Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_exponentialsmoothing.wasp
Title produced by softwareExponential Smoothing
Date of computationFri, 23 Dec 2016 00:15:21 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/23/t148244858851xlmtahd6usgrb.htm/, Retrieved Fri, 01 Nov 2024 03:35:23 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=302731, Retrieved Fri, 01 Nov 2024 03:35:23 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact151
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Exponential Smoothing] [Exponential smoot...] [2016-12-22 23:15:21] [36884fbde1107444791dd71ee0072a5a] [Current]
Feedback Forum

Post a new message
Dataseries X:
3647
1885
4791
3178
2849
4716
3085
2799
3573
2721
3355
5667
2856
1944
4188
2949
3567
4137
3494
2489
3244
2669
2529
3377
3366
2073
4133
4213
3710
5123
3141
3084
3804
3203
2757
2243
5229
2857
3395
4882
7140
8945
6866
4205
3217
3079
2263
4187
2665
2073
3540
3686
2384
4500
1679
868
1869
3710
6904
3415
938
3359
3551
2278
3033
2280
2901
4812
4882
7896
5048
3741
4418
3471
5055
7595
8124
2333
3008
2744
2833
2428
4269
3207
5170
7767
4544
3741
2193
3432
5282
6635
4222
7317
4132
5048
4383
3761
4081
6491
5859
7139
7682
8649
6146
7137
9948
15819
8370
13222
16711
19059
8303
20781
9638
13444
6072
13442
14457
17705
16463
19194
20688
14739
12702
15760




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302731&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=302731&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302731&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Estimated Parameters of Exponential Smoothing
ParameterValue
alpha0.270975994160843
beta0.0185834284668464
gamma0.281621586838387

\begin{tabular}{lllllllll}
\hline
Estimated Parameters of Exponential Smoothing \tabularnewline
Parameter & Value \tabularnewline
alpha & 0.270975994160843 \tabularnewline
beta & 0.0185834284668464 \tabularnewline
gamma & 0.281621586838387 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302731&T=1

[TABLE]
[ROW][C]Estimated Parameters of Exponential Smoothing[/C][/ROW]
[ROW][C]Parameter[/C][C]Value[/C][/ROW]
[ROW][C]alpha[/C][C]0.270975994160843[/C][/ROW]
[ROW][C]beta[/C][C]0.0185834284668464[/C][/ROW]
[ROW][C]gamma[/C][C]0.281621586838387[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302731&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302731&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimated Parameters of Exponential Smoothing
ParameterValue
alpha0.270975994160843
beta0.0185834284668464
gamma0.281621586838387







Interpolation Forecasts of Exponential Smoothing
tObservedFittedResiduals
1328562904.84579217909-48.8457921790869
1419441956.94486676571-12.9448667657052
1541884221.79035639725-33.7903563972523
1629492966.34328742197-17.3432874219734
1735673604.33011183202-37.3301118320237
1841374315.96673259649-178.966732596487
1934942917.82766487169576.172335128306
2024892802.51423598104-313.514235981041
2132443475.68276097463-231.682760974635
2226692612.1766968297556.8233031702507
2325293204.45184812005-675.451848120047
2433775062.09905866513-1685.09905866513
2533662296.976212101411069.02378789859
2620731751.76816504769321.231834952313
2741333972.02178013037160.97821986963
2842132829.106628924191383.89337107581
2937103906.85373061655-196.853730616553
3051234609.44363245907513.556367540928
3131413413.07067744131-272.07067744131
3230842867.66590344196216.334096558045
3338043791.5024617524312.4975382475654
3432032969.05678114391233.943218856086
3527573526.28843389172-769.288433891719
3622435410.18836034604-3167.18836034604
3752292669.856025297912559.14397470209
3828572185.12559953579671.874400464205
3933955002.29761636198-1607.29761636198
4048823484.873204687751397.12679531225
4171404291.86274831072848.1372516893
4289456291.008785894982653.99121410502
4368664877.62610972061988.3738902794
4442054841.62293430992-636.622934309917
4532176006.61160203011-2789.61160203011
4630794192.65473490665-1113.65473490665
4722634257.93766805577-1994.93766805577
4841875470.08456090089-1283.08456090089
4926654074.74543054072-1409.74543054072
5020732192.06367646146-119.063676461465
5135403986.67434662566-446.674346625661
5236863406.93369145706279.066308542941
5323844000.96856030382-1616.96856030382
5445004235.87799098234264.122009017662
5516792958.55554688636-1279.55554688636
568682077.96770123044-1209.96770123044
5718692022.13652464991-153.136524649912
5837101638.842686432252071.15731356775
5969042254.424177835134649.57582216487
6034155523.37008575905-2108.37008575905
619383832.14050933143-2894.14050933143
6233591938.147779161261420.85222083874
