Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimaforecasting.wasp
Title produced by softwareARIMA Forecasting
Date of computationFri, 23 Dec 2016 08:13:14 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/23/t1482477222l2iqcvesz316sf5.htm/, Retrieved Fri, 01 Nov 2024 03:29:05 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=302746, Retrieved Fri, 01 Nov 2024 03:29:05 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact142
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [ARIMA Forecasting] [ARIMA Forecasting] [2016-12-23 07:13:14] [36884fbde1107444791dd71ee0072a5a] [Current]
Feedback Forum

Post a new message
Dataseries X:
8160
6540
6660
8260
6340
6940
6320
8540
8360
8940
8760
8820
8040
8780
7780
6600
6400
7120
6800
8100
9620
9120
7880
7740
7400
7820
6260
5860
5600
5820
6720
6940
7940
7680
8040
8060
6900
5460
6180
5460
5240
5440
5280
7120
6160
7320
7460
5320
6480
5600
6540
4920
5560
6260
5580
6380
6020
6280
6100
5020
5100
5480
5980
5920
5360
4800
4980
5880
5880
7080
7760
4620
5280
5280
5360
4680
5040
5760
6120
5140
5520
5700
4540
4880
5080
5220
4980
5000
4780
5820
5480
4880
5460
5580
5660
5280
5440
4760
4460
5220
4640
4980
4800
5540
5920
5780
6020
5620




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302746&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=302746&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302746&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[84])
724620-------
735280-------
745280-------
755360-------
764680-------
775040-------
785760-------
796120-------
805140-------
815520-------
825700-------
834540-------
844880-------
8550805106.25574321.1056266.00960.48230.64890.38450.6489
8652205047.12994241.84146258.41370.38980.47880.35320.6066
8749805180.03674322.47656494.88460.38280.47620.39420.6727
8850004852.40354089.44485991.65580.39980.41310.61660.4811
8947804892.2354111.66286066.33970.42570.42860.40260.5081
9058205034.36814204.21636304.51370.11270.65270.13140.5941
9154805081.03424230.54796392.79030.27550.13480.06030.6181
9248805177.36234290.19066563.5560.33710.33440.52110.6629
9354605235.42454323.49786673.66270.37980.68590.34910.6859
9455805450.51134460.15677052.3770.43710.49540.38010.7574
9556605183.66384277.69826615.29910.25720.29370.81090.6612
9652804795.99594010.00565994.67040.21440.07890.44540.4454
9754404971.37354093.98246365.80450.2550.33220.43930.5511
9847604920.31234048.34066309.52070.41050.23170.33620.5227
9944605027.89624111.27476513.57340.22690.63810.52520.5773
10052204759.17293926.55646075.67250.24630.6720.360.4286
10146404792.10173942.04386147.16280.41290.2680.5070.4494
10249804909.00694012.62666363.32430.46190.64150.10980.5156
10348004947.14864030.95436446.9080.42380.48290.24310.535
10455405025.50934075.05526602.69310.26130.61040.57170.5717
10559205072.49894098.52976705.14180.15450.28730.32090.5914
10657805244.99214200.93127039.75390.27950.23050.35720.6549
10760205030.61784058.69276666.7140.1180.18470.22540.5716
10856204712.29233847.27626120.36930.10320.03440.21470.4077

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast \tabularnewline
time & Y[t] & F[t] & 95% LB & 95% UB & p-value(H0: Y[t] = F[t]) & P(F[t]>Y[t-1]) & P(F[t]>Y[t-s]) & P(F[t]>Y[84]) \tabularnewline
72 & 4620 & - & - & - & - & - & - & - \tabularnewline
73 & 5280 & - & - & - & - & - & - & - \tabularnewline
74 & 5280 & - & - & - & - & - & - & - \tabularnewline
75 & 5360 & - & - & - & - & - & - & - \tabularnewline
76 & 4680 & - & - & - & - & - & - & - \tabularnewline
77 & 5040 & - & - & - & - & - & - & - \tabularnewline
