Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimaforecasting.wasp
Title produced by softwareARIMA Forecasting
Date of computationFri, 23 Dec 2016 08:59:53 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/23/t14824800072hehsmexuivg2dw.htm/, Retrieved Fri, 01 Nov 2024 03:36:42 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=302766, Retrieved Fri, 01 Nov 2024 03:36:42 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact124
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [ARIMA Forecasting] [] [2016-12-23 07:59:53] [0b5bf205c55efce49027552c8371b570] [Current]
Feedback Forum

Post a new message
Dataseries X:
3996.1
3984.2
4049
4032.8
4074.1
4114.4
4091.4
4166.6
4152.5
4112.7
4145.9
4174.4
4183.6
4172.5
4280.3
4327.4
4251.2
4256.5
4285.7
4257.4
4231.9
4274.3
4248.3
4310.5
4301.9
4336.5
4385.1
4310.4
4378.8
4338
4304.2
4266.9
4230.1
4230.6
4353.2
4371.2
4393.2
4250.2
4129.5
4124.9
4177.1
4156.9
4111.9
4167.4
4190.7
4165
4209.8
4250
4224.8
4322.7
4311.7
4373.8
4358.9
4441.2
4538.9
4444.8
4537.8
4490.2
4517.3
4561.9
4567
4588.3
4656.8
4677.7
4684.2
4752.8
4738.9
4785.6
4742.7
4711.4
4758.1
4800.5
4877.3
4885
4941.4
5009.4
5017.5
4984.1
4903.9
4968.6
4937.3
4987.1
5001.9
5094.6
5177.8
5206.1
5253.1
5284.3
5266.8
5225.1
5272.8
5529.8
5535.2
5715.9
5672.2
5475.7
5435.3
5458.5
5373.3
5395.3
5515
5410.9
5400.2
5424.2
5388.5
5482.1
5506.9
5377.2
5353.5
5401.1
5438.1
5510.2
5499
5606.5
5644
5440.7




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time3 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302766&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]3 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=302766&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302766&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R ServerBig Analytics Cloud Computing Center







Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[116])
1045424.2-------
1055388.5-------
1065482.1-------
1075506.9-------
1085377.2-------
1095353.5-------
1105401.1-------
1115438.1-------
1125510.2-------
1135499-------
1145606.5-------
1155644-------
1165440.7-------
117NA5481.84175340.86455627.6951NA0.70980.89510.7098
118NA5455.06755263.96735655.2857NANA0.39560.5559
119NA5478.59825251.11785719.0578NANA0.40880.6213
120NA5562.66895292.42265851.1328NANA0.89620.7964
121NA5589.3565288.85215912.44NANA0.92380.8164
122NA5608.29375276.60925967.6016NANA0.87080.8197
123NA5651.06275290.4796044.2598NANA0.85580.8528
124NA5667.56735280.09936092.8272NANA0.76590.8521
125NA5654.17645244.62486106.297NANA0.74940.8226
126NA5705.46445268.22866191.0734NANA0.65520.8574
127NA5729.89965268.48526245.2577NANA0.6280.8643
128NA5748.00735263.52456292.0998NANA0.86590.8659
129NA5780.33745272.31776353.8761NANANA0.8771
130NA5775.65385248.66776373.5476NANANA0.8639
131NA5790.5975242.8576415.1202NANANA0.8639
132NA5850.89545277.10916508.503NANANA0.8893
133NA5880.75055284.79356567.1118NANANA0.8956
134NA5888.97625273.93676600.614NANANA0.8915
135NA5900.26725266.02856637.5041NANANA0.8891
136NA5901.51455249.76946662.4832NANANA0.8824
137NA5928.25075255.61776717.2281NANANA0.8871
138NA5918.95125230.89246729.461NANANA0.8763
139NA5930.95865224.58156766.695NANANA0.8749
140NA6015.37965279.58596890.2465NANANA0.901

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast \tabularnewline