6335514245.91495319177-694.914953191769
6422783732.68257670946-1454.68257670946
6530333420.61086687081-387.610866870806
6622804409.10360379644-2129.10360379644
6729012332.68884362608568.311156373918
6848121892.495584273342919.50441572666
6948823611.813145058971270.18685494103
7078964040.866052544693855.13394745531
7150485624.06148449854-576.061484498541
7237416186.5607488878-2445.5607488878
7344183783.70629963436634.293700365639
7434713547.68289463589-76.6828946358883
7550555552.21387313142-497.21387313142
7675954728.430591526492866.56940847351
7781246105.644367971842018.35563202816
7823338123.51158999775-5790.51158999775
7930084772.84896182298-1764.84896182298
8027443853.78748155819-1109.78748155819
8128334167.50229243217-1334.50229243217
8224284202.13331875239-1774.13331875239
8342693453.65856319518815.341436804824
8432073835.83122657678-628.831226576784
8551702834.374578259262335.62542174074
8677672987.678433547924779.32156645208
8745446659.33603256398-2115.33603256398
8837416001.13635990505-2260.13635990505
8921935722.80093746026-3529.80093746026
9034324457.24802157969-1025.24802157969
9152823388.478736754371893.52126324563
9266353576.917920591143058.08207940886
9342225144.81999714074-922.819997140736
9473175279.95566220072037.0443377993
9541326328.46716569031-2196.46716569031
9650485556.52330674662-508.523306746622
9743834977.12238271594-594.122382715938
9837614491.45329811903-730.453298119027
9940815025.62577684586-944.625776845856
10064914612.972003686871878.02799631313
10158595046.3583823591812.641617640897
10271395534.978317851604.02168215
10376825636.557645201432045.44235479857
10486495922.810214525362726.18978547464
10561466562.26944313412-416.269443134123
10671377779.75313456687-642.753134566869
10799487105.141640903262842.85835909674
108158198155.972482756277663.02751724373
10983709399.17285498273-1029.17285498273
110132228475.800041461474746.19995853853
1111671111451.7444582445259.25554175605
1121905914095.86110779224963.13889220776
113830314721.9460934597-6418.9460934597
1142078114052.10215586766728.89784413243
115963815270.9247290843-5632.92472908428
1161344413410.306511498833.6934885011724
117607212071.4284292265-5999.42842922647
1181344212574.2579835489867.742016451117
1191445713112.86234899071344.13765100935
1201770515015.43785363032689.56214636972
1211646312242.45948722064220.54051277943
1221919414018.06638837925175.93361162079
1232068817834.18895057682853.81104942325
1241473920029.8552764136-5290.85527641364
1251270214924.6427313948-2222.64273139479
1261576018741.0464146219-2981.04641462191

\begin{tabular}{lllllllll}
\hline
Interpolation Forecasts of Exponential Smoothing \tabularnewline
t & Observed & Fitted & Residuals \tabularnewline
13 & 2856 & 2904.84579217909 & -48.8457921790869 \tabularnewline
14 & 1944 & 1956.94486676571 & -12.9448667657052 \tabularnewline
15 & 4188 & 4221.79035639725 & -33.7903563972523 \tabularnewline
16 & 2949 & 2966.34328742197 & -17.3432874219734 \tabularnewline
17 & 3567 & 3604.33011183202 & -37.3301118320237 \tabularnewline
18 & 4137 & 4315.96673259649 & -178.966732596487 \tabularnewline
19 & 3494 & 2917.82766487169 & 576.172335128306 \tabularnewline
20 & 2489 & 2802.51423598104 & -313.514235981041 \tabularnewline
21 & 3244 & 3475.68276097463 & -231.682760974635 \tabularnewline
22 & 2669 & 2612.17669682975 & 56.8233031702507 \tabularnewline
23 & 2529 & 3204.45184812005 & -675.451848120047 \tabularnewline
24 & 3377 & 5062.09905866513 & -1685.09905866513 \tabularnewline
25 & 3366 & 2296.97621210141 & 1069.02378789859 \tabularnewline
26 & 2073 & 1751.76816504769 & 321.231834952313 \tabularnewline
27 & 4133 & 3972.02178013037 & 160.97821986963 \tabularnewline
28 & 4213 & 2829.10662892419 & 1383.89337107581 \tabularnewline
29 & 3710 & 3906.85373061655 & -196.853730616553 \tabularnewline
30 & 5123 & 4609.44363245907 & 513.556367540928 \tabularnewline
31 & 3141 & 3413.07067744131 & -272.07067744131 \tabularnewline
32 & 3084 & 2867.66590344196 & 216.334096558045 \tabularnewline
33 & 3804 & 3791.50246175243 & 12.4975382475654 \tabularnewline
34 & 3203 & 2969.05678114391 & 233.943218856086 \tabularnewline
35 & 2757 & 3526.28843389172 & -769.288433891719 \tabularnewline
36 & 2243 & 5410.18836034604 & -3167.18836034604 \tabularnewline
37 & 5229 & 2669.85602529791 & 2559.14397470209 \tabularnewline
38 & 2857 & 2185.12559953579 & 671.874400464205 \tabularnewline
39 & 3395 & 5002.29761636198 & -1607.29761636198 \tabularnewline
40 & 4882 & 3484.87320468775 & 1397.12679531225 \tabularnewline
41 & 7140 & 4291.8627483107 & 2848.1372516893 \tabularnewline
42 & 8945 & 6291.00878589498 & 2653.99121410502 \tabularnewline