78 & 5760 & - & - & - & - & - & - & - \tabularnewline
79 & 6120 & - & - & - & - & - & - & - \tabularnewline
80 & 5140 & - & - & - & - & - & - & - \tabularnewline
81 & 5520 & - & - & - & - & - & - & - \tabularnewline
82 & 5700 & - & - & - & - & - & - & - \tabularnewline
83 & 4540 & - & - & - & - & - & - & - \tabularnewline
84 & 4880 & - & - & - & - & - & - & - \tabularnewline
85 & 5080 & 5106.2557 & 4321.105 & 6266.0096 & 0.4823 & 0.6489 & 0.3845 & 0.6489 \tabularnewline
86 & 5220 & 5047.1299 & 4241.8414 & 6258.4137 & 0.3898 & 0.4788 & 0.3532 & 0.6066 \tabularnewline
87 & 4980 & 5180.0367 & 4322.4765 & 6494.8846 & 0.3828 & 0.4762 & 0.3942 & 0.6727 \tabularnewline
88 & 5000 & 4852.4035 & 4089.4448 & 5991.6558 & 0.3998 & 0.4131 & 0.6166 & 0.4811 \tabularnewline
89 & 4780 & 4892.235 & 4111.6628 & 6066.3397 & 0.4257 & 0.4286 & 0.4026 & 0.5081 \tabularnewline
90 & 5820 & 5034.3681 & 4204.2163 & 6304.5137 & 0.1127 & 0.6527 & 0.1314 & 0.5941 \tabularnewline
91 & 5480 & 5081.0342 & 4230.5479 & 6392.7903 & 0.2755 & 0.1348 & 0.0603 & 0.6181 \tabularnewline
92 & 4880 & 5177.3623 & 4290.1906 & 6563.556 & 0.3371 & 0.3344 & 0.5211 & 0.6629 \tabularnewline
93 & 5460 & 5235.4245 & 4323.4978 & 6673.6627 & 0.3798 & 0.6859 & 0.3491 & 0.6859 \tabularnewline
94 & 5580 & 5450.5113 & 4460.1567 & 7052.377 & 0.4371 & 0.4954 & 0.3801 & 0.7574 \tabularnewline
95 & 5660 & 5183.6638 & 4277.6982 & 6615.2991 & 0.2572 & 0.2937 & 0.8109 & 0.6612 \tabularnewline
96 & 5280 & 4795.9959 & 4010.0056 & 5994.6704 & 0.2144 & 0.0789 & 0.4454 & 0.4454 \tabularnewline
97 & 5440 & 4971.3735 & 4093.9824 & 6365.8045 & 0.255 & 0.3322 & 0.4393 & 0.5511 \tabularnewline
98 & 4760 & 4920.3123 & 4048.3406 & 6309.5207 & 0.4105 & 0.2317 & 0.3362 & 0.5227 \tabularnewline
99 & 4460 & 5027.8962 & 4111.2747 & 6513.5734 & 0.2269 & 0.6381 & 0.5252 & 0.5773 \tabularnewline
100 & 5220 & 4759.1729 & 3926.5564 & 6075.6725 & 0.2463 & 0.672 & 0.36 & 0.4286 \tabularnewline
101 & 4640 & 4792.1017 & 3942.0438 & 6147.1628 & 0.4129 & 0.268 & 0.507 & 0.4494 \tabularnewline
102 & 4980 & 4909.0069 & 4012.6266 & 6363.3243 & 0.4619 & 0.6415 & 0.1098 & 0.5156 \tabularnewline
103 & 4800 & 4947.1486 & 4030.9543 & 6446.908 & 0.4238 & 0.4829 & 0.2431 & 0.535 \tabularnewline
104 & 5540 & 5025.5093 & 4075.0552 & 6602.6931 & 0.2613 & 0.6104 & 0.5717 & 0.5717 \tabularnewline
105 & 5920 & 5072.4989 & 4098.5297 & 6705.1418 & 0.1545 & 0.2873 & 0.3209 & 0.5914 \tabularnewline
106 & 5780 & 5244.9921 & 4200.9312 & 7039.7539 & 0.2795 & 0.2305 & 0.3572 & 0.6549 \tabularnewline
107 & 6020 & 5030.6178 & 4058.6927 & 6666.714 & 0.118 & 0.1847 & 0.2254 & 0.5716 \tabularnewline
108 & 5620 & 4712.2923 & 3847.2762 & 6120.3693 & 0.1032 & 0.0344 & 0.2147 & 0.4077 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302746&T=1

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast[/C][/ROW]
[ROW][C]time[/C][C]Y[t][/C][C]F[t][/C][C]95% LB[/C][C]95% UB[/C][C]p-value(H0: Y[t] = F[t])[/C][C]P(F[t]>Y[t-1])[/C][C]P(F[t]>Y[t-s])[/C][C]P(F[t]>Y[84])[/C][/ROW]
[ROW][C]72[/C][C]4620[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]73[/C][C]5280[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]74[/C][C]5280[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]75[/C][C]5360[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]76[/C][C]4680[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]77[/C][C]5040[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]78[/C][C]5760[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]79[/C][C]6120[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]80[/C][C]5140[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]81[/C][C]5520[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]82[/C][C]5700[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]83[/C][C]4540[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]84[/C][C]4880[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]85[/C][C]5080[/C][C]5106.2557[/C][C]4321.105[/C][C]6266.0096[/C][C]0.4823[/C][C]0.6489[/C][C]0.3845[/C][C]0.6489[/C][/ROW]