time & Y[t] & F[t] & 95% LB & 95% UB & p-value(H0: Y[t] = F[t]) & P(F[t]>Y[t-1]) & P(F[t]>Y[t-s]) & P(F[t]>Y[116]) \tabularnewline
104 & 5424.2 & - & - & - & - & - & - & - \tabularnewline
105 & 5388.5 & - & - & - & - & - & - & - \tabularnewline
106 & 5482.1 & - & - & - & - & - & - & - \tabularnewline
107 & 5506.9 & - & - & - & - & - & - & - \tabularnewline
108 & 5377.2 & - & - & - & - & - & - & - \tabularnewline
109 & 5353.5 & - & - & - & - & - & - & - \tabularnewline
110 & 5401.1 & - & - & - & - & - & - & - \tabularnewline
111 & 5438.1 & - & - & - & - & - & - & - \tabularnewline
112 & 5510.2 & - & - & - & - & - & - & - \tabularnewline
113 & 5499 & - & - & - & - & - & - & - \tabularnewline
114 & 5606.5 & - & - & - & - & - & - & - \tabularnewline
115 & 5644 & - & - & - & - & - & - & - \tabularnewline
116 & 5440.7 & - & - & - & - & - & - & - \tabularnewline
117 & NA & 5481.8417 & 5340.8645 & 5627.6951 & NA & 0.7098 & 0.8951 & 0.7098 \tabularnewline
118 & NA & 5455.0675 & 5263.9673 & 5655.2857 & NA & NA & 0.3956 & 0.5559 \tabularnewline
119 & NA & 5478.5982 & 5251.1178 & 5719.0578 & NA & NA & 0.4088 & 0.6213 \tabularnewline
120 & NA & 5562.6689 & 5292.4226 & 5851.1328 & NA & NA & 0.8962 & 0.7964 \tabularnewline
121 & NA & 5589.356 & 5288.8521 & 5912.44 & NA & NA & 0.9238 & 0.8164 \tabularnewline
122 & NA & 5608.2937 & 5276.6092 & 5967.6016 & NA & NA & 0.8708 & 0.8197 \tabularnewline
123 & NA & 5651.0627 & 5290.479 & 6044.2598 & NA & NA & 0.8558 & 0.8528 \tabularnewline
124 & NA & 5667.5673 & 5280.0993 & 6092.8272 & NA & NA & 0.7659 & 0.8521 \tabularnewline
125 & NA & 5654.1764 & 5244.6248 & 6106.297 & NA & NA & 0.7494 & 0.8226 \tabularnewline
126 & NA & 5705.4644 & 5268.2286 & 6191.0734 & NA & NA & 0.6552 & 0.8574 \tabularnewline
127 & NA & 5729.8996 & 5268.4852 & 6245.2577 & NA & NA & 0.628 & 0.8643 \tabularnewline
128 & NA & 5748.0073 & 5263.5245 & 6292.0998 & NA & NA & 0.8659 & 0.8659 \tabularnewline
129 & NA & 5780.3374 & 5272.3177 & 6353.8761 & NA & NA & NA & 0.8771 \tabularnewline
130 & NA & 5775.6538 & 5248.6677 & 6373.5476 & NA & NA & NA & 0.8639 \tabularnewline
131 & NA & 5790.597 & 5242.857 & 6415.1202 & NA & NA & NA & 0.8639 \tabularnewline
132 & NA & 5850.8954 & 5277.1091 & 6508.503 & NA & NA & NA & 0.8893 \tabularnewline
133 & NA & 5880.7505 & 5284.7935 & 6567.1118 & NA & NA & NA & 0.8956 \tabularnewline
134 & NA & 5888.9762 & 5273.9367 & 6600.614 & NA & NA & NA & 0.8915 \tabularnewline
135 & NA & 5900.2672 & 5266.0285 & 6637.5041 & NA & NA & NA & 0.8891 \tabularnewline
136 & NA & 5901.5145 & 5249.7694 & 6662.4832 & NA & NA & NA & 0.8824 \tabularnewline
137 & NA & 5928.2507 & 5255.6177 & 6717.2281 & NA & NA & NA & 0.8871 \tabularnewline
138 & NA & 5918.9512 & 5230.8924 & 6729.461 & NA & NA & NA & 0.8763 \tabularnewline
139 & NA & 5930.9586 & 5224.5815 & 6766.695 & NA & NA & NA & 0.8749 \tabularnewline
140 & NA & 6015.3796 & 5279.5859 & 6890.2465 & NA & NA & NA & 0.901 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302766&T=1

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast[/C][/ROW]
[ROW][C]time[/C][C]Y[t][/C][C]F[t][/C][C]95% LB[/C][C]95% UB[/C][C]p-value(H0: Y[t] = F[t])[/C][C]P(F[t]>Y[t-1])[/C][C]P(F[t]>Y[t-s])[/C][C]P(F[t]>Y[116])[/C][/ROW]
