Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimaforecasting.wasp
Title produced by softwareARIMA Forecasting
Date of computationFri, 23 Dec 2016 09:27:39 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/23/t148248255559j86h0jpbl2gll.htm/, Retrieved Fri, 01 Nov 2024 03:44:09 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=302783, Retrieved Fri, 01 Nov 2024 03:44:09 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact114
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [ARIMA Forecasting] [] [2016-12-23 08:27:39] [0b5bf205c55efce49027552c8371b570] [Current]
Feedback Forum

Post a new message
Dataseries X:
3996.1
3984.2
4049
4032.8
4074.1
4114.4
4091.4
4166.6
4152.5
4112.7
4145.9
4174.4
4183.6
4172.5
4280.3
4327.4
4251.2
4256.5
4285.7
4257.4
4231.9
4274.3
4248.3
4310.5
4301.9
4336.5
4385.1
4310.4
4378.8
4338
4304.2
4266.9
4230.1
4230.6
4353.2
4371.2
4393.2
4250.2
4129.5
4124.9
4177.1
4156.9
4111.9
4167.4
4190.7
4165
4209.8
4250
4224.8
4322.7
4311.7
4373.8
4358.9
4441.2
4538.9
4444.8
4537.8
4490.2
4517.3
4561.9
4567
4588.3
4656.8
4677.7
4684.2
4752.8
4738.9
4785.6
4742.7
4711.4
4758.1
4800.5
4877.3
4885
4941.4
5009.4
5017.5
4984.1
4903.9
4968.6
4937.3
4987.1
5001.9
5094.6
5177.8
5206.1
5253.1
5284.3
5266.8
5225.1
5272.8
5529.8
5535.2
5715.9
5672.2
5475.7
5435.3
5458.5
5373.3
5395.3
5515
5410.9
5400.2
5424.2
5388.5
5482.1
5506.9
5377.2
5353.5
5401.1
5438.1
5510.2
5499
5606.5
5644
5440.7




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302783&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=302783&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302783&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[98])
865206.1-------
875253.1-------
885284.3-------
895266.8-------
905225.1-------
915272.8-------
925529.8-------
935535.2-------
945715.9-------
955672.2-------
965475.7-------
975435.3-------
985458.5-------
995373.35473.57665350.45925596.69390.05520.59480.99980.5948
1005395.35488.65325313.65285663.65350.14790.90180.9890.6322
10155155503.72985288.31915719.14040.45920.83810.98450.6597
1025410.95518.80645268.83095768.78180.19880.51190.98940.6818
1035400.25533.88295253.02175814.74420.17540.80460.96580.7006
1045424.25548.95955239.78685858.13230.21450.82720.54830.7168
1055388.55564.03615228.47415899.59810.15260.7930.56690.7312
1065482.15579.11275218.66125939.56420.29890.850.22850.744
1075506.95594.18935210.05645978.32220.3280.71630.34530.7556
1085377.25609.26595202.44866016.08320.13180.68910.74010.7662
1095353.55624.34255195.67966053.00530.10780.87080.80630.7759
1105401.15639.41915189.62726089.2110.14950.89360.78480.7848
1115438.15654.49575184.19466124.79670.18360.85450.87940.793
1125510.25669.57235179.30426159.84030.2620.82260.86360.8006
11354995684.64885174.89236194.40540.23770.74880.74290.8077
1145606.55699.72545170.90586228.5450.36480.77160.85780.8144
11556445714.8025167.30056262.30360.40.65090.870.8206
1165440.75729.87865164.03846295.71880.15820.61690.85520.8264

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast \tabularnewline