[ROW][C]86[/C][C]5220[/C][C]5047.1299[/C][C]4241.8414[/C][C]6258.4137[/C][C]0.3898[/C][C]0.4788[/C][C]0.3532[/C][C]0.6066[/C][/ROW]
[ROW][C]87[/C][C]4980[/C][C]5180.0367[/C][C]4322.4765[/C][C]6494.8846[/C][C]0.3828[/C][C]0.4762[/C][C]0.3942[/C][C]0.6727[/C][/ROW]
[ROW][C]88[/C][C]5000[/C][C]4852.4035[/C][C]4089.4448[/C][C]5991.6558[/C][C]0.3998[/C][C]0.4131[/C][C]0.6166[/C][C]0.4811[/C][/ROW]
[ROW][C]89[/C][C]4780[/C][C]4892.235[/C][C]4111.6628[/C][C]6066.3397[/C][C]0.4257[/C][C]0.4286[/C][C]0.4026[/C][C]0.5081[/C][/ROW]
[ROW][C]90[/C][C]5820[/C][C]5034.3681[/C][C]4204.2163[/C][C]6304.5137[/C][C]0.1127[/C][C]0.6527[/C][C]0.1314[/C][C]0.5941[/C][/ROW]
[ROW][C]91[/C][C]5480[/C][C]5081.0342[/C][C]4230.5479[/C][C]6392.7903[/C][C]0.2755[/C][C]0.1348[/C][C]0.0603[/C][C]0.6181[/C][/ROW]
[ROW][C]92[/C][C]4880[/C][C]5177.3623[/C][C]4290.1906[/C][C]6563.556[/C][C]0.3371[/C][C]0.3344[/C][C]0.5211[/C][C]0.6629[/C][/ROW]
[ROW][C]93[/C][C]5460[/C][C]5235.4245[/C][C]4323.4978[/C][C]6673.6627[/C][C]0.3798[/C][C]0.6859[/C][C]0.3491[/C][C]0.6859[/C][/ROW]
[ROW][C]94[/C][C]5580[/C][C]5450.5113[/C][C]4460.1567[/C][C]7052.377[/C][C]0.4371[/C][C]0.4954[/C][C]0.3801[/C][C]0.7574[/C][/ROW]
[ROW][C]95[/C][C]5660[/C][C]5183.6638[/C][C]4277.6982[/C][C]6615.2991[/C][C]0.2572[/C][C]0.2937[/C][C]0.8109[/C][C]0.6612[/C][/ROW]
[ROW][C]96[/C][C]5280[/C][C]4795.9959[/C][C]4010.0056[/C][C]5994.6704[/C][C]0.2144[/C][C]0.0789[/C][C]0.4454[/C][C]0.4454[/C][/ROW]
[ROW][C]97[/C][C]5440[/C][C]4971.3735[/C][C]4093.9824[/C][C]6365.8045[/C][C]0.255[/C][C]0.3322[/C][C]0.4393[/C][C]0.5511[/C][/ROW]
[ROW][C]98[/C][C]4760[/C][C]4920.3123[/C][C]4048.3406[/C][C]6309.5207[/C][C]0.4105[/C][C]0.2317[/C][C]0.3362[/C][C]0.5227[/C][/ROW]
[ROW][C]99[/C][C]4460[/C][C]5027.8962[/C][C]4111.2747[/C][C]6513.5734[/C][C]0.2269[/C][C]0.6381[/C][C]0.5252[/C][C]0.5773[/C][/ROW]
[ROW][C]100[/C][C]5220[/C][C]4759.1729[/C][C]3926.5564[/C][C]6075.6725[/C][C]0.2463[/C][C]0.672[/C][C]0.36[/C][C]0.4286[/C][/ROW]
[ROW][C]101[/C][C]4640[/C][C]4792.1017[/C][C]3942.0438[/C][C]6147.1628[/C][C]0.4129[/C][C]0.268[/C][C]0.507[/C][C]0.4494[/C][/ROW]
[ROW][C]102[/C][C]4980[/C][C]4909.0069[/C][C]4012.6266[/C][C]6363.3243[/C][C]0.4619[/C][C]0.6415[/C][C]0.1098[/C][C]0.5156[/C][/ROW]
[ROW][C]103[/C][C]4800[/C][C]4947.1486[/C][C]4030.9543[/C][C]6446.908[/C][C]0.4238[/C][C]0.4829[/C][C]0.2431[/C][C]0.535[/C][/ROW]
[ROW][C]104[/C][C]5540[/C][C]5025.5093[/C][C]4075.0552[/C][C]6602.6931[/C][C]0.2613[/C][C]0.6104[/C][C]0.5717[/C][C]0.5717[/C][/ROW]
[ROW][C]105[/C][C]5920[/C][C]5072.4989[/C][C]4098.5297[/C][C]6705.1418[/C][C]0.1545[/C][C]0.2873[/C][C]0.3209[/C][C]0.5914[/C][/ROW]
[ROW][C]106[/C][C]5780[/C][C]5244.9921[/C][C]4200.9312[/C][C]7039.7539[/C][C]0.2795[/C][C]0.2305[/C][C]0.3572[/C][C]0.6549[/C][/ROW]
[ROW][C]107[/C][C]6020[/C][C]5030.6178[/C][C]4058.6927[/C][C]6666.714[/C][C]0.118[/C][C]0.1847[/C][C]0.2254[/C][C]0.5716[/C][/ROW]