[ROW][C]104[/C][C]5424.2[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]105[/C][C]5388.5[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]106[/C][C]5482.1[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]107[/C][C]5506.9[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]108[/C][C]5377.2[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]109[/C][C]5353.5[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]110[/C][C]5401.1[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]111[/C][C]5438.1[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]112[/C][C]5510.2[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]113[/C][C]5499[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]114[/C][C]5606.5[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]115[/C][C]5644[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]116[/C][C]5440.7[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]117[/C][C]NA[/C][C]5481.8417[/C][C]5340.8645[/C][C]5627.6951[/C][C]NA[/C][C]0.7098[/C][C]0.8951[/C][C]0.7098[/C][/ROW]
[ROW][C]118[/C][C]NA[/C][C]5455.0675[/C][C]5263.9673[/C][C]5655.2857[/C][C]NA[/C][C]NA[/C][C]0.3956[/C][C]0.5559[/C][/ROW]
[ROW][C]119[/C][C]NA[/C][C]5478.5982[/C][C]5251.1178[/C][C]5719.0578[/C][C]NA[/C][C]NA[/C][C]0.4088[/C][C]0.6213[/C][/ROW]
[ROW][C]120[/C][C]NA[/C][C]5562.6689[/C][C]5292.4226[/C][C]5851.1328[/C][C]NA[/C][C]NA[/C][C]0.8962[/C][C]0.7964[/C][/ROW]
[ROW][C]121[/C][C]NA[/C][C]5589.356[/C][C]5288.8521[/C][C]5912.44[/C][C]NA[/C][C]NA[/C][C]0.9238[/C][C]0.8164[/C][/ROW]
[ROW][C]122[/C][C]NA[/C][C]5608.2937[/C][C]5276.6092[/C][C]5967.6016[/C][C]NA[/C][C]NA[/C][C]0.8708[/C][C]0.8197[/C][/ROW]
[ROW][C]123[/C][C]NA[/C][C]5651.0627[/C][C]5290.479[/C][C]6044.2598[/C][C]NA[/C][C]NA[/C][C]0.8558[/C][C]0.8528[/C][/ROW]
[ROW][C]124[/C][C]NA[/C][C]5667.5673[/C][C]5280.0993[/C][C]6092.8272[/C][C]NA[/C][C]NA[/C][C]0.7659[/C][C]0.8521[/C][/ROW]
[ROW][C]125[/C][C]NA[/C][C]5654.1764[/C][C]5244.6248[/C][C]6106.297[/C][C]NA[/C][C]NA[/C][C]0.7494[/C][C]0.8226[/C][/ROW]
[ROW][C]126[/C][C]NA[/C][C]5705.4644[/C][C]5268.2286[/C][C]6191.0734[/C][C]NA[/C][C]NA[/C][C]0.6552[/C][C]0.8574[/C][/ROW]
[ROW][C]127[/C][C]NA[/C][C]5729.8996[/C][C]5268.4852[/C][C]6245.2577[/C][C]NA[/C][C]NA[/C][C]0.628[/C][C]0.8643[/C][/ROW]
[ROW][C]128[/C][C]NA[/C][C]5748.0073[/C][C]5263.5245[/C][C]6292.0998[/C][C]NA[/C][C]NA[/C][C]0.8659[/C][C]0.8659[/C][/ROW]
[ROW][C]129[/C][C]NA[/C][C]5780.3374[/C][C]5272.3177[/C][C]6353.8761[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.8771[/C][/ROW]
[ROW][C]130[/C][C]NA[/C][C]5775.6538[/C][C]5248.6677[/C][C]6373.5476[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.8639[/C][/ROW]
[ROW][C]131[/C][C]NA[/C][C]5790.597[/C][C]5242.857[/C][C]6415.1202[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.8639[/C][/ROW]
[ROW][C]132[/C][C]NA[/C][C]5850.8954[/C][C]5277.1091[/C][C]6508.503[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.8893[/C][/ROW]
[ROW][C]133[/C][C]NA[/C][C]5880.7505[/C][C]5284.7935[/C][C]6567.1118[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.8956[/C][/ROW]
[ROW][C]134[/C][C]NA[/C][C]5888.9762[/C][C]5273.9367[/C][C]6600.614[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.8915[/C][/ROW]
[ROW][C]135[/C][C]NA[/C][C]5900.2672[/C][C]5266.0285[/C][C]6637.5041[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.8891[/C][/ROW]