time & Y[t] & F[t] & 95% LB & 95% UB & p-value(H0: Y[t] = F[t]) & P(F[t]>Y[t-1]) & P(F[t]>Y[t-s]) & P(F[t]>Y[98]) \tabularnewline
86 & 5206.1 & - & - & - & - & - & - & - \tabularnewline
87 & 5253.1 & - & - & - & - & - & - & - \tabularnewline
88 & 5284.3 & - & - & - & - & - & - & - \tabularnewline
89 & 5266.8 & - & - & - & - & - & - & - \tabularnewline
90 & 5225.1 & - & - & - & - & - & - & - \tabularnewline
91 & 5272.8 & - & - & - & - & - & - & - \tabularnewline
92 & 5529.8 & - & - & - & - & - & - & - \tabularnewline
93 & 5535.2 & - & - & - & - & - & - & - \tabularnewline
94 & 5715.9 & - & - & - & - & - & - & - \tabularnewline
95 & 5672.2 & - & - & - & - & - & - & - \tabularnewline
96 & 5475.7 & - & - & - & - & - & - & - \tabularnewline
97 & 5435.3 & - & - & - & - & - & - & - \tabularnewline
98 & 5458.5 & - & - & - & - & - & - & - \tabularnewline
99 & 5373.3 & 5473.5766 & 5350.4592 & 5596.6939 & 0.0552 & 0.5948 & 0.9998 & 0.5948 \tabularnewline
100 & 5395.3 & 5488.6532 & 5313.6528 & 5663.6535 & 0.1479 & 0.9018 & 0.989 & 0.6322 \tabularnewline
101 & 5515 & 5503.7298 & 5288.3191 & 5719.1404 & 0.4592 & 0.8381 & 0.9845 & 0.6597 \tabularnewline
102 & 5410.9 & 5518.8064 & 5268.8309 & 5768.7818 & 0.1988 & 0.5119 & 0.9894 & 0.6818 \tabularnewline
103 & 5400.2 & 5533.8829 & 5253.0217 & 5814.7442 & 0.1754 & 0.8046 & 0.9658 & 0.7006 \tabularnewline
104 & 5424.2 & 5548.9595 & 5239.7868 & 5858.1323 & 0.2145 & 0.8272 & 0.5483 & 0.7168 \tabularnewline
105 & 5388.5 & 5564.0361 & 5228.4741 & 5899.5981 & 0.1526 & 0.793 & 0.5669 & 0.7312 \tabularnewline
106 & 5482.1 & 5579.1127 & 5218.6612 & 5939.5642 & 0.2989 & 0.85 & 0.2285 & 0.744 \tabularnewline
107 & 5506.9 & 5594.1893 & 5210.0564 & 5978.3222 & 0.328 & 0.7163 & 0.3453 & 0.7556 \tabularnewline
108 & 5377.2 & 5609.2659 & 5202.4486 & 6016.0832 & 0.1318 & 0.6891 & 0.7401 & 0.7662 \tabularnewline
109 & 5353.5 & 5624.3425 & 5195.6796 & 6053.0053 & 0.1078 & 0.8708 & 0.8063 & 0.7759 \tabularnewline
110 & 5401.1 & 5639.4191 & 5189.6272 & 6089.211 & 0.1495 & 0.8936 & 0.7848 & 0.7848 \tabularnewline
111 & 5438.1 & 5654.4957 & 5184.1946 & 6124.7967 & 0.1836 & 0.8545 & 0.8794 & 0.793 \tabularnewline
112 & 5510.2 & 5669.5723 & 5179.3042 & 6159.8403 & 0.262 & 0.8226 & 0.8636 & 0.8006 \tabularnewline
113 & 5499 & 5684.6488 & 5174.8923 & 6194.4054 & 0.2377 & 0.7488 & 0.7429 & 0.8077 \tabularnewline
114 & 5606.5 & 5699.7254 & 5170.9058 & 6228.545 & 0.3648 & 0.7716 & 0.8578 & 0.8144 \tabularnewline
115 & 5644 & 5714.802 & 5167.3005 & 6262.3036 & 0.4 & 0.6509 & 0.87 & 0.8206 \tabularnewline
116 & 5440.7 & 5729.8786 & 5164.0384 & 6295.7188 & 0.1582 & 0.6169 & 0.8552 & 0.8264 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302783&T=1

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast[/C][/ROW]
[ROW][C]time[/C][C]Y[t][/C][C]F[t][/C][C]95% LB[/C][C]95% UB[/C][C]p-value(H0: Y[t] = F[t])[/C][C]P(F[t]>Y[t-1])[/C][C]P(F[t]>Y[t-s])[/C][C]P(F[t]>Y[98])[/C][/ROW]