43 & 6866 & 4877.6261097206 & 1988.3738902794 \tabularnewline
44 & 4205 & 4841.62293430992 & -636.622934309917 \tabularnewline
45 & 3217 & 6006.61160203011 & -2789.61160203011 \tabularnewline
46 & 3079 & 4192.65473490665 & -1113.65473490665 \tabularnewline
47 & 2263 & 4257.93766805577 & -1994.93766805577 \tabularnewline
48 & 4187 & 5470.08456090089 & -1283.08456090089 \tabularnewline
49 & 2665 & 4074.74543054072 & -1409.74543054072 \tabularnewline
50 & 2073 & 2192.06367646146 & -119.063676461465 \tabularnewline
51 & 3540 & 3986.67434662566 & -446.674346625661 \tabularnewline
52 & 3686 & 3406.93369145706 & 279.066308542941 \tabularnewline
53 & 2384 & 4000.96856030382 & -1616.96856030382 \tabularnewline
54 & 4500 & 4235.87799098234 & 264.122009017662 \tabularnewline
55 & 1679 & 2958.55554688636 & -1279.55554688636 \tabularnewline
56 & 868 & 2077.96770123044 & -1209.96770123044 \tabularnewline
57 & 1869 & 2022.13652464991 & -153.136524649912 \tabularnewline
58 & 3710 & 1638.84268643225 & 2071.15731356775 \tabularnewline
59 & 6904 & 2254.42417783513 & 4649.57582216487 \tabularnewline
60 & 3415 & 5523.37008575905 & -2108.37008575905 \tabularnewline
61 & 938 & 3832.14050933143 & -2894.14050933143 \tabularnewline
62 & 3359 & 1938.14777916126 & 1420.85222083874 \tabularnewline
63 & 3551 & 4245.91495319177 & -694.914953191769 \tabularnewline
64 & 2278 & 3732.68257670946 & -1454.68257670946 \tabularnewline
65 & 3033 & 3420.61086687081 & -387.610866870806 \tabularnewline
66 & 2280 & 4409.10360379644 & -2129.10360379644 \tabularnewline
67 & 2901 & 2332.68884362608 & 568.311156373918 \tabularnewline
68 & 4812 & 1892.49558427334 & 2919.50441572666 \tabularnewline
69 & 4882 & 3611.81314505897 & 1270.18685494103 \tabularnewline
70 & 7896 & 4040.86605254469 & 3855.13394745531 \tabularnewline
71 & 5048 & 5624.06148449854 & -576.061484498541 \tabularnewline
72 & 3741 & 6186.5607488878 & -2445.5607488878 \tabularnewline
73 & 4418 & 3783.70629963436 & 634.293700365639 \tabularnewline
74 & 3471 & 3547.68289463589 & -76.6828946358883 \tabularnewline
75 & 5055 & 5552.21387313142 & -497.21387313142 \tabularnewline
76 & 7595 & 4728.43059152649 & 2866.56940847351 \tabularnewline
77 & 8124 & 6105.64436797184 & 2018.35563202816 \tabularnewline
78 & 2333 & 8123.51158999775 & -5790.51158999775 \tabularnewline
79 & 3008 & 4772.84896182298 & -1764.84896182298 \tabularnewline
80 & 2744 & 3853.78748155819 & -1109.78748155819 \tabularnewline
81 & 2833 & 4167.50229243217 & -1334.50229243217 \tabularnewline
82 & 2428 & 4202.13331875239 & -1774.13331875239 \tabularnewline
83 & 4269 & 3453.65856319518 & 815.341436804824 \tabularnewline
84 & 3207 & 3835.83122657678 & -628.831226576784 \tabularnewline
85 & 5170 & 2834.37457825926 & 2335.62542174074 \tabularnewline
86 & 7767 & 2987.67843354792 & 4779.32156645208 \tabularnewline
87 & 4544 & 6659.33603256398 & -2115.33603256398 \tabularnewline
88 & 3741 & 6001.13635990505 & -2260.13635990505 \tabularnewline
89 & 2193 & 5722.80093746026 & -3529.80093746026 \tabularnewline
90 & 3432 & 4457.24802157969 & -1025.24802157969 \tabularnewline
91 & 5282 & 3388.47873675437 & 1893.52126324563 \tabularnewline
92 & 6635 & 3576.91792059114 & 3058.08207940886 \tabularnewline
93 & 4222 & 5144.81999714074 & -922.819997140736 \tabularnewline
94 & 7317 & 5279.9556622007 & 2037.0443377993 \tabularnewline
95 & 4132 & 6328.46716569031 & -2196.46716569031 \tabularnewline
96 & 5048 & 5556.52330674662 & -508.523306746622 \tabularnewline
97 & 4383 & 4977.12238271594 & -594.122382715938 \tabularnewline
98 & 3761 & 4491.45329811903 & -730.453298119027 \tabularnewline
99 & 4081 & 5025.62577684586 & -944.625776845856 \tabularnewline
100 & 6491 & 4612.97200368687 & 1878.02799631313 \tabularnewline
101 & 5859 & 5046.3583823591 & 812.641617640897 \tabularnewline
102 & 7139 & 5534.97831785 & 1604.02168215 \tabularnewline
103 & 7682 & 5636.55764520143 & 2045.44235479857 \tabularnewline
104 & 8649 & 5922.81021452536 & 2726.18978547464 \tabularnewline
105 & 6146 & 6562.26944313412 & -416.269443134123 \tabularnewline
106 & 7137 & 7779.75313456687 & -642.753134566869 \tabularnewline
107 & 9948 & 7105.14164090326 & 2842.85835909674 \tabularnewline
108 & 15819 & 8155.97248275627 & 7663.02751724373 \tabularnewline
109 & 8370 & 9399.17285498273 & -1029.17285498273 \tabularnewline
110 & 13222 & 8475.80004146147 & 4746.19995853853 \tabularnewline
111 & 16711 & 11451.744458244 & 5259.25554175605 \tabularnewline
112 & 19059 & 14095.8611077922 & 4963.13889220776 \tabularnewline
113 & 8303 & 14721.9460934597 & -6418.9460934597 \tabularnewline