[ROW][C]136[/C][C]NA[/C][C]5901.5145[/C][C]5249.7694[/C][C]6662.4832[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.8824[/C][/ROW]
[ROW][C]137[/C][C]NA[/C][C]5928.2507[/C][C]5255.6177[/C][C]6717.2281[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.8871[/C][/ROW]
[ROW][C]138[/C][C]NA[/C][C]5918.9512[/C][C]5230.8924[/C][C]6729.461[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.8763[/C][/ROW]
[ROW][C]139[/C][C]NA[/C][C]5930.9586[/C][C]5224.5815[/C][C]6766.695[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.8749[/C][/ROW]
[ROW][C]140[/C][C]NA[/C][C]6015.3796[/C][C]5279.5859[/C][C]6890.2465[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.901[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302766&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302766&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[116])
1045424.2-------
1055388.5-------
1065482.1-------
1075506.9-------
1085377.2-------
1095353.5-------
1105401.1-------
1115438.1-------
1125510.2-------
1135499-------
1145606.5-------
1155644-------
1165440.7-------
117NA5481.84175340.86455627.6951NA0.70980.89510.7098
118NA5455.06755263.96735655.2857NANA0.39560.5559
119NA5478.59825251.11785719.0578NANA0.40880.6213
120NA5562.66895292.42265851.1328NANA0.89620.7964
121NA5589.3565288.85215912.44NANA0.92380.8164
122NA5608.29375276.60925967.6016NANA0.87080.8197
123NA5651.06275290.4796044.2598NANA0.85580.8528
124NA5667.56735280.09936092.8272NANA0.76590.8521
125NA5654.17645244.62486106.297NANA0.74940.8226
126NA5705.46445268.22866191.0734NANA0.65520.8574
127NA5729.89965268.48526245.2577NANA0.6280.8643
128NA5748.00735263.52456292.0998NANA0.86590.8659
129NA5780.33745272.31776353.8761NANANA0.8771
130NA5775.65385248.66776373.5476NANANA0.8639
131NA5790.5975242.8576415.1202NANANA0.8639
132NA5850.89545277.10916508.503NANANA0.8893
133NA5880.75055284.79356567.1118NANANA0.8956
134NA5888.97625273.93676600.614NANANA0.8915
135NA5900.26725266.02856637.5041NANANA0.8891
136NA5901.51455249.76946662.4832NANANA0.8824
137NA5928.25075255.61776717.2281NANANA0.8871
138NA5918.95125230.89246729.461NANANA0.8763
139NA5930.95865224.58156766.695NANANA0.8749
140NA6015.37965279.58596890.2465NANANA0.901







Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPEsMAPESq.EMSERMSEScaledEMASE
1170.0136NANANANA00NANA
1180.0187NANANANANANANANA
1190.0224NANANANANANANANA
1200.0265NANANANANANANANA
1210.0295NANANANANANANANA
1220.0327NANANANANANANANA
1230.0355NANANANANANANANA
1240.0383NANANANANANANANA
1250.0408NANANANANANANANA
1260.0434NANANANANANANANA
1270.0459NANANANANANANANA
1280.0483NANANANANANANANA
1290.0506NANANANANANANANA
1300.0528NANANANANANANANA
1310.055NANANANANANANANA
1320.0573NANANANANANANANA
1330.0595NANANANANANANANA
1340.0617NANANANANANANANA
1350.0637NANANANANANANANA
1360.0658NANANANANANANANA
1370.0679NANANANANANANANA
1380.0699NANANANANANANANA
1390.0719NANANANANANANANA
1400.0742NANANANANANANANA

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast Performance \tabularnewline
time & % S.E. & PE & MAPE & sMAPE & Sq.E & MSE & RMSE & ScaledE & MASE \tabularnewline
117 & 0.0136 & NA & NA & NA & NA & 0 & 0 & NA & NA \tabularnewline
118 & 0.0187 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
119 & 0.0224 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