[ROW][C]108[/C][C]5620[/C][C]4712.2923[/C][C]3847.2762[/C][C]6120.3693[/C][C]0.1032[/C][C]0.0344[/C][C]0.2147[/C][C]0.4077[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302746&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302746&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[84])
724620-------
735280-------
745280-------
755360-------
764680-------
775040-------
785760-------
796120-------
805140-------
815520-------
825700-------
834540-------
844880-------
8550805106.25574321.1056266.00960.48230.64890.38450.6489
8652205047.12994241.84146258.41370.38980.47880.35320.6066
8749805180.03674322.47656494.88460.38280.47620.39420.6727
8850004852.40354089.44485991.65580.39980.41310.61660.4811
8947804892.2354111.66286066.33970.42570.42860.40260.5081
9058205034.36814204.21636304.51370.11270.65270.13140.5941
9154805081.03424230.54796392.79030.27550.13480.06030.6181
9248805177.36234290.19066563.5560.33710.33440.52110.6629
9354605235.42454323.49786673.66270.37980.68590.34910.6859
9455805450.51134460.15677052.3770.43710.49540.38010.7574
9556605183.66384277.69826615.29910.25720.29370.81090.6612
9652804795.99594010.00565994.67040.21440.07890.44540.4454
9754404971.37354093.98246365.80450.2550.33220.43930.5511
9847604920.31234048.34066309.52070.41050.23170.33620.5227
9944605027.89624111.27476513.57340.22690.63810.52520.5773
10052204759.17293926.55646075.67250.24630.6720.360.4286
10146404792.10173942.04386147.16280.41290.2680.5070.4494
10249804909.00694012.62666363.32430.46190.64150.10980.5156
10348004947.14864030.95436446.9080.42380.48290.24310.535
10455405025.50934075.05526602.69310.26130.61040.57170.5717
10559205072.49894098.52976705.14180.15450.28730.32090.5914
10657805244.99214200.93127039.75390.27950.23050.35720.6549
10760205030.61784058.69276666.7140.1180.18470.22540.5716
10856204712.29233847.27626120.36930.10320.03440.21470.4077







Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPEsMAPESq.EMSERMSEScaledEMASE
850.1159-0.00520.00520.0052689.362200-0.06970.0697
860.12240.03310.01910.019429884.072415286.7173123.63950.45910.2644
870.1295-0.04020.02620.026140014.693323529.3759153.3929-0.53130.3534
880.11980.02950.0270.02721784.724823093.2132151.96450.3920.363
890.1224-0.02350.02630.026312596.688920993.9083144.8927-0.29810.35
900.12870.1350.04440.046617217.5165120364.5097346.93592.08660.6395
910.13170.07280.04850.0502159173.7042125908.6803354.83611.05960.6995
920.1366-0.06090.050.051488424.3087121223.1339348.1711-0.78980.7108
930.14020.04110.0490.050350434.1598113357.6923336.68630.59640.6981
940.14990.02320.04650.047616767.3358103698.6566322.02280.34390.6626
950.14090.08420.04990.0513226896.1673114898.4303338.96671.26510.7174
960.12750.09170.05340.055234259.9337124845.2223353.33441.28550.7648
970.14310.08610.05590.0577219610.8215132134.8838363.50361.24460.8017
980.1441-0.03370.05430.05625700.0198124532.3935352.8915-0.42580.7748
990.1508-0.12730.05920.0602322506.1442137730.6435371.1208-1.50830.8237
1000.14110.08830.0610.0622212361.5758142395.0768377.35271.22390.8487
1010.1443-0.03280.05930.060523134.9316135379.7741367.9399-0.4040.8226
1020.15120.01430.05680.05795040.0239128138.6769357.96460.18850.7873
1030.1547-0.03070.05540.056421652.7155122534.1526350.0488-0.39080.7665
1040.16010.09290.05730.0585264700.6767129642.4788360.0591.36640.7965
1050.16420.14320.06140.063718258.1755157671.7977397.07912.25090.8657
1060.17460.09260.06280.0646286233.4335163515.5084404.37051.42090.891
1070.16590.16430.06720.0696978877.17198966.0155446.05612.62770.9665
1080.15250.16150.07120.074823933.2705225006.3177474.34832.41081.0267

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast Performance \tabularnewline