[ROW][C]86[/C][C]5206.1[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]87[/C][C]5253.1[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]88[/C][C]5284.3[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]89[/C][C]5266.8[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]90[/C][C]5225.1[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]91[/C][C]5272.8[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]92[/C][C]5529.8[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]93[/C][C]5535.2[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]94[/C][C]5715.9[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]95[/C][C]5672.2[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]96[/C][C]5475.7[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]97[/C][C]5435.3[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]98[/C][C]5458.5[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]99[/C][C]5373.3[/C][C]5473.5766[/C][C]5350.4592[/C][C]5596.6939[/C][C]0.0552[/C][C]0.5948[/C][C]0.9998[/C][C]0.5948[/C][/ROW]
[ROW][C]100[/C][C]5395.3[/C][C]5488.6532[/C][C]5313.6528[/C][C]5663.6535[/C][C]0.1479[/C][C]0.9018[/C][C]0.989[/C][C]0.6322[/C][/ROW]
[ROW][C]101[/C][C]5515[/C][C]5503.7298[/C][C]5288.3191[/C][C]5719.1404[/C][C]0.4592[/C][C]0.8381[/C][C]0.9845[/C][C]0.6597[/C][/ROW]
[ROW][C]102[/C][C]5410.9[/C][C]5518.8064[/C][C]5268.8309[/C][C]5768.7818[/C][C]0.1988[/C][C]0.5119[/C][C]0.9894[/C][C]0.6818[/C][/ROW]
[ROW][C]103[/C][C]5400.2[/C][C]5533.8829[/C][C]5253.0217[/C][C]5814.7442[/C][C]0.1754[/C][C]0.8046[/C][C]0.9658[/C][C]0.7006[/C][/ROW]
[ROW][C]104[/C][C]5424.2[/C][C]5548.9595[/C][C]5239.7868[/C][C]5858.1323[/C][C]0.2145[/C][C]0.8272[/C][C]0.5483[/C][C]0.7168[/C][/ROW]
[ROW][C]105[/C][C]5388.5[/C][C]5564.0361[/C][C]5228.4741[/C][C]5899.5981[/C][C]0.1526[/C][C]0.793[/C][C]0.5669[/C][C]0.7312[/C][/ROW]
[ROW][C]106[/C][C]5482.1[/C][C]5579.1127[/C][C]5218.6612[/C][C]5939.5642[/C][C]0.2989[/C][C]0.85[/C][C]0.2285[/C][C]0.744[/C][/ROW]
[ROW][C]107[/C][C]5506.9[/C][C]5594.1893[/C][C]5210.0564[/C][C]5978.3222[/C][C]0.328[/C][C]0.7163[/C][C]0.3453[/C][C]0.7556[/C][/ROW]
[ROW][C]108[/C][C]5377.2[/C][C]5609.2659[/C][C]5202.4486[/C][C]6016.0832[/C][C]0.1318[/C][C]0.6891[/C][C]0.7401[/C][C]0.7662[/C][/ROW]
[ROW][C]109[/C][C]5353.5[/C][C]5624.3425[/C][C]5195.6796[/C][C]6053.0053[/C][C]0.1078[/C][C]0.8708[/C][C]0.8063[/C][C]0.7759[/C][/ROW]
[ROW][C]110[/C][C]5401.1[/C][C]5639.4191[/C][C]5189.6272[/C][C]6089.211[/C][C]0.1495[/C][C]0.8936[/C][C]0.7848[/C][C]0.7848[/C][/ROW]
[ROW][C]111[/C][C]5438.1[/C][C]5654.4957[/C][C]5184.1946[/C][C]6124.7967[/C][C]0.1836[/C][C]0.8545[/C][C]0.8794[/C][C]0.793[/C][/ROW]
[ROW][C]112[/C][C]5510.2[/C][C]5669.5723[/C][C]5179.3042[/C][C]6159.8403[/C][C]0.262[/C][C]0.8226[/C][C]0.8636[/C][C]0.8006[/C][/ROW]
[ROW][C]113[/C][C]5499[/C][C]5684.6488[/C][C]5174.8923[/C][C]6194.4054[/C][C]0.2377[/C][C]0.7488[/C][C]0.7429[/C][C]0.8077[/C][/ROW]
[ROW][C]114[/C][C]5606.5[/C][C]5699.7254[/C][C]5170.9058[/C][C]6228.545[/C][C]0.3648[/C][C]0.7716[/C][C]0.8578[/C][C]0.8144[/C][/ROW]
[ROW][C]115[/C][C]5644[/C][C]5714.802[/C][C]5167.3005[/C][C]6262.3036[/C][C]0.4[/C][C]0.6509[/C][C]0.87[/C][C]0.8206[/C][/ROW]