114 & 20781 & 14052.1021558676 & 6728.89784413243 \tabularnewline
115 & 9638 & 15270.9247290843 & -5632.92472908428 \tabularnewline
116 & 13444 & 13410.3065114988 & 33.6934885011724 \tabularnewline
117 & 6072 & 12071.4284292265 & -5999.42842922647 \tabularnewline
118 & 13442 & 12574.2579835489 & 867.742016451117 \tabularnewline
119 & 14457 & 13112.8623489907 & 1344.13765100935 \tabularnewline
120 & 17705 & 15015.4378536303 & 2689.56214636972 \tabularnewline
121 & 16463 & 12242.4594872206 & 4220.54051277943 \tabularnewline
122 & 19194 & 14018.0663883792 & 5175.93361162079 \tabularnewline
123 & 20688 & 17834.1889505768 & 2853.81104942325 \tabularnewline
124 & 14739 & 20029.8552764136 & -5290.85527641364 \tabularnewline
125 & 12702 & 14924.6427313948 & -2222.64273139479 \tabularnewline
126 & 15760 & 18741.0464146219 & -2981.04641462191 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302731&T=2

[TABLE]
[ROW][C]Interpolation Forecasts of Exponential Smoothing[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Fitted[/C][C]Residuals[/C][/ROW]
[ROW][C]13[/C][C]2856[/C][C]2904.84579217909[/C][C]-48.8457921790869[/C][/ROW]
[ROW][C]14[/C][C]1944[/C][C]1956.94486676571[/C][C]-12.9448667657052[/C][/ROW]
[ROW][C]15[/C][C]4188[/C][C]4221.79035639725[/C][C]-33.7903563972523[/C][/ROW]
[ROW][C]16[/C][C]2949[/C][C]2966.34328742197[/C][C]-17.3432874219734[/C][/ROW]
[ROW][C]17[/C][C]3567[/C][C]3604.33011183202[/C][C]-37.3301118320237[/C][/ROW]
[ROW][C]18[/C][C]4137[/C][C]4315.96673259649[/C][C]-178.966732596487[/C][/ROW]
[ROW][C]19[/C][C]3494[/C][C]2917.82766487169[/C][C]576.172335128306[/C][/ROW]
[ROW][C]20[/C][C]2489[/C][C]2802.51423598104[/C][C]-313.514235981041[/C][/ROW]
[ROW][C]21[/C][C]3244[/C][C]3475.68276097463[/C][C]-231.682760974635[/C][/ROW]
[ROW][C]22[/C][C]2669[/C][C]2612.17669682975[/C][C]56.8233031702507[/C][/ROW]
[ROW][C]23[/C][C]2529[/C][C]3204.45184812005[/C][C]-675.451848120047[/C][/ROW]
[ROW][C]24[/C][C]3377[/C][C]5062.09905866513[/C][C]-1685.09905866513[/C][/ROW]
[ROW][C]25[/C][C]3366[/C][C]2296.97621210141[/C][C]1069.02378789859[/C][/ROW]
[ROW][C]26[/C][C]2073[/C][C]1751.76816504769[/C][C]321.231834952313[/C][/ROW]
[ROW][C]27[/C][C]4133[/C][C]3972.02178013037[/C][C]160.97821986963[/C][/ROW]
[ROW][C]28[/C][C]4213[/C][C]2829.10662892419[/C][C]1383.89337107581[/C][/ROW]
[ROW][C]29[/C][C]3710[/C][C]3906.85373061655[/C][C]-196.853730616553[/C][/ROW]
[ROW][C]30[/C][C]5123[/C][C]4609.44363245907[/C][C]513.556367540928[/C][/ROW]
[ROW][C]31[/C][C]3141[/C][C]3413.07067744131[/C][C]-272.07067744131[/C][/ROW]
[ROW][C]32[/C][C]3084[/C][C]2867.66590344196[/C][C]216.334096558045[/C][/ROW]
[ROW][C]33[/C][C]3804[/C][C]3791.50246175243[/C][C]12.4975382475654[/C][/ROW]
[ROW][C]34[/C][C]3203[/C][C]2969.05678114391[/C][C]233.943218856086[/C][/ROW]
[ROW][C]35[/C][C]2757[/C][C]3526.28843389172[/C][C]-769.288433891719[/C][/ROW]
[ROW][C]36[/C][C]2243[/C][C]5410.18836034604[/C][C]-3167.18836034604[/C][/ROW]
[ROW][C]37[/C][C]5229[/C][C]2669.85602529791[/C][C]2559.14397470209[/C][/ROW]
[ROW][C]38[/C][C]2857[/C][C]2185.12559953579[/C][C]671.874400464205[/C][/ROW]
[ROW][C]39[/C][C]3395[/C][C]5002.29761636198[/C][C]-1607.29761636198[/C][/ROW]
[ROW][C]40[/C][C]4882[/C][C]3484.87320468775[/C][C]1397.12679531225[/C][/ROW]
[ROW][C]41[/C][C]7140[/C][C]4291.8627483107[/C][C]2848.1372516893[/C][/ROW]
[ROW][C]42[/C][C]8945[/C][C]6291.00878589498[/C][C]2653.99121410502[/C][/ROW]
[ROW][C]43[/C][C]6866[/C][C]4877.6261097206[/C][C]1988.3738902794[/C][/ROW]
[ROW][C]44[/C][C]4205[/C][C]4841.62293430992[/C][C]-636.622934309917[/C][/ROW]
[ROW][C]45[/C][C]3217[/C][C]6006.61160203011[/C][C]-2789.61160203011[/C][/ROW]
[ROW][C]46[/C][C]3079[/C][C]4192.65473490665[/C][C]-1113.65473490665[/C][/ROW]
[ROW][C]47[/C][C]2263[/C][C]4257.93766805577[/C][C]-1994.93766805577[/C][/ROW]
[ROW][C]48[/C][C]4187[/C][C]5470.08456090089[/C][C]-1283.08456090089[/C][/ROW]
[ROW][C]49[/C][C]2665[/C][C]4074.74543054072[/C][C]-1409.74543054072[/C][/ROW]
[ROW][C]50[/C][C]2073[/C][C]2192.06367646146[/C][C]-119.063676461465[/C][/ROW]
[ROW][C]51[/C][C]3540[/C][C]3986.67434662566[/C][C]-446.674346625661[/C][/ROW]
[ROW][C]52[/C][C]3686[/C][C]3406.93369145706[/C][C]279.066308542941[/C][/ROW]
[ROW][C]53[/C][C]2384[/C][C]4000.96856030382[/C][C]-1616.96856030382[/C][/ROW]
[ROW][C]54[/C][C]4500[/C][C]4235.87799098234[/C][C]264.122009017662[/C][/ROW]
[ROW][C]55[/C][C]1679[/C][C]2958.55554688636[/C][C]-1279.55554688636[/C][/ROW]
[ROW][C]56[/C][C]868[/C][C]2077.96770123044[/C][C]-1209.96770123044[/C][/ROW]
[ROW][C]57[/C][C]1869[/C][C]2022.13652464991[/C][C]-153.136524649912[/C][/ROW]