120 & 0.0265 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
121 & 0.0295 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
122 & 0.0327 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
123 & 0.0355 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
124 & 0.0383 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
125 & 0.0408 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
126 & 0.0434 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
127 & 0.0459 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
128 & 0.0483 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
129 & 0.0506 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
130 & 0.0528 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
131 & 0.055 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
132 & 0.0573 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
133 & 0.0595 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
134 & 0.0617 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
135 & 0.0637 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
136 & 0.0658 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
137 & 0.0679 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
138 & 0.0699 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
139 & 0.0719 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
140 & 0.0742 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302766&T=2

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast Performance[/C][/ROW]
[ROW][C]time[/C][C]% S.E.[/C][C]PE[/C][C]MAPE[/C][C]sMAPE[/C][C]Sq.E[/C][C]MSE[/C][C]RMSE[/C][C]ScaledE[/C][C]MASE[/C][/ROW]
[ROW][C]117[/C][C]0.0136[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0[/C][C]0[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]118[/C][C]0.0187[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]119[/C][C]0.0224[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]120[/C][C]0.0265[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]121[/C][C]0.0295[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]122[/C][C]0.0327[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]123[/C][C]0.0355[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]124[/C][C]0.0383[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]125[/C][C]0.0408[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]126[/C][C]0.0434[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]127[/C][C]0.0459[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]128[/C][C]0.0483[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]129[/C][C]0.0506[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]130[/C][C]0.0528[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]131[/C][C]0.055[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]132[/C][C]0.0573[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]133[/C][C]0.0595[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]134[/C][C]0.0617[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]135[/C][C]0.0637[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]136[/C][C]0.0658[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]137[/C][C]0.0679[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]138[/C][C]0.0699[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]139[/C][C]0.0719[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]140[/C][C]0.0742[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302766&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302766&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPEsMAPESq.EMSERMSEScaledEMASE