[ROW][C]116[/C][C]5440.7[/C][C]5729.8786[/C][C]5164.0384[/C][C]6295.7188[/C][C]0.1582[/C][C]0.6169[/C][C]0.8552[/C][C]0.8264[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302783&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302783&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[98])
865206.1-------
875253.1-------
885284.3-------
895266.8-------
905225.1-------
915272.8-------
925529.8-------
935535.2-------
945715.9-------
955672.2-------
965475.7-------
975435.3-------
985458.5-------
995373.35473.57665350.45925596.69390.05520.59480.99980.5948
1005395.35488.65325313.65285663.65350.14790.90180.9890.6322
10155155503.72985288.31915719.14040.45920.83810.98450.6597
1025410.95518.80645268.83095768.78180.19880.51190.98940.6818
1035400.25533.88295253.02175814.74420.17540.80460.96580.7006
1045424.25548.95955239.78685858.13230.21450.82720.54830.7168
1055388.55564.03615228.47415899.59810.15260.7930.56690.7312
1065482.15579.11275218.66125939.56420.29890.850.22850.744
1075506.95594.18935210.05645978.32220.3280.71630.34530.7556
1085377.25609.26595202.44866016.08320.13180.68910.74010.7662
1095353.55624.34255195.67966053.00530.10780.87080.80630.7759
1105401.15639.41915189.62726089.2110.14950.89360.78480.7848
1115438.15654.49575184.19466124.79670.18360.85450.87940.793
1125510.25669.57235179.30426159.84030.2620.82260.86360.8006
11354995684.64885174.89236194.40540.23770.74880.74290.8077
1145606.55699.72545170.90586228.5450.36480.77160.85780.8144
11556445714.8025167.30056262.30360.40.65090.870.8206
1165440.75729.87865164.03846295.71880.15820.61690.85520.8264







Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPEsMAPESq.EMSERMSEScaledEMASE
990.0115-0.01870.01870.018510055.394500-1.54381.5438
1000.0163-0.01730.0180.01788714.81619385.105396.8768-1.43721.4905
1010.020.0020.01270.0126127.01816299.076279.36670.17351.0515
1020.0231-0.01990.01450.014411643.78237635.252787.3799-1.66131.204
1030.0259-0.02480.01650.016417871.13089682.428498.3993-2.05821.3748
1040.0284-0.0230.01760.017415564.942410662.8474103.2611-1.92081.4658
1050.0308-0.03260.01980.019530812.932313541.4309116.3677-2.70251.6425
1060.033-0.01770.01950.01939411.467513025.1855114.1279-1.49361.6239
1070.035-0.01590.01910.01897619.423212424.5452111.4654-1.34391.5928
1080.037-0.04320.02150.021253854.580816567.5488128.715-3.57281.7908
1090.0389-0.05060.02410.023873355.652921730.1037147.4113-4.16982.007
1100.0407-0.04410.02580.025456795.982524652.2603157.0104-3.66912.1455
1110.0424-0.03980.02690.026446827.084626358.016162.3515-3.33162.2368
1120.0441-0.02890.0270.026625399.516126289.5517162.1405-2.45372.2523
1130.0458-0.03380.02750.02734465.494126834.6145163.8127-2.85822.2927
1140.0473-0.01660.02680.02648690.981925700.6375160.3142-1.43532.2391
1150.0489-0.01250.0260.02565012.926824483.7133156.4727-1.09012.1715
1160.0504-0.05320.02750.02783624.271727769.2999166.6412-4.45212.2982

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast Performance \tabularnewline
