'
else if( (pval[j,i]<.1) & (pval[j,i]>=.05)) symb = 'red'
else symb = 'black'
polygon(c(i+.5 ,i+.2 ,i+.5 ,i+.5),
c(k-j+0.5,k-j+0.5,k-j+0.8,k-j+0.5),
col=symb)
if(j==choix) {
rect(xleft=i-.5,
xright=i+.5,
ybottom=k-j+1.5,
ytop=k-j+.5,
lwd=4)
text(i,
k-j+1,
round(coeff[j,i],2),
cex=1.2,
font=2)
}
else{
rect(xleft=i-.5,xright=i+.5,ybottom=k-j+1.5,ytop=k-j+.5)
text(i,k-j+1,round(coeff[j,i],2),cex=1.2,font=1)
}
}
axis(3,1:n,noms)
par(mar=c(0.5,0,0,0.5))
plot(0,axes=F,xlab='',ylab='',type='n',xlim=c(0,8),ylim=c(-.2,.8))
cols <- c('green','orange','red','black')
niv <- c('0','0.01','0.05','0.1')
for(i in 0:3){
polygon(c(1+2*i ,1+2*i ,1+2*i-.5 ,1+2*i),
c(.4 ,.7 , .4 , .4),
col=cols[i+1])
text(2*i,0.5,niv[i+1],cex=1.5)
}
text(8,.5,1,cex=1.5)
text(4,0,'p-value',cex=2)
box()
residus <- arimaSelect.out[[3]][[choix]]$res
par(mar=c(1,2,4,1))
acf(residus,main='')
title('acf',line=.5)
par(mar=c(1,2,4,1))
pacf(residus,main='')
title('pacf',line=.5)
par(mar=c(2,2,4,1))
qqnorm(residus,main='')
title('qq-norm',line=.5)
qqline(residus)
residus
}
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
(selection <- arimaSelect(x, order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5)))
bitmap(file='test1.png')
resid <- arimaSelectplot(selection)
dev.off()
resid
bitmap(file='test2.png')
acf(resid,length(resid)/2, main='Residual Autocorrelation Function')
dev.off()
bitmap(file='test3.png')
pacf(resid,length(resid)/2, main='Residual Partial Autocorrelation Function')
dev.off()
bitmap(file='test4.png')
cpgram(resid, main='Residual Cumulative Periodogram')
dev.off()
bitmap(file='test5.png')
hist(resid, main='Residual Histogram', xlab='values of Residuals')
dev.off()
bitmap(file='test6.png')
densityplot(~resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test7.png')
qqnorm(resid, main='Residual Normal Q-Q Plot')
qqline(resid)
dev.off()
ncols <- length(selection[[1]][1,])
nrows <- length(selection[[2]][,1])-1
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'ARIMA Parameter Estimation and Backward Selection', ncols+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Iteration', header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,names(selection[[3]][[1]]$coef)[i],header=TRUE)
}
a<-table.row.end(a)
for (j in 1:nrows) {
a<-table.row.start(a)
mydum <- 'Estimates ('
mydum <- paste(mydum,j)
mydum <- paste(mydum,')')
a<-table.element(a,mydum, header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,round(selection[[1]][j,i],4))
}
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'(p-val)', header=TRUE)
for (i in 1:ncols) {
mydum <- '('
mydum <- paste(mydum,round(selection[[2]][j,i],4),sep='')
mydum <- paste(mydum,')')
a<-table.element(a,mydum)
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimated ARIMA Residuals', 1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Value', 1,TRUE)
a<-table.row.end(a)
for (i in (par4*par5+par3):length(resid)) {
a<-table.row.start(a)
a<-table.element(a,resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')