[ROW][C]58[/C][C]3710[/C][C]1638.84268643225[/C][C]2071.15731356775[/C][/ROW]
[ROW][C]59[/C][C]6904[/C][C]2254.42417783513[/C][C]4649.57582216487[/C][/ROW]
[ROW][C]60[/C][C]3415[/C][C]5523.37008575905[/C][C]-2108.37008575905[/C][/ROW]
[ROW][C]61[/C][C]938[/C][C]3832.14050933143[/C][C]-2894.14050933143[/C][/ROW]
[ROW][C]62[/C][C]3359[/C][C]1938.14777916126[/C][C]1420.85222083874[/C][/ROW]
[ROW][C]63[/C][C]3551[/C][C]4245.91495319177[/C][C]-694.914953191769[/C][/ROW]
[ROW][C]64[/C][C]2278[/C][C]3732.68257670946[/C][C]-1454.68257670946[/C][/ROW]
[ROW][C]65[/C][C]3033[/C][C]3420.61086687081[/C][C]-387.610866870806[/C][/ROW]
[ROW][C]66[/C][C]2280[/C][C]4409.10360379644[/C][C]-2129.10360379644[/C][/ROW]
[ROW][C]67[/C][C]2901[/C][C]2332.68884362608[/C][C]568.311156373918[/C][/ROW]
[ROW][C]68[/C][C]4812[/C][C]1892.49558427334[/C][C]2919.50441572666[/C][/ROW]
[ROW][C]69[/C][C]4882[/C][C]3611.81314505897[/C][C]1270.18685494103[/C][/ROW]
[ROW][C]70[/C][C]7896[/C][C]4040.86605254469[/C][C]3855.13394745531[/C][/ROW]
[ROW][C]71[/C][C]5048[/C][C]5624.06148449854[/C][C]-576.061484498541[/C][/ROW]
[ROW][C]72[/C][C]3741[/C][C]6186.5607488878[/C][C]-2445.5607488878[/C][/ROW]
[ROW][C]73[/C][C]4418[/C][C]3783.70629963436[/C][C]634.293700365639[/C][/ROW]
[ROW][C]74[/C][C]3471[/C][C]3547.68289463589[/C][C]-76.6828946358883[/C][/ROW]
[ROW][C]75[/C][C]5055[/C][C]5552.21387313142[/C][C]-497.21387313142[/C][/ROW]
[ROW][C]76[/C][C]7595[/C][C]4728.43059152649[/C][C]2866.56940847351[/C][/ROW]
[ROW][C]77[/C][C]8124[/C][C]6105.64436797184[/C][C]2018.35563202816[/C][/ROW]
[ROW][C]78[/C][C]2333[/C][C]8123.51158999775[/C][C]-5790.51158999775[/C][/ROW]
[ROW][C]79[/C][C]3008[/C][C]4772.84896182298[/C][C]-1764.84896182298[/C][/ROW]
[ROW][C]80[/C][C]2744[/C][C]3853.78748155819[/C][C]-1109.78748155819[/C][/ROW]
[ROW][C]81[/C][C]2833[/C][C]4167.50229243217[/C][C]-1334.50229243217[/C][/ROW]
[ROW][C]82[/C][C]2428[/C][C]4202.13331875239[/C][C]-1774.13331875239[/C][/ROW]
[ROW][C]83[/C][C]4269[/C][C]3453.65856319518[/C][C]815.341436804824[/C][/ROW]
[ROW][C]84[/C][C]3207[/C][C]3835.83122657678[/C][C]-628.831226576784[/C][/ROW]
[ROW][C]85[/C][C]5170[/C][C]2834.37457825926[/C][C]2335.62542174074[/C][/ROW]
[ROW][C]86[/C][C]7767[/C][C]2987.67843354792[/C][C]4779.32156645208[/C][/ROW]
[ROW][C]87[/C][C]4544[/C][C]6659.33603256398[/C][C]-2115.33603256398[/C][/ROW]
[ROW][C]88[/C][C]3741[/C][C]6001.13635990505[/C][C]-2260.13635990505[/C][/ROW]
[ROW][C]89[/C][C]2193[/C][C]5722.80093746026[/C][C]-3529.80093746026[/C][/ROW]
[ROW][C]90[/C][C]3432[/C][C]4457.24802157969[/C][C]-1025.24802157969[/C][/ROW]
[ROW][C]91[/C][C]5282[/C][C]3388.47873675437[/C][C]1893.52126324563[/C][/ROW]
[ROW][C]92[/C][C]6635[/C][C]3576.91792059114[/C][C]3058.08207940886[/C][/ROW]
[ROW][C]93[/C][C]4222[/C][C]5144.81999714074[/C][C]-922.819997140736[/C][/ROW]
[ROW][C]94[/C][C]7317[/C][C]5279.9556622007[/C][C]2037.0443377993[/C][/ROW]
[ROW][C]95[/C][C]4132[/C][C]6328.46716569031[/C][C]-2196.46716569031[/C][/ROW]
[ROW][C]96[/C][C]5048[/C][C]5556.52330674662[/C][C]-508.523306746622[/C][/ROW]
[ROW][C]97[/C][C]4383[/C][C]4977.12238271594[/C][C]-594.122382715938[/C][/ROW]
[ROW][C]98[/C][C]3761[/C][C]4491.45329811903[/C][C]-730.453298119027[/C][/ROW]
[ROW][C]99[/C][C]4081[/C][C]5025.62577684586[/C][C]-944.625776845856[/C][/ROW]
[ROW][C]100[/C][C]6491[/C][C]4612.97200368687[/C][C]1878.02799631313[/C][/ROW]
[ROW][C]101[/C][C]5859[/C][C]5046.3583823591[/C][C]812.641617640897[/C][/ROW]
[ROW][C]102[/C][C]7139[/C][C]5534.97831785[/C][C]1604.02168215[/C][/ROW]
[ROW][C]103[/C][C]7682[/C][C]5636.55764520143[/C][C]2045.44235479857[/C][/ROW]
[ROW][C]104[/C][C]8649[/C][C]5922.81021452536[/C][C]2726.18978547464[/C][/ROW]
[ROW][C]105[/C][C]6146[/C][C]6562.26944313412[/C][C]-416.269443134123[/C][/ROW]
[ROW][C]106[/C][C]7137[/C][C]7779.75313456687[/C][C]-642.753134566869[/C][/ROW]
[ROW][C]107[/C][C]9948[/C][C]7105.14164090326[/C][C]2842.85835909674[/C][/ROW]
[ROW][C]108[/C][C]15819[/C][C]8155.97248275627[/C][C]7663.02751724373[/C][/ROW]
[ROW][C]109[/C][C]8370[/C][C]9399.17285498273[/C][C]-1029.17285498273[/C][/ROW]
[ROW][C]110[/C][C]13222[/C][C]8475.80004146147[/C][C]4746.19995853853[/C][/ROW]
[ROW][C]111[/C][C]16711[/C][C]11451.744458244[/C][C]5259.25554175605[/C][/ROW]
[ROW][C]112[/C][C]19059[/C][C]14095.8611077922[/C][C]4963.13889220776[/C][/ROW]
[ROW][C]113[/C][C]8303[/C][C]14721.9460934597[/C][C]-6418.9460934597[/C][/ROW]
[ROW][C]114[/C][C]20781[/C][C]14052.1021558676[/C][C]6728.89784413243[/C][/ROW]
[ROW][C]115[/C][C]9638[/C][C]15270.9247290843[/C][C]-5632.92472908428[/C][/ROW]