time & % S.E. & PE & MAPE & sMAPE & Sq.E & MSE & RMSE & ScaledE & MASE \tabularnewline
99 & 0.0115 & -0.0187 & 0.0187 & 0.0185 & 10055.3945 & 0 & 0 & -1.5438 & 1.5438 \tabularnewline
100 & 0.0163 & -0.0173 & 0.018 & 0.0178 & 8714.8161 & 9385.1053 & 96.8768 & -1.4372 & 1.4905 \tabularnewline
101 & 0.02 & 0.002 & 0.0127 & 0.0126 & 127.0181 & 6299.0762 & 79.3667 & 0.1735 & 1.0515 \tabularnewline
102 & 0.0231 & -0.0199 & 0.0145 & 0.0144 & 11643.7823 & 7635.2527 & 87.3799 & -1.6613 & 1.204 \tabularnewline
103 & 0.0259 & -0.0248 & 0.0165 & 0.0164 & 17871.1308 & 9682.4284 & 98.3993 & -2.0582 & 1.3748 \tabularnewline
104 & 0.0284 & -0.023 & 0.0176 & 0.0174 & 15564.9424 & 10662.8474 & 103.2611 & -1.9208 & 1.4658 \tabularnewline
105 & 0.0308 & -0.0326 & 0.0198 & 0.0195 & 30812.9323 & 13541.4309 & 116.3677 & -2.7025 & 1.6425 \tabularnewline
106 & 0.033 & -0.0177 & 0.0195 & 0.0193 & 9411.4675 & 13025.1855 & 114.1279 & -1.4936 & 1.6239 \tabularnewline
107 & 0.035 & -0.0159 & 0.0191 & 0.0189 & 7619.4232 & 12424.5452 & 111.4654 & -1.3439 & 1.5928 \tabularnewline
108 & 0.037 & -0.0432 & 0.0215 & 0.0212 & 53854.5808 & 16567.5488 & 128.715 & -3.5728 & 1.7908 \tabularnewline
109 & 0.0389 & -0.0506 & 0.0241 & 0.0238 & 73355.6529 & 21730.1037 & 147.4113 & -4.1698 & 2.007 \tabularnewline
110 & 0.0407 & -0.0441 & 0.0258 & 0.0254 & 56795.9825 & 24652.2603 & 157.0104 & -3.6691 & 2.1455 \tabularnewline
111 & 0.0424 & -0.0398 & 0.0269 & 0.0264 & 46827.0846 & 26358.016 & 162.3515 & -3.3316 & 2.2368 \tabularnewline
112 & 0.0441 & -0.0289 & 0.027 & 0.0266 & 25399.5161 & 26289.5517 & 162.1405 & -2.4537 & 2.2523 \tabularnewline
113 & 0.0458 & -0.0338 & 0.0275 & 0.027 & 34465.4941 & 26834.6145 & 163.8127 & -2.8582 & 2.2927 \tabularnewline
114 & 0.0473 & -0.0166 & 0.0268 & 0.0264 & 8690.9819 & 25700.6375 & 160.3142 & -1.4353 & 2.2391 \tabularnewline
115 & 0.0489 & -0.0125 & 0.026 & 0.0256 & 5012.9268 & 24483.7133 & 156.4727 & -1.0901 & 2.1715 \tabularnewline
116 & 0.0504 & -0.0532 & 0.0275 & 0.027 & 83624.2717 & 27769.2999 & 166.6412 & -4.4521 & 2.2982 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302783&T=2

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast Performance[/C][/ROW]
[ROW][C]time[/C][C]% S.E.[/C][C]PE[/C][C]MAPE[/C][C]sMAPE[/C][C]Sq.E[/C][C]MSE[/C][C]RMSE[/C][C]ScaledE[/C][C]MASE[/C][/ROW]
[ROW][C]99[/C][C]0.0115[/C][C]-0.0187[/C][C]0.0187[/C][C]0.0185[/C][C]10055.3945[/C][C]0[/C][C]0[/C][C]-1.5438[/C][C]1.5438[/C][/ROW]
[ROW][C]100[/C][C]0.0163[/C][C]-0.0173[/C][C]0.018[/C][C]0.0178[/C][C]8714.8161[/C][C]9385.1053[/C][C]96.8768[/C][C]-1.4372[/C][C]1.4905[/C][/ROW]
[ROW][C]101[/C][C]0.02[/C][C]0.002[/C][C]0.0127[/C][C]0.0126[/C][C]127.0181[/C][C]6299.0762[/C][C]79.3667[/C][C]0.1735[/C][C]1.0515[/C][/ROW]
[ROW][C]102[/C][C]0.0231[/C][C]-0.0199[/C][C]0.0145[/C][C]0.0144[/C][C]11643.7823[/C][C]7635.2527[/C][C]87.3799[/C][C]-1.6613[/C][C]1.204[/C][/ROW]
[ROW][C]103[/C][C]0.0259[/C][C]-0.0248[/C][C]0.0165[/C][C]0.0164[/C][C]17871.1308[/C][C]9682.4284[/C][C]98.3993[/C][C]-2.0582[/C][C]1.3748[/C][/ROW]