1170.0136NANANANA00NANA
1180.0187NANANANANANANANA
1190.0224NANANANANANANANA
1200.0265NANANANANANANANA
1210.0295NANANANANANANANA
1220.0327NANANANANANANANA
1230.0355NANANANANANANANA
1240.0383NANANANANANANANA
1250.0408NANANANANANANANA
1260.0434NANANANANANANANA
1270.0459NANANANANANANANA
1280.0483NANANANANANANANA
1290.0506NANANANANANANANA
1300.0528NANANANANANANANA
1310.055NANANANANANANANA
1320.0573NANANANANANANANA
1330.0595NANANANANANANANA
1340.0617NANANANANANANANA
1350.0637NANANANANANANANA
1360.0658NANANANANANANANA
1370.0679NANANANANANANANA
1380.0699NANANANANANANANA
1390.0719NANANANANANANANA
1400.0742NANANANANANANANA



Parameters (Session):
par1 = 0 ; par2 = -0.3 ; par3 = 2 ; par4 = 0 ; par5 = 12 ; par6 = 3 ; par7 = 2 ; par8 = 2 ; par9 = 0 ; par10 = FALSE ;
Parameters (R input):
par1 = 0 ; par2 = -0.3 ; par3 = 2 ; par4 = 0 ; par5 = 12 ; par6 = 3 ; par7 = 2 ; par8 = 2 ; par9 = 0 ; par10 = FALSE ;
R code (references can be found in the software module):
par1 <- as.numeric(par1) #cut off periods
par2 <- as.numeric(par2) #lambda
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #p
par7 <- as.numeric(par7) #q
par8 <- as.numeric(par8) #P
par9 <- as.numeric(par9) #Q
if (par10 == 'TRUE') par10 <- TRUE
if (par10 == 'FALSE') par10 <- FALSE
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
lx <- length(x)
first <- lx - 2*par1
nx <- lx - par1
nx1 <- nx + 1
fx <- lx - nx
if (fx < 1) {
fx <- par5*2
nx1 <- lx + fx - 1
first <- lx - 2*fx
}
first <- 1
if (fx < 3) fx <- round(lx/10,0)
(arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML'))
(forecast <- predict(arima.out,fx))
(lb <- forecast$pred - 1.96 * forecast$se)
(ub <- forecast$pred + 1.96 * forecast$se)
if (par2 == 0) {
x <- exp(x)
forecast$pred <- exp(forecast$pred)
lb <- exp(lb)
ub <- exp(ub)
}
if (par2 != 0) {
x <- x^(1/par2)
forecast$pred <- forecast$pred^(1/par2)
lb <- lb^(1/par2)
ub <- ub^(1/par2)
}
if (par2 < 0) {
olb <- lb
lb <- ub
ub <- olb
}
(actandfor <- c(x[1:nx], forecast$pred))
(perc.se <- (ub-forecast$pred)/1.96/forecast$pred)
bitmap(file='test1.png')
opar <- par(mar=c(4,4,2,2),las=1)
ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub))
plot(x,ylim=ylim,type='n',xlim=c(first,lx))
usr <- par('usr')
rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon')
rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender')
abline(h= (-3:3)*2 , col ='gray', lty =3)
polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA)
lines(nx1:lx, lb , lty=2)
lines(nx1:lx, ub , lty=2)
lines(x, lwd=2)
lines(nx1:lx, forecast$pred , lwd=2 , col ='white')
box()
par(opar)
dev.off()
prob.dec <- array(NA, dim=fx)
prob.sdec <- array(NA, dim=fx)
prob.ldec <- array(NA, dim=fx)
prob.pval <- array(NA, dim=fx)
perf.pe <- array(0, dim=fx)
perf.spe <- array(0, dim=fx)
perf.scalederr <- array(0, dim=fx)
perf.mase <- array(0, dim=fx)
perf.mase1 <- array(0, dim=fx)
perf.mape <- array(0, dim=fx)
perf.smape <- array(0, dim=fx)
perf.mape1 <- array(0, dim=fx)
perf.smape1 <- array(0,dim=fx)
perf.se <- array(0, dim=fx)
perf.mse <- array(0, dim=fx)
perf.mse1 <- array(0, dim=fx)