time & % S.E. & PE & MAPE & sMAPE & Sq.E & MSE & RMSE & ScaledE & MASE \tabularnewline
85 & 0.1159 & -0.0052 & 0.0052 & 0.0052 & 689.3622 & 0 & 0 & -0.0697 & 0.0697 \tabularnewline
86 & 0.1224 & 0.0331 & 0.0191 & 0.0194 & 29884.0724 & 15286.7173 & 123.6395 & 0.4591 & 0.2644 \tabularnewline
87 & 0.1295 & -0.0402 & 0.0262 & 0.0261 & 40014.6933 & 23529.3759 & 153.3929 & -0.5313 & 0.3534 \tabularnewline
88 & 0.1198 & 0.0295 & 0.027 & 0.027 & 21784.7248 & 23093.2132 & 151.9645 & 0.392 & 0.363 \tabularnewline
89 & 0.1224 & -0.0235 & 0.0263 & 0.0263 & 12596.6889 & 20993.9083 & 144.8927 & -0.2981 & 0.35 \tabularnewline
90 & 0.1287 & 0.135 & 0.0444 & 0.046 & 617217.5165 & 120364.5097 & 346.9359 & 2.0866 & 0.6395 \tabularnewline
91 & 0.1317 & 0.0728 & 0.0485 & 0.0502 & 159173.7042 & 125908.6803 & 354.8361 & 1.0596 & 0.6995 \tabularnewline
92 & 0.1366 & -0.0609 & 0.05 & 0.0514 & 88424.3087 & 121223.1339 & 348.1711 & -0.7898 & 0.7108 \tabularnewline
93 & 0.1402 & 0.0411 & 0.049 & 0.0503 & 50434.1598 & 113357.6923 & 336.6863 & 0.5964 & 0.6981 \tabularnewline
94 & 0.1499 & 0.0232 & 0.0465 & 0.0476 & 16767.3358 & 103698.6566 & 322.0228 & 0.3439 & 0.6626 \tabularnewline
95 & 0.1409 & 0.0842 & 0.0499 & 0.0513 & 226896.1673 & 114898.4303 & 338.9667 & 1.2651 & 0.7174 \tabularnewline
96 & 0.1275 & 0.0917 & 0.0534 & 0.055 & 234259.9337 & 124845.2223 & 353.3344 & 1.2855 & 0.7648 \tabularnewline
97 & 0.1431 & 0.0861 & 0.0559 & 0.0577 & 219610.8215 & 132134.8838 & 363.5036 & 1.2446 & 0.8017 \tabularnewline
98 & 0.1441 & -0.0337 & 0.0543 & 0.056 & 25700.0198 & 124532.3935 & 352.8915 & -0.4258 & 0.7748 \tabularnewline
99 & 0.1508 & -0.1273 & 0.0592 & 0.0602 & 322506.1442 & 137730.6435 & 371.1208 & -1.5083 & 0.8237 \tabularnewline
100 & 0.1411 & 0.0883 & 0.061 & 0.0622 & 212361.5758 & 142395.0768 & 377.3527 & 1.2239 & 0.8487 \tabularnewline
101 & 0.1443 & -0.0328 & 0.0593 & 0.0605 & 23134.9316 & 135379.7741 & 367.9399 & -0.404 & 0.8226 \tabularnewline
102 & 0.1512 & 0.0143 & 0.0568 & 0.0579 & 5040.0239 & 128138.6769 & 357.9646 & 0.1885 & 0.7873 \tabularnewline
103 & 0.1547 & -0.0307 & 0.0554 & 0.0564 & 21652.7155 & 122534.1526 & 350.0488 & -0.3908 & 0.7665 \tabularnewline
104 & 0.1601 & 0.0929 & 0.0573 & 0.0585 & 264700.6767 & 129642.4788 & 360.059 & 1.3664 & 0.7965 \tabularnewline
105 & 0.1642 & 0.1432 & 0.0614 & 0.063 & 718258.1755 & 157671.7977 & 397.0791 & 2.2509 & 0.8657 \tabularnewline
106 & 0.1746 & 0.0926 & 0.0628 & 0.0646 & 286233.4335 & 163515.5084 & 404.3705 & 1.4209 & 0.891 \tabularnewline
107 & 0.1659 & 0.1643 & 0.0672 & 0.0696 & 978877.17 & 198966.0155 & 446.0561 & 2.6277 & 0.9665 \tabularnewline
108 & 0.1525 & 0.1615 & 0.0712 & 0.074 & 823933.2705 & 225006.3177 & 474.3483 & 2.4108 & 1.0267 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302746&T=2

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast Performance[/C][/ROW]
[ROW][C]time[/C][C]% S.E.[/C][C]PE[/C][C]MAPE[/C][C]sMAPE[/C][C]Sq.E[/C][C]MSE[/C][C]RMSE[/C][C]ScaledE[/C][C]MASE[/C][/ROW]
[ROW][C]85[/C][C]0.1159[/C][C]-0.0052[/C][C]0.0052[/C][C]0.0052[/C][C]689.3622[/C][C]0[/C][C]0[/C][C]-0.0697[/C][C]0.0697[/C][/ROW]
[ROW][C]86[/C][C]0.1224[/C][C]0.0331[/C][C]0.0191[/C][C]0.0194[/C][C]29884.0724[/C][C]15286.7173[/C][C]123.6395[/C][C]0.4591[/C][C]0.2644[/C][/ROW]
[ROW][C]87[/C][C]0.1295[/C][C]-0.0402[/C][C]0.0262[/C][C]0.0261[/C][C]40014.6933[/C][C]23529.3759[/C][C]153.3929[/C][C]-0.5313[/C][C]0.3534[/C][/ROW]
[ROW][C]88[/C][C]0.1198[/C][C]0.0295[/C][C]0.027[/C][C]0.027[/C][C]21784.7248[/C][C]23093.2132[/C][C]151.9645[/C][C]0.392[/C][C]0.363[/C][/ROW]