[ROW][C]104[/C][C]0.0284[/C][C]-0.023[/C][C]0.0176[/C][C]0.0174[/C][C]15564.9424[/C][C]10662.8474[/C][C]103.2611[/C][C]-1.9208[/C][C]1.4658[/C][/ROW]
[ROW][C]105[/C][C]0.0308[/C][C]-0.0326[/C][C]0.0198[/C][C]0.0195[/C][C]30812.9323[/C][C]13541.4309[/C][C]116.3677[/C][C]-2.7025[/C][C]1.6425[/C][/ROW]
[ROW][C]106[/C][C]0.033[/C][C]-0.0177[/C][C]0.0195[/C][C]0.0193[/C][C]9411.4675[/C][C]13025.1855[/C][C]114.1279[/C][C]-1.4936[/C][C]1.6239[/C][/ROW]
[ROW][C]107[/C][C]0.035[/C][C]-0.0159[/C][C]0.0191[/C][C]0.0189[/C][C]7619.4232[/C][C]12424.5452[/C][C]111.4654[/C][C]-1.3439[/C][C]1.5928[/C][/ROW]
[ROW][C]108[/C][C]0.037[/C][C]-0.0432[/C][C]0.0215[/C][C]0.0212[/C][C]53854.5808[/C][C]16567.5488[/C][C]128.715[/C][C]-3.5728[/C][C]1.7908[/C][/ROW]
[ROW][C]109[/C][C]0.0389[/C][C]-0.0506[/C][C]0.0241[/C][C]0.0238[/C][C]73355.6529[/C][C]21730.1037[/C][C]147.4113[/C][C]-4.1698[/C][C]2.007[/C][/ROW]
[ROW][C]110[/C][C]0.0407[/C][C]-0.0441[/C][C]0.0258[/C][C]0.0254[/C][C]56795.9825[/C][C]24652.2603[/C][C]157.0104[/C][C]-3.6691[/C][C]2.1455[/C][/ROW]
[ROW][C]111[/C][C]0.0424[/C][C]-0.0398[/C][C]0.0269[/C][C]0.0264[/C][C]46827.0846[/C][C]26358.016[/C][C]162.3515[/C][C]-3.3316[/C][C]2.2368[/C][/ROW]
[ROW][C]112[/C][C]0.0441[/C][C]-0.0289[/C][C]0.027[/C][C]0.0266[/C][C]25399.5161[/C][C]26289.5517[/C][C]162.1405[/C][C]-2.4537[/C][C]2.2523[/C][/ROW]
[ROW][C]113[/C][C]0.0458[/C][C]-0.0338[/C][C]0.0275[/C][C]0.027[/C][C]34465.4941[/C][C]26834.6145[/C][C]163.8127[/C][C]-2.8582[/C][C]2.2927[/C][/ROW]
[ROW][C]114[/C][C]0.0473[/C][C]-0.0166[/C][C]0.0268[/C][C]0.0264[/C][C]8690.9819[/C][C]25700.6375[/C][C]160.3142[/C][C]-1.4353[/C][C]2.2391[/C][/ROW]
[ROW][C]115[/C][C]0.0489[/C][C]-0.0125[/C][C]0.026[/C][C]0.0256[/C][C]5012.9268[/C][C]24483.7133[/C][C]156.4727[/C][C]-1.0901[/C][C]2.1715[/C][/ROW]
[ROW][C]116[/C][C]0.0504[/C][C]-0.0532[/C][C]0.0275[/C][C]0.027[/C][C]83624.2717[/C][C]27769.2999[/C][C]166.6412[/C][C]-4.4521[/C][C]2.2982[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302783&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302783&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPEsMAPESq.EMSERMSEScaledEMASE
990.0115-0.01870.01870.018510055.394500-1.54381.5438
1000.0163-0.01730.0180.01788714.81619385.105396.8768-1.43721.4905
1010.020.0020.01270.0126127.01816299.076279.36670.17351.0515
1020.0231-0.01990.01450.014411643.78237635.252787.3799-1.66131.204
1030.0259-0.02480.01650.016417871.13089682.428498.3993-2.05821.3748
1040.0284-0.0230.01760.017415564.942410662.8474103.2611-1.92081.4658
1050.0308-0.03260.01980.019530812.932313541.4309116.3677-2.70251.6425
1060.033-0.01770.01950.01939411.467513025.1855114.1279-1.49361.6239
1070.035-0.01590.01910.01897619.423212424.5452111.4654-1.34391.5928
1080.037-0.04320.02150.021253854.580816567.5488128.715-3.57281.7908
1090.0389-0.05060.02410.023873355.652921730.1037147.4113-4.16982.007
1100.0407-0.04410.02580.025456795.982524652.2603157.0104-3.66912.1455
1110.0424-0.03980.02690.026446827.084626358.016162.3515-3.33162.2368