perf.rmse <- array(0, dim=fx)
perf.scaleddenom <- 0
for (i in 2:fx) {
perf.scaleddenom = perf.scaleddenom + abs(x[nx+i] - x[nx+i-1])
}
perf.scaleddenom = perf.scaleddenom / (fx-1)
for (i in 1:fx) {
locSD <- (ub[i] - forecast$pred[i]) / 1.96
perf.scalederr[i] = (x[nx+i] - forecast$pred[i]) / perf.scaleddenom
perf.pe[i] = (x[nx+i] - forecast$pred[i]) / x[nx+i]
perf.spe[i] = 2*(x[nx+i] - forecast$pred[i]) / (x[nx+i] + forecast$pred[i])
perf.se[i] = (x[nx+i] - forecast$pred[i])^2
prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD)
prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD)
prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD)
prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD)
}
perf.mape[1] = abs(perf.pe[1])
perf.smape[1] = abs(perf.spe[1])
perf.mape1[1] = perf.mape[1]
perf.smape1[1] = perf.smape[1]
perf.mse[1] = perf.se[1]
perf.mase[1] = abs(perf.scalederr[1])
perf.mase1[1] = perf.mase[1]
for (i in 2:fx) {
perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i])
perf.mape1[i] = perf.mape[i] / i
perf.smape[i] = perf.smape[i-1] + abs(perf.spe[i])
perf.smape1[i] = perf.smape[i] / i
perf.mse[i] = perf.mse[i-1] + perf.se[i]
perf.mse1[i] = perf.mse[i] / i
perf.mase[i] = perf.mase[i-1] + abs(perf.scalederr[i])
perf.mase1[i] = perf.mase[i] / i
}
perf.rmse = sqrt(perf.mse1)
bitmap(file='test2.png')
plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub)))
dum <- forecast$pred
dum[1:par1] <- x[(nx+1):lx]
lines(dum, lty=1)
lines(ub,lty=3)
lines(lb,lty=3)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'Y[t]',1,header=TRUE)
a<-table.element(a,'F[t]',1,header=TRUE)
a<-table.element(a,'95% LB',1,header=TRUE)
a<-table.element(a,'95% UB',1,header=TRUE)
a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE)
mylab <- paste('P(F[t]>Y[',nx,sep='')
mylab <- paste(mylab,'])',sep='')
a<-table.element(a,mylab,1,header=TRUE)
a<-table.row.end(a)
for (i in (nx-par5):nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.row.end(a)
}
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(x[nx+i],4))
a<-table.element(a,round(forecast$pred[i],4))
a<-table.element(a,round(lb[i],4))
a<-table.element(a,round(ub[i],4))
a<-table.element(a,round((1-prob.pval[i]),4))
a<-table.element(a,round((1-prob.dec[i]),4))
a<-table.element(a,round((1-prob.sdec[i]),4))
a<-table.element(a,round((1-prob.ldec[i]),4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',10,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'% S.E.',1,header=TRUE)
a<-table.element(a,'PE',1,header=TRUE)
a<-table.element(a,'MAPE',1,header=TRUE)
a<-table.element(a,'sMAPE',1,header=TRUE)
a<-table.element(a,'Sq.E',1,header=TRUE)
a<-table.element(a,'MSE',1,header=TRUE)
a<-table.element(a,'RMSE',1,header=TRUE)
a<-table.element(a,'ScaledE',1,header=TRUE)
a<-table.element(a,'MASE',1,header=TRUE)
a<-table.row.end(a)
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(perc.se[i],4))
a<-table.element(a,round(perf.pe[i],4))
a<-table.element(a,round(perf.mape1[i],4))
a<-table.element(a,round(perf.smape1[i],4))
a<-table.element(a,round(perf.se[i],4))
a<-table.element(a,round(perf.mse1[i],4))
a<-table.element(a,round(perf.rmse[i],4))
a<-table.element(a,round(perf.scalederr[i],4))
a<-table.element(a,round(perf.mase1[i],4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')