[ROW][C]116[/C][C]13444[/C][C]13410.3065114988[/C][C]33.6934885011724[/C][/ROW]
[ROW][C]117[/C][C]6072[/C][C]12071.4284292265[/C][C]-5999.42842922647[/C][/ROW]
[ROW][C]118[/C][C]13442[/C][C]12574.2579835489[/C][C]867.742016451117[/C][/ROW]
[ROW][C]119[/C][C]14457[/C][C]13112.8623489907[/C][C]1344.13765100935[/C][/ROW]
[ROW][C]120[/C][C]17705[/C][C]15015.4378536303[/C][C]2689.56214636972[/C][/ROW]
[ROW][C]121[/C][C]16463[/C][C]12242.4594872206[/C][C]4220.54051277943[/C][/ROW]
[ROW][C]122[/C][C]19194[/C][C]14018.0663883792[/C][C]5175.93361162079[/C][/ROW]
[ROW][C]123[/C][C]20688[/C][C]17834.1889505768[/C][C]2853.81104942325[/C][/ROW]
[ROW][C]124[/C][C]14739[/C][C]20029.8552764136[/C][C]-5290.85527641364[/C][/ROW]
[ROW][C]125[/C][C]12702[/C][C]14924.6427313948[/C][C]-2222.64273139479[/C][/ROW]
[ROW][C]126[/C][C]15760[/C][C]18741.0464146219[/C][C]-2981.04641462191[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302731&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302731&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Interpolation Forecasts of Exponential Smoothing
tObservedFittedResiduals
1328562904.84579217909-48.8457921790869
1419441956.94486676571-12.9448667657052
1541884221.79035639725-33.7903563972523
1629492966.34328742197-17.3432874219734
1735673604.33011183202-37.3301118320237
1841374315.96673259649-178.966732596487
1934942917.82766487169576.172335128306
2024892802.51423598104-313.514235981041
2132443475.68276097463-231.682760974635
2226692612.1766968297556.8233031702507
2325293204.45184812005-675.451848120047
2433775062.09905866513-1685.09905866513
2533662296.976212101411069.02378789859
2620731751.76816504769321.231834952313
2741333972.02178013037160.97821986963
2842132829.106628924191383.89337107581
2937103906.85373061655-196.853730616553
3051234609.44363245907513.556367540928
3131413413.07067744131-272.07067744131
3230842867.66590344196216.334096558045
3338043791.5024617524312.4975382475654
3432032969.05678114391233.943218856086
3527573526.28843389172-769.288433891719
3622435410.18836034604-3167.18836034604
3752292669.856025297912559.14397470209
3828572185.12559953579671.874400464205
3933955002.29761636198-1607.29761636198
4048823484.873204687751397.12679531225
4171404291.86274831072848.1372516893
4289456291.008785894982653.99121410502
4368664877.62610972061988.3738902794
4442054841.62293430992-636.622934309917
4532176006.61160203011-2789.61160203011
4630794192.65473490665-1113.65473490665
4722634257.93766805577-1994.93766805577
4841875470.08456090089-1283.08456090089
4926654074.74543054072-1409.74543054072
5020732192.06367646146-119.063676461465
5135403986.67434662566-446.674346625661
5236863406.93369145706279.066308542941
5323844000.96856030382-1616.96856030382
5445004235.87799098234264.122009017662
5516792958.55554688636-1279.55554688636
568682077.96770123044-1209.96770123044
5718692022.13652464991-153.136524649912
5837101638.842686432252071.15731356775
5969042254.424177835134649.57582216487
6034155523.37008575905-2108.37008575905
619383832.14050933143-2894.14050933143
6233591938.147779161261420.85222083874
6335514245.91495319177-694.914953191769
6422783732.68257670946-1454.68257670946
6530333420.61086687081-387.610866870806
6622804409.10360379644-2129.10360379644
6729012332.68884362608568.311156373918
6848121892.495584273342919.50441572666
6948823611.813145058971270.18685494103
7078964040.866052544693855.13394745531
7150485624.06148449854-576.061484498541
7237416186.5607488878-2445.5607488878
7344183783.70629963436634.293700365639
7434713547.68289463589-76.6828946358883
7550555552.21387313142-497.21387313142
7675954728.430591526492866.56940847351
7781246105.644367971842018.35563202816
7823338123.51158999775-5790.51158999775
7930084772.84896182298-1764.84896182298
8027443853.78748155819-1109.78748155819
8128334167.50229243217-1334.50229243217
8224284202.13331875239-1774.13331875239
8342693453.65856319518815.341436804824
8432073835.83122657678-628.831226576784
8551702834.374578259262335.62542174074
8677672987.678433547924779.32156645208
8745446659.33603256398-2115.33603256398
8837416001.13635990505-2260.13635990505
8921935722.80093746026-3529.80093746026
9034324457.24802157969-1025.24802157969
9152823388.478736754371893.52126324563
9266353576.917920591143058.08207940886
9342225144.81999714074-922.819997140736
9473175279.95566220072037.0443377993
9541326328.46716569031-2196.46716569031
9650485556.52330674662-508.523306746622
9743834977.12238271594-594.122382715938
9837614491.45329811903-730.453298119027
9940815025.62577684586-944.625776845856
10064914612.972003686871878.02799631313
10158595046.3583823591812.641617640897