1120.0441-0.02890.0270.026625399.516126289.5517162.1405-2.45372.2523
1130.0458-0.03380.02750.02734465.494126834.6145163.8127-2.85822.2927
1140.0473-0.01660.02680.02648690.981925700.6375160.3142-1.43532.2391
1150.0489-0.01250.0260.02565012.926824483.7133156.4727-1.09012.1715
1160.0504-0.05320.02750.02783624.271727769.2999166.6412-4.45212.2982



Parameters (Session):
par1 = 18 ; par2 = 1 ; par3 = 2 ; par4 = 0 ; par5 = 12 ; par6 = 0 ; par7 = 1 ; par8 = 0 ; par9 = 0 ; par10 = FALSE ;
Parameters (R input):
par1 = 18 ; par2 = 1 ; par3 = 2 ; par4 = 0 ; par5 = 12 ; par6 = 0 ; par7 = 1 ; par8 = 0 ; par9 = 0 ; par10 = FALSE ;
R code (references can be found in the software module):
par1 <- as.numeric(par1) #cut off periods
par2 <- as.numeric(par2) #lambda
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #p
par7 <- as.numeric(par7) #q
par8 <- as.numeric(par8) #P
par9 <- as.numeric(par9) #Q
if (par10 == 'TRUE') par10 <- TRUE
if (par10 == 'FALSE') par10 <- FALSE
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
lx <- length(x)
first <- lx - 2*par1
nx <- lx - par1
nx1 <- nx + 1
fx <- lx - nx
if (fx < 1) {
fx <- par5*2
nx1 <- lx + fx - 1
first <- lx - 2*fx
}
first <- 1
if (fx < 3) fx <- round(lx/10,0)
(arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML'))
(forecast <- predict(arima.out,fx))
(lb <- forecast$pred - 1.96 * forecast$se)
(ub <- forecast$pred + 1.96 * forecast$se)
if (par2 == 0) {
x <- exp(x)
forecast$pred <- exp(forecast$pred)
lb <- exp(lb)
ub <- exp(ub)
}
if (par2 != 0) {
x <- x^(1/par2)
forecast$pred <- forecast$pred^(1/par2)
lb <- lb^(1/par2)
ub <- ub^(1/par2)
}
if (par2 < 0) {
olb <- lb
lb <- ub
ub <- olb
}
(actandfor <- c(x[1:nx], forecast$pred))
(perc.se <- (ub-forecast$pred)/1.96/forecast$pred)
bitmap(file='test1.png')
opar <- par(mar=c(4,4,2,2),las=1)
ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub))
plot(x,ylim=ylim,type='n',xlim=c(first,lx))
usr <- par('usr')
rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon')
rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender')
abline(h= (-3:3)*2 , col ='gray', lty =3)
polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA)
lines(nx1:lx, lb , lty=2)
lines(nx1:lx, ub , lty=2)
lines(x, lwd=2)
lines(nx1:lx, forecast$pred , lwd=2 , col ='white')
box()
par(opar)
dev.off()
prob.dec <- array(NA, dim=fx)
prob.sdec <- array(NA, dim=fx)
prob.ldec <- array(NA, dim=fx)
prob.pval <- array(NA, dim=fx)
perf.pe <- array(0, dim=fx)
perf.spe <- array(0, dim=fx)
perf.scalederr <- array(0, dim=fx)
perf.mase <- array(0, dim=fx)
perf.mase1 <- array(0, dim=fx)
perf.mape <- array(0, dim=fx)
perf.smape <- array(0, dim=fx)
perf.mape1 <- array(0, dim=fx)
perf.smape1 <- array(0,dim=fx)
perf.se <- array(0, dim=fx)
perf.mse <- array(0, dim=fx)
perf.mse1 <- array(0, dim=fx)
perf.rmse <- array(0, dim=fx)
perf.scaleddenom <- 0
for (i in 2:fx) {
perf.scaleddenom = perf.scaleddenom + abs(x[nx+i] - x[nx+i-1])
}
perf.scaleddenom = perf.scaleddenom / (fx-1)
for (i in 1:fx) {
locSD <- (ub[i] - forecast$pred[i]) / 1.96
