Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimaforecasting.wasp
Title produced by softwareARIMA Forecasting
Date of computationThu, 22 Dec 2016 23:13:05 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/22/t14824449427xba8wbn64dm3ja.htm/, Retrieved Fri, 01 Nov 2024 03:37:26 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=302714, Retrieved Fri, 01 Nov 2024 03:37:26 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact148
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Kendall tau Correlation Matrix] [Correlation matrices] [2016-12-21 16:26:17] [b011e1d1c3fc908d73f0b66878a70c1c]
- RMPD    [ARIMA Forecasting] [ARIMA Forecasting F1] [2016-12-22 22:13:05] [0fd57913e31aa45e4c342a705351a504] [Current]
Feedback Forum

Post a new message
Dataseries X:
3233.7
3097.3
3216.8
3729.6
3447.7
3384.3
3494.7
3904.2
3605.2
3674.6
3751.1
4039.5
3885.9
3906.1
3965
4411.6
4325.1
4349.2
4426.1
4915
4506.9
4497.4
4546.5
5122
4471.3
4560.6
4581.6
5186.2
4719.8
4784.1
4778.6
5494.8
4966.8
5188.2
5135.4
5690.4
5293.5
5673.8
5568.9
6094.2
5712.7
5858.7
5814.6
6616.6




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302714&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=302714&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302714&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[28])
245122-------
254471.3-------
264560.6-------
274581.6-------
285186.2-------
294719.84641.27764455.10264827.45260.204200.96320
304784.14765.13954521.07655009.20250.43950.64210.94984e-04
314778.64794.39374502.58945086.19790.45780.52760.92350.0042
325494.85362.55545029.86725695.24370.2180.99970.85060.8506
334966.84953.81654448.85915458.77390.47990.01790.81820.1835
345188.25036.35234424.03145648.67320.31350.58810.79030.3157
355135.45080.65264375.92315785.3820.43950.38240.79960.3846
365690.45628.1554841.88656414.42350.43830.89030.63020.8647
375293.55193.22854269.30326117.15390.41580.14580.68450.5059
385673.85251.58284217.50816285.65740.21180.46830.54780.5493
395568.95294.64414160.43216428.85610.31780.25620.60840.5743
406094.25855.94734629.79337082.10140.35170.67680.60440.8578
415712.75350.6173998.10436703.12980.29990.14060.5330.5942
425858.75424.48653962.59416886.37890.28020.34960.36910.6253
435814.65460.07063896.00447024.13670.32840.30870.44580.6343
446616.66033.84354373.9117693.7760.24570.60210.47160.8416