[ROW][C]89[/C][C]0.1224[/C][C]-0.0235[/C][C]0.0263[/C][C]0.0263[/C][C]12596.6889[/C][C]20993.9083[/C][C]144.8927[/C][C]-0.2981[/C][C]0.35[/C][/ROW]
[ROW][C]90[/C][C]0.1287[/C][C]0.135[/C][C]0.0444[/C][C]0.046[/C][C]617217.5165[/C][C]120364.5097[/C][C]346.9359[/C][C]2.0866[/C][C]0.6395[/C][/ROW]
[ROW][C]91[/C][C]0.1317[/C][C]0.0728[/C][C]0.0485[/C][C]0.0502[/C][C]159173.7042[/C][C]125908.6803[/C][C]354.8361[/C][C]1.0596[/C][C]0.6995[/C][/ROW]
[ROW][C]92[/C][C]0.1366[/C][C]-0.0609[/C][C]0.05[/C][C]0.0514[/C][C]88424.3087[/C][C]121223.1339[/C][C]348.1711[/C][C]-0.7898[/C][C]0.7108[/C][/ROW]
[ROW][C]93[/C][C]0.1402[/C][C]0.0411[/C][C]0.049[/C][C]0.0503[/C][C]50434.1598[/C][C]113357.6923[/C][C]336.6863[/C][C]0.5964[/C][C]0.6981[/C][/ROW]
[ROW][C]94[/C][C]0.1499[/C][C]0.0232[/C][C]0.0465[/C][C]0.0476[/C][C]16767.3358[/C][C]103698.6566[/C][C]322.0228[/C][C]0.3439[/C][C]0.6626[/C][/ROW]
[ROW][C]95[/C][C]0.1409[/C][C]0.0842[/C][C]0.0499[/C][C]0.0513[/C][C]226896.1673[/C][C]114898.4303[/C][C]338.9667[/C][C]1.2651[/C][C]0.7174[/C][/ROW]
[ROW][C]96[/C][C]0.1275[/C][C]0.0917[/C][C]0.0534[/C][C]0.055[/C][C]234259.9337[/C][C]124845.2223[/C][C]353.3344[/C][C]1.2855[/C][C]0.7648[/C][/ROW]
[ROW][C]97[/C][C]0.1431[/C][C]0.0861[/C][C]0.0559[/C][C]0.0577[/C][C]219610.8215[/C][C]132134.8838[/C][C]363.5036[/C][C]1.2446[/C][C]0.8017[/C][/ROW]
[ROW][C]98[/C][C]0.1441[/C][C]-0.0337[/C][C]0.0543[/C][C]0.056[/C][C]25700.0198[/C][C]124532.3935[/C][C]352.8915[/C][C]-0.4258[/C][C]0.7748[/C][/ROW]
[ROW][C]99[/C][C]0.1508[/C][C]-0.1273[/C][C]0.0592[/C][C]0.0602[/C][C]322506.1442[/C][C]137730.6435[/C][C]371.1208[/C][C]-1.5083[/C][C]0.8237[/C][/ROW]
[ROW][C]100[/C][C]0.1411[/C][C]0.0883[/C][C]0.061[/C][C]0.0622[/C][C]212361.5758[/C][C]142395.0768[/C][C]377.3527[/C][C]1.2239[/C][C]0.8487[/C][/ROW]
[ROW][C]101[/C][C]0.1443[/C][C]-0.0328[/C][C]0.0593[/C][C]0.0605[/C][C]23134.9316[/C][C]135379.7741[/C][C]367.9399[/C][C]-0.404[/C][C]0.8226[/C][/ROW]
[ROW][C]102[/C][C]0.1512[/C][C]0.0143[/C][C]0.0568[/C][C]0.0579[/C][C]5040.0239[/C][C]128138.6769[/C][C]357.9646[/C][C]0.1885[/C][C]0.7873[/C][/ROW]
[ROW][C]103[/C][C]0.1547[/C][C]-0.0307[/C][C]0.0554[/C][C]0.0564[/C][C]21652.7155[/C][C]122534.1526[/C][C]350.0488[/C][C]-0.3908[/C][C]0.7665[/C][/ROW]
[ROW][C]104[/C][C]0.1601[/C][C]0.0929[/C][C]0.0573[/C][C]0.0585[/C][C]264700.6767[/C][C]129642.4788[/C][C]360.059[/C][C]1.3664[/C][C]0.7965[/C][/ROW]
[ROW][C]105[/C][C]0.1642[/C][C]0.1432[/C][C]0.0614[/C][C]0.063[/C][C]718258.1755[/C][C]157671.7977[/C][C]397.0791[/C][C]2.2509[/C][C]0.8657[/C][/ROW]
[ROW][C]106[/C][C]0.1746[/C][C]0.0926[/C][C]0.0628[/C][C]0.0646[/C][C]286233.4335[/C][C]163515.5084[/C][C]404.3705[/C][C]1.4209[/C][C]0.891[/C][/ROW]
[ROW][C]107[/C][C]0.1659[/C][C]0.1643[/C][C]0.0672[/C][C]0.0696[/C][C]978877.17[/C][C]198966.0155[/C][C]446.0561[/C][C]2.6277[/C][C]0.9665[/C][/ROW]
[ROW][C]108[/C][C]0.1525[/C][C]0.1615[/C][C]0.0712[/C][C]0.074[/C][C]823933.2705[/C][C]225006.3177[/C][C]474.3483[/C][C]2.4108[/C][C]1.0267[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302746&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302746&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPEsMAPESq.EMSERMSEScaledEMASE
850.1159-0.00520.00520.0052689.362200-0.06970.0697
860.12240.03310.01910.019429884.072415286.7173123.63950.45910.2644
870.1295-0.04020.02620.026140014.693323529.3759153.3929-0.53130.3534
880.11980.02950.0270.02721784.724823093.2132151.96450.3920.363
890.1224-0.02350.02630.026312596.688920993.9083144.8927-0.29810.35