perf.scalederr[i] = (x[nx+i] - forecast$pred[i]) / perf.scaleddenom
perf.pe[i] = (x[nx+i] - forecast$pred[i]) / x[nx+i]
perf.spe[i] = 2*(x[nx+i] - forecast$pred[i]) / (x[nx+i] + forecast$pred[i])
perf.se[i] = (x[nx+i] - forecast$pred[i])^2
prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD)
prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD)
prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD)
prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD)
}
perf.mape[1] = abs(perf.pe[1])
perf.smape[1] = abs(perf.spe[1])
perf.mape1[1] = perf.mape[1]
perf.smape1[1] = perf.smape[1]
perf.mse[1] = perf.se[1]
perf.mase[1] = abs(perf.scalederr[1])
perf.mase1[1] = perf.mase[1]
for (i in 2:fx) {
perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i])
perf.mape1[i] = perf.mape[i] / i
perf.smape[i] = perf.smape[i-1] + abs(perf.spe[i])
perf.smape1[i] = perf.smape[i] / i
perf.mse[i] = perf.mse[i-1] + perf.se[i]
perf.mse1[i] = perf.mse[i] / i
perf.mase[i] = perf.mase[i-1] + abs(perf.scalederr[i])
perf.mase1[i] = perf.mase[i] / i
}
perf.rmse = sqrt(perf.mse1)
bitmap(file='test2.png')
plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub)))
dum <- forecast$pred
dum[1:par1] <- x[(nx+1):lx]
lines(dum, lty=1)
lines(ub,lty=3)
lines(lb,lty=3)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'Y[t]',1,header=TRUE)
a<-table.element(a,'F[t]',1,header=TRUE)
a<-table.element(a,'95% LB',1,header=TRUE)
a<-table.element(a,'95% UB',1,header=TRUE)
a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE)
mylab <- paste('P(F[t]>Y[',nx,sep='')
mylab <- paste(mylab,'])',sep='')
a<-table.element(a,mylab,1,header=TRUE)
a<-table.row.end(a)
for (i in (nx-par5):nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.row.end(a)
}
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(x[nx+i],4))
a<-table.element(a,round(forecast$pred[i],4))
a<-table.element(a,round(lb[i],4))
a<-table.element(a,round(ub[i],4))
a<-table.element(a,round((1-prob.pval[i]),4))
a<-table.element(a,round((1-prob.dec[i]),4))
a<-table.element(a,round((1-prob.sdec[i]),4))
a<-table.element(a,round((1-prob.ldec[i]),4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',10,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'% S.E.',1,header=TRUE)
a<-table.element(a,'PE',1,header=TRUE)
a<-table.element(a,'MAPE',1,header=TRUE)
a<-table.element(a,'sMAPE',1,header=TRUE)
a<-table.element(a,'Sq.E',1,header=TRUE)
a<-table.element(a,'MSE',1,header=TRUE)
a<-table.element(a,'RMSE',1,header=TRUE)
a<-table.element(a,'ScaledE',1,header=TRUE)
a<-table.element(a,'MASE',1,header=TRUE)
a<-table.row.end(a)
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(perc.se[i],4))
a<-table.element(a,round(perf.pe[i],4))
a<-table.element(a,round(perf.mape1[i],4))
a<-table.element(a,round(perf.smape1[i],4))
a<-table.element(a,round(perf.se[i],4))
a<-table.element(a,round(perf.mse1[i],4))
a<-table.element(a,round(perf.rmse[i],4))
a<-table.element(a,round(perf.scalederr[i],4))
a<-table.element(a,round(perf.mase1[i],4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')