10271395534.978317851604.02168215
10376825636.557645201432045.44235479857
10486495922.810214525362726.18978547464
10561466562.26944313412-416.269443134123
10671377779.75313456687-642.753134566869
10799487105.141640903262842.85835909674
108158198155.972482756277663.02751724373
10983709399.17285498273-1029.17285498273
110132228475.800041461474746.19995853853
1111671111451.7444582445259.25554175605
1121905914095.86110779224963.13889220776
113830314721.9460934597-6418.9460934597
1142078114052.10215586766728.89784413243
115963815270.9247290843-5632.92472908428
1161344413410.306511498833.6934885011724
117607212071.4284292265-5999.42842922647
1181344212574.2579835489867.742016451117
1191445713112.86234899071344.13765100935
1201770515015.43785363032689.56214636972
1211646312242.45948722064220.54051277943
1221919414018.06638837925175.93361162079
1232068817834.18895057682853.81104942325
1241473920029.8552764136-5290.85527641364
1251270214924.6427313948-2222.64273139479
1261576018741.0464146219-2981.04641462191







Extrapolation Forecasts of Exponential Smoothing
tForecast95% Lower Bound95% Upper Bound
12714505.543372726812179.161910243516831.92483521
12815442.888112563612716.664646092418169.1115790348
12912233.10499803189436.6787362494915029.5312598141
13016927.877970442213251.625654062320604.1302868221
13117439.56354236113433.39805896421445.7290257581
13219701.552744598315065.937761650124337.1677275466
13315746.985763273611625.068095359819868.9034311874
13416531.14365301212020.706149518321041.5811565057
13518409.749563718113267.740579444623551.7585479917
13618046.457361263412787.721513101923305.193209425
13714865.091721628310179.850290395519550.3331528612
13819377.775675165713758.478939524924997.0724108065
13916210.92013104210544.771719871321877.0685422126
14017240.850782362611121.145970527523360.5555941976
14113643.67791095088310.2083238014118977.1474981001
14218861.217579244511825.027796865225897.4073616238
14319412.564857065712037.137400514826787.9923136167
14421909.643685587213556.982038841230262.3053323332

\begin{tabular}{lllllllll}
\hline
Extrapolation Forecasts of Exponential Smoothing \tabularnewline
t & Forecast & 95% Lower Bound & 95% Upper Bound \tabularnewline
127 & 14505.5433727268 & 12179.1619102435 & 16831.92483521 \tabularnewline
128 & 15442.8881125636 & 12716.6646460924 & 18169.1115790348 \tabularnewline
129 & 12233.1049980318 & 9436.67873624949 & 15029.5312598141 \tabularnewline
130 & 16927.8779704422 & 13251.6256540623 & 20604.1302868221 \tabularnewline
131 & 17439.563542361 & 13433.398058964 & 21445.7290257581 \tabularnewline
132 & 19701.5527445983 & 15065.9377616501 & 24337.1677275466 \tabularnewline
133 & 15746.9857632736 & 11625.0680953598 & 19868.9034311874 \tabularnewline
134 & 16531.143653012 & 12020.7061495183 & 21041.5811565057 \tabularnewline
135 & 18409.7495637181 & 13267.7405794446 & 23551.7585479917 \tabularnewline
136 & 18046.4573612634 & 12787.7215131019 & 23305.193209425 \tabularnewline
137 & 14865.0917216283 & 10179.8502903955 & 19550.3331528612 \tabularnewline
138 & 19377.7756751657 & 13758.4789395249 & 24997.0724108065 \tabularnewline
139 & 16210.920131042 & 10544.7717198713 & 21877.0685422126 \tabularnewline
140 & 17240.8507823626 & 11121.1459705275 & 23360.5555941976 \tabularnewline
141 & 13643.6779109508 & 8310.20832380141 & 18977.1474981001 \tabularnewline
142 & 18861.2175792445 & 11825.0277968652 & 25897.4073616238 \tabularnewline
143 & 19412.5648570657 & 12037.1374005148 & 26787.9923136167 \tabularnewline
144 & 21909.6436855872 & 13556.9820388412 & 30262.3053323332 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302731&T=3

[TABLE]
[ROW][C]Extrapolation Forecasts of Exponential Smoothing[/C][/ROW]
[ROW][C]t[/C][C]Forecast[/C][C]95% Lower Bound[/C][C]95% Upper Bound[/C][/ROW]
[ROW][C]127[/C][C]14505.5433727268[/C][C]12179.1619102435[/C][C]16831.92483521[/C][/ROW]
[ROW][C]128[/C][C]15442.8881125636[/C][C]12716.6646460924[/C][C]18169.1115790348[/C][/ROW]
[ROW][C]129[/C][C]12233.1049980318[/C][C]9436.67873624949[/C][C]15029.5312598141[/C][/ROW]
[ROW][C]130[/C][C]16927.8779704422[/C][C]13251.6256540623[/C][C]20604.1302868221[/C][/ROW]
[ROW][C]131[/C][C]17439.563542361[/C][C]13433.398058964[/C][C]21445.7290257581[/C][/ROW]
[ROW][C]132[/C][C]19701.5527445983[/C][C]15065.9377616501[/C][C]24337.1677275466[/C][/ROW]
[ROW][C]133[/C][C]15746.9857632736[/C][C]11625.0680953598[/C][C]19868.9034311874[/C][/ROW]
[ROW][C]134[/C][C]16531.143653012[/C][C]12020.7061495183[/C][C]21041.5811565057[/C][/ROW]
[ROW][C]135[/C][C]18409.7495637181[/C][C]13267.7405794446[/C][C]23551.7585479917[/C][/ROW]