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast \tabularnewline
time & Y[t] & F[t] & 95% LB & 95% UB & p-value(H0: Y[t] = F[t]) & P(F[t]>Y[t-1]) & P(F[t]>Y[t-s]) & P(F[t]>Y[28]) \tabularnewline
24 & 5122 & - & - & - & - & - & - & - \tabularnewline
25 & 4471.3 & - & - & - & - & - & - & - \tabularnewline
26 & 4560.6 & - & - & - & - & - & - & - \tabularnewline
27 & 4581.6 & - & - & - & - & - & - & - \tabularnewline
28 & 5186.2 & - & - & - & - & - & - & - \tabularnewline
29 & 4719.8 & 4641.2776 & 4455.1026 & 4827.4526 & 0.2042 & 0 & 0.9632 & 0 \tabularnewline
30 & 4784.1 & 4765.1395 & 4521.0765 & 5009.2025 & 0.4395 & 0.6421 & 0.9498 & 4e-04 \tabularnewline
31 & 4778.6 & 4794.3937 & 4502.5894 & 5086.1979 & 0.4578 & 0.5276 & 0.9235 & 0.0042 \tabularnewline
32 & 5494.8 & 5362.5554 & 5029.8672 & 5695.2437 & 0.218 & 0.9997 & 0.8506 & 0.8506 \tabularnewline
33 & 4966.8 & 4953.8165 & 4448.8591 & 5458.7739 & 0.4799 & 0.0179 & 0.8182 & 0.1835 \tabularnewline
34 & 5188.2 & 5036.3523 & 4424.0314 & 5648.6732 & 0.3135 & 0.5881 & 0.7903 & 0.3157 \tabularnewline
35 & 5135.4 & 5080.6526 & 4375.9231 & 5785.382 & 0.4395 & 0.3824 & 0.7996 & 0.3846 \tabularnewline
36 & 5690.4 & 5628.155 & 4841.8865 & 6414.4235 & 0.4383 & 0.8903 & 0.6302 & 0.8647 \tabularnewline
37 & 5293.5 & 5193.2285 & 4269.3032 & 6117.1539 & 0.4158 & 0.1458 & 0.6845 & 0.5059 \tabularnewline
38 & 5673.8 & 5251.5828 & 4217.5081 & 6285.6574 & 0.2118 & 0.4683 & 0.5478 & 0.5493 \tabularnewline
39 & 5568.9 & 5294.6441 & 4160.4321 & 6428.8561 & 0.3178 & 0.2562 & 0.6084 & 0.5743 \tabularnewline
40 & 6094.2 & 5855.9473 & 4629.7933 & 7082.1014 & 0.3517 & 0.6768 & 0.6044 & 0.8578 \tabularnewline
41 & 5712.7 & 5350.617 & 3998.1043 & 6703.1298 & 0.2999 & 0.1406 & 0.533 & 0.5942 \tabularnewline
42 & 5858.7 & 5424.4865 & 3962.5941 & 6886.3789 & 0.2802 & 0.3496 & 0.3691 & 0.6253 \tabularnewline
43 & 5814.6 & 5460.0706 & 3896.0044 & 7024.1367 & 0.3284 & 0.3087 & 0.4458 & 0.6343 \tabularnewline
44 & 6616.6 & 6033.8435 & 4373.911 & 7693.776 & 0.2457 & 0.6021 & 0.4716 & 0.8416 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302714&T=1