900.12870.1350.04440.046617217.5165120364.5097346.93592.08660.6395
910.13170.07280.04850.0502159173.7042125908.6803354.83611.05960.6995
920.1366-0.06090.050.051488424.3087121223.1339348.1711-0.78980.7108
930.14020.04110.0490.050350434.1598113357.6923336.68630.59640.6981
940.14990.02320.04650.047616767.3358103698.6566322.02280.34390.6626
950.14090.08420.04990.0513226896.1673114898.4303338.96671.26510.7174
960.12750.09170.05340.055234259.9337124845.2223353.33441.28550.7648
970.14310.08610.05590.0577219610.8215132134.8838363.50361.24460.8017
980.1441-0.03370.05430.05625700.0198124532.3935352.8915-0.42580.7748
990.1508-0.12730.05920.0602322506.1442137730.6435371.1208-1.50830.8237
1000.14110.08830.0610.0622212361.5758142395.0768377.35271.22390.8487
1010.1443-0.03280.05930.060523134.9316135379.7741367.9399-0.4040.8226
1020.15120.01430.05680.05795040.0239128138.6769357.96460.18850.7873
1030.1547-0.03070.05540.056421652.7155122534.1526350.0488-0.39080.7665
1040.16010.09290.05730.0585264700.6767129642.4788360.0591.36640.7965
1050.16420.14320.06140.063718258.1755157671.7977397.07912.25090.8657
1060.17460.09260.06280.0646286233.4335163515.5084404.37051.42090.891
1070.16590.16430.06720.0696978877.17198966.0155446.05612.62770.9665
1080.15250.16150.07120.074823933.2705225006.3177474.34832.41081.0267



Parameters (Session):
par1 = 24 ; par2 = -1.1 ; par3 = 1 ; par4 = 0 ; par5 = 12 ; par6 = 1 ; par7 = 1 ; par8 = 1 ; par9 = 1 ; par10 = FALSE ;
Parameters (R input):
par1 = 24 ; par2 = -1.1 ; par3 = 1 ; par4 = 0 ; par5 = 12 ; par6 = 1 ; par7 = 1 ; par8 = 1 ; par9 = 1 ; par10 = FALSE ;
R code (references can be found in the software module):
par1 <- as.numeric(par1) #cut off periods
par2 <- as.numeric(par2) #lambda
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #p
par7 <- as.numeric(par7) #q
par8 <- as.numeric(par8) #P
par9 <- as.numeric(par9) #Q
if (par10 == 'TRUE') par10 <- TRUE
if (par10 == 'FALSE') par10 <- FALSE
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
lx <- length(x)
first <- lx - 2*par1
nx <- lx - par1
nx1 <- nx + 1
fx <- lx - nx
if (fx < 1) {
fx <- par5*2
nx1 <- lx + fx - 1
first <- lx - 2*fx
}
first <- 1
if (fx < 3) fx <- round(lx/10,0)
(arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML'))
(forecast <- predict(arima.out,fx))
(lb <- forecast$pred - 1.96 * forecast$se)
(ub <- forecast$pred + 1.96 * forecast$se)
if (par2 == 0) {
x <- exp(x)
forecast$pred <- exp(forecast$pred)
lb <- exp(lb)
ub <- exp(ub)
}
if (par2 != 0) {
x <- x^(1/par2)
forecast$pred <- forecast$pred^(1/par2)
lb <- lb^(1/par2)
ub <- ub^(1/par2)
}
if (par2 < 0) {
olb <- lb
lb <- ub
ub <- olb
}
(actandfor <- c(x[1:nx], forecast$pred))
(perc.se <- (ub-forecast$pred)/1.96/forecast$pred)
bitmap(file='test1.png')
opar <- par(mar=c(4,4,2,2),las=1)
ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub))
plot(x,ylim=ylim,type='n',xlim=c(first,lx))
usr <- par('usr')
rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon')
rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender')
abline(h= (-3:3)*2 , col ='gray', lty =3)
polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA)
lines(nx1:lx, lb , lty=2)
lines(nx1:lx, ub , lty=2)
lines(x, lwd=2)
lines(nx1:lx, forecast$pred , lwd=2 , col ='white')
box()
par(opar)
dev.off()
prob.dec <- array(NA, dim=fx)
prob.sdec <- array(NA, dim=fx)
prob.ldec <- array(NA, dim=fx)
prob.pval <- array(NA, dim=fx)
perf.pe <- array(0, dim=fx)
perf.spe <- array(0, dim=fx)
perf.scalederr <- array(0, dim=fx)
perf.mase <- array(0, dim=fx)