[ROW][C]136[/C][C]18046.4573612634[/C][C]12787.7215131019[/C][C]23305.193209425[/C][/ROW]
[ROW][C]137[/C][C]14865.0917216283[/C][C]10179.8502903955[/C][C]19550.3331528612[/C][/ROW]
[ROW][C]138[/C][C]19377.7756751657[/C][C]13758.4789395249[/C][C]24997.0724108065[/C][/ROW]
[ROW][C]139[/C][C]16210.920131042[/C][C]10544.7717198713[/C][C]21877.0685422126[/C][/ROW]
[ROW][C]140[/C][C]17240.8507823626[/C][C]11121.1459705275[/C][C]23360.5555941976[/C][/ROW]
[ROW][C]141[/C][C]13643.6779109508[/C][C]8310.20832380141[/C][C]18977.1474981001[/C][/ROW]
[ROW][C]142[/C][C]18861.2175792445[/C][C]11825.0277968652[/C][C]25897.4073616238[/C][/ROW]
[ROW][C]143[/C][C]19412.5648570657[/C][C]12037.1374005148[/C][C]26787.9923136167[/C][/ROW]
[ROW][C]144[/C][C]21909.6436855872[/C][C]13556.9820388412[/C][C]30262.3053323332[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302731&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302731&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Extrapolation Forecasts of Exponential Smoothing
tForecast95% Lower Bound95% Upper Bound
12714505.543372726812179.161910243516831.92483521
12815442.888112563612716.664646092418169.1115790348
12912233.10499803189436.6787362494915029.5312598141
13016927.877970442213251.625654062320604.1302868221
13117439.56354236113433.39805896421445.7290257581
13219701.552744598315065.937761650124337.1677275466
13315746.985763273611625.068095359819868.9034311874
13416531.14365301212020.706149518321041.5811565057
13518409.749563718113267.740579444623551.7585479917
13618046.457361263412787.721513101923305.193209425
13714865.091721628310179.850290395519550.3331528612
13819377.775675165713758.478939524924997.0724108065
13916210.92013104210544.771719871321877.0685422126
14017240.850782362611121.145970527523360.5555941976
14113643.67791095088310.2083238014118977.1474981001
14218861.217579244511825.027796865225897.4073616238
14319412.564857065712037.137400514826787.9923136167
14421909.643685587213556.982038841230262.3053323332



Parameters (Session):
par1 = 12 ; par2 = Triple ; par3 = multiplicative ; par4 = 18 ;
Parameters (R input):
par1 = 12 ; par2 = Triple ; par3 = multiplicative ; par4 = 18 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
par4 <- as.numeric(par4)
if (par2 == 'Single') K <- 1
if (par2 == 'Double') K <- 2
if (par2 == 'Triple') K <- par1
nx <- length(x)
nxmK <- nx - K
x <- ts(x, frequency = par1)
if (par2 == 'Single') fit <- HoltWinters(x, gamma=F, beta=F)
if (par2 == 'Double') fit <- HoltWinters(x, gamma=F)
if (par2 == 'Triple') fit <- HoltWinters(x, seasonal=par3)
fit
myresid <- x - fit$fitted[,'xhat']
bitmap(file='test1.png')
op <- par(mfrow=c(2,1))
plot(fit,ylab='Observed (black) / Fitted (red)',main='Interpolation Fit of Exponential Smoothing')
plot(myresid,ylab='Residuals',main='Interpolation Prediction Errors')
par(op)
dev.off()
bitmap(file='test2.png')
p <- predict(fit, par4, prediction.interval=TRUE)
np <- length(p[,1])
plot(fit,p,ylab='Observed (black) / Fitted (red)',main='Extrapolation Fit of Exponential Smoothing')
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(myresid),lag.max = nx/2,main='Residual ACF')
spectrum(myresid,main='Residals Periodogram')
cpgram(myresid,main='Residal Cumulative Periodogram')
qqnorm(myresid,main='Residual Normal QQ Plot')
qqline(myresid)
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimated Parameters of Exponential Smoothing',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'Value',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,fit$alpha)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,fit$beta)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'gamma',header=TRUE)
a<-table.element(a,fit$gamma)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Interpolation Forecasts of Exponential Smoothing',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Fitted',header=TRUE)
a<-table.element(a,'Residuals',header=TRUE)
a<-table.row.end(a)
for (i in 1:nxmK) {
a<-table.row.start(a)
a<-table.element(a,i+K,header=TRUE)
a<-table.element(a,x[i+K])
a<-table.element(a,fit$fitted[i,'xhat'])
a<-table.element(a,myresid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Extrapolation Forecasts of Exponential Smoothing',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Forecast',header=TRUE)
a<-table.element(a,'95% Lower Bound',header=TRUE)
a<-table.element(a,'95% Upper Bound',header=TRUE)
a<-table.row.end(a)
for (i in 1:np) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,p[i,'fit'])
a<-table.element(a,p[i,'lwr'])
a<-table.element(a,p[i,'upr'])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')