perf.mase1 <- array(0, dim=fx)
perf.mape <- array(0, dim=fx)
perf.smape <- array(0, dim=fx)
perf.mape1 <- array(0, dim=fx)
perf.smape1 <- array(0,dim=fx)
perf.se <- array(0, dim=fx)
perf.mse <- array(0, dim=fx)
perf.mse1 <- array(0, dim=fx)
perf.rmse <- array(0, dim=fx)
perf.scaleddenom <- 0
for (i in 2:fx) {
perf.scaleddenom = perf.scaleddenom + abs(x[nx+i] - x[nx+i-1])
}
perf.scaleddenom = perf.scaleddenom / (fx-1)
for (i in 1:fx) {
locSD <- (ub[i] - forecast$pred[i]) / 1.96
perf.scalederr[i] = (x[nx+i] - forecast$pred[i]) / perf.scaleddenom
perf.pe[i] = (x[nx+i] - forecast$pred[i]) / x[nx+i]
perf.spe[i] = 2*(x[nx+i] - forecast$pred[i]) / (x[nx+i] + forecast$pred[i])
perf.se[i] = (x[nx+i] - forecast$pred[i])^2
prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD)
prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD)
prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD)
prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD)
}
perf.mape[1] = abs(perf.pe[1])
perf.smape[1] = abs(perf.spe[1])
perf.mape1[1] = perf.mape[1]
perf.smape1[1] = perf.smape[1]
perf.mse[1] = perf.se[1]
perf.mase[1] = abs(perf.scalederr[1])
perf.mase1[1] = perf.mase[1]
for (i in 2:fx) {
perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i])
perf.mape1[i] = perf.mape[i] / i
perf.smape[i] = perf.smape[i-1] + abs(perf.spe[i])
perf.smape1[i] = perf.smape[i] / i
perf.mse[i] = perf.mse[i-1] + perf.se[i]
perf.mse1[i] = perf.mse[i] / i
perf.mase[i] = perf.mase[i-1] + abs(perf.scalederr[i])
perf.mase1[i] = perf.mase[i] / i
}
perf.rmse = sqrt(perf.mse1)
bitmap(file='test2.png')
plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub)))
dum <- forecast$pred
dum[1:par1] <- x[(nx+1):lx]
lines(dum, lty=1)
lines(ub,lty=3)
lines(lb,lty=3)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'Y[t]',1,header=TRUE)
a<-table.element(a,'F[t]',1,header=TRUE)
a<-table.element(a,'95% LB',1,header=TRUE)
a<-table.element(a,'95% UB',1,header=TRUE)
a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE)
mylab <- paste('P(F[t]>Y[',nx,sep='')
mylab <- paste(mylab,'])',sep='')
a<-table.element(a,mylab,1,header=TRUE)
a<-table.row.end(a)
for (i in (nx-par5):nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.row.end(a)
}
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(x[nx+i],4))
a<-table.element(a,round(forecast$pred[i],4))
a<-table.element(a,round(lb[i],4))
a<-table.element(a,round(ub[i],4))
a<-table.element(a,round((1-prob.pval[i]),4))
a<-table.element(a,round((1-prob.dec[i]),4))
a<-table.element(a,round((1-prob.sdec[i]),4))
a<-table.element(a,round((1-prob.ldec[i]),4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',10,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'% S.E.',1,header=TRUE)
a<-table.element(a,'PE',1,header=TRUE)
a<-table.element(a,'MAPE',1,header=TRUE)
a<-table.element(a,'sMAPE',1,header=TRUE)
a<-table.element(a,'Sq.E',1,header=TRUE)
a<-table.element(a,'MSE',1,header=TRUE)
a<-table.element(a,'RMSE',1,header=TRUE)
a<-table.element(a,'ScaledE',1,header=TRUE)
a<-table.element(a,'MASE',1,header=TRUE)
a<-table.row.end(a)
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(perc.se[i],4))
a<-table.element(a,round(perf.pe[i],4))
a<-table.element(a,round(perf.mape1[i],4))
a<-table.element(a,round(perf.smape1[i],4))
a<-table.element(a,round(perf.se[i],4))
a<-table.element(a,round(perf.mse1[i],4))
a<-table.element(a,round(perf.rmse[i],4))
a<-table.element(a,round(perf.scalederr[i],4))
a<-table.element(a,round(perf.mase1[i],4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')