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast[/C][/ROW]
[ROW][C]time[/C][C]Y[t][/C][C]F[t][/C][C]95% LB[/C][C]95% UB[/C][C]p-value(H0: Y[t] = F[t])[/C][C]P(F[t]>Y[t-1])[/C][C]P(F[t]>Y[t-s])[/C][C]P(F[t]>Y[28])[/C][/ROW]
[ROW][C]24[/C][C]5122[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]25[/C][C]4471.3[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]26[/C][C]4560.6[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]27[/C][C]4581.6[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]28[/C][C]5186.2[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]29[/C][C]4719.8[/C][C]4641.2776[/C][C]4455.1026[/C][C]4827.4526[/C][C]0.2042[/C][C]0[/C][C]0.9632[/C][C]0[/C][/ROW]
[ROW][C]30[/C][C]4784.1[/C][C]4765.1395[/C][C]4521.0765[/C][C]5009.2025[/C][C]0.4395[/C][C]0.6421[/C][C]0.9498[/C][C]4e-04[/C][/ROW]
[ROW][C]31[/C][C]4778.6[/C][C]4794.3937[/C][C]4502.5894[/C][C]5086.1979[/C][C]0.4578[/C][C]0.5276[/C][C]0.9235[/C][C]0.0042[/C][/ROW]
[ROW][C]32[/C][C]5494.8[/C][C]5362.5554[/C][C]5029.8672[/C][C]5695.2437[/C][C]0.218[/C][C]0.9997[/C][C]0.8506[/C][C]0.8506[/C][/ROW]
[ROW][C]33[/C][C]4966.8[/C][C]4953.8165[/C][C]4448.8591[/C][C]5458.7739[/C][C]0.4799[/C][C]0.0179[/C][C]0.8182[/C][C]0.1835[/C][/ROW]
[ROW][C]34[/C][C]5188.2[/C][C]5036.3523[/C][C]4424.0314[/C][C]5648.6732[/C][C]0.3135[/C][C]0.5881[/C][C]0.7903[/C][C]0.3157[/C][/ROW]
[ROW][C]35[/C][C]5135.4[/C][C]5080.6526[/C][C]4375.9231[/C][C]5785.382[/C][C]0.4395[/C][C]0.3824[/C][C]0.7996[/C][C]0.3846[/C][/ROW]
[ROW][C]36[/C][C]5690.4[/C][C]5628.155[/C][C]4841.8865[/C][C]6414.4235[/C][C]0.4383[/C][C]0.8903[/C][C]0.6302[/C][C]0.8647[/C][/ROW]
[ROW][C]37[/C][C]5293.5[/C][C]5193.2285[/C][C]4269.3032[/C][C]6117.1539[/C][C]0.4158[/C][C]0.1458[/C][C]0.6845[/C][C]0.5059[/C][/ROW]
[ROW][C]38[/C][C]5673.8[/C][C]5251.5828[/C][C]4217.5081[/C][C]6285.6574[/C][C]0.2118[/C][C]0.4683[/C][C]0.5478[/C][C]0.5493[/C][/ROW]
[ROW][C]39[/C][C]5568.9[/C][C]5294.6441[/C][C]4160.4321[/C][C]6428.8561[/C][C]0.3178[/C][C]0.2562[/C][C]0.6084[/C][C]0.5743[/C][/ROW]
[ROW][C]40[/C][C]6094.2[/C][C]5855.9473[/C][C]4629.7933[/C][C]7082.1014[/C][C]0.3517[/C][C]0.6768[/C][C]0.6044[/C][C]0.8578[/C][/ROW]
[ROW][C]41[/C][C]5712.7[/C][C]5350.617[/C][C]3998.1043[/C][C]6703.1298[/C][C]0.2999[/C][C]0.1406[/C][C]0.533[/C][C]0.5942[/C][/ROW]
[ROW][C]42[/C][C]5858.7[/C][C]5424.4865[/C][C]3962.5941[/C][C]6886.3789[/C][C]0.2802[/C][C]0.3496[/C][C]0.3691[/C][C]0.6253[/C][/ROW]
[ROW][C]43[/C][C]5814.6[/C][C]5460.0706[/C][C]3896.0044[/C][C]7024.1367[/C][C]0.3284[/C][C]0.3087[/C][C]0.4458[/C][C]0.6343[/C][/ROW]
[ROW][C]44[/C][C]6616.6[/C][C]6033.8435[/C][C]4373.911[/C][C]7693.776[/C][C]0.2457[/C][C]0.6021[/C][C]0.4716[/C][C]0.8416[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302714&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302714&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[28])
245122-------
254471.3-------
264560.6-------
274581.6-------
285186.2-------
294719.84641.27764455.10264827.45260.204200.96320
304784.14765.13954521.07655009.20250.43950.64210.94984e-04
314778.64794.39374502.58945086.19790.45780.52760.92350.0042
325494.85362.55545029.86725695.24370.2180.99970.85060.8506
334966.84953.81654448.85915458.77390.47990.01790.81820.1835
345188.25036.35234424.03145648.67320.31350.58810.79030.3157
355135.45080.65264375.92315785.3820.43950.38240.79960.3846
365690.45628.1554841.88656414.42350.43830.89030.63020.8647
375293.55193.22854269.30326117.15390.41580.14580.68450.5059
385673.85251.58284217.50816285.65740.21180.46830.54780.5493
395568.95294.64414160.43216428.85610.31780.25620.60840.5743
406094.25855.94734629.79337082.10140.35170.67680.60440.8578
415712.75350.6173998.10436703.12980.29990.14060.5330.5942
425858.75424.48653962.59416886.37890.28020.34960.36910.6253
435814.65460.07063896.00447024.13670.32840.30870.44580.6343
446616.66033.84354373.9117693.7760.24570.60210.47160.8416







Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPEsMAPESq.EMSERMSEScaledEMASE
290.02050.01660.01660.01686165.76000.23920.2392
300.02610.0040.01030.0104359.50093262.630557.11940.05780.1485
310.0311-0.00330.0080.008249.44042258.233847.5209-0.04810.115
320.03170.02410.0120.012117488.6276065.832177.88350.40280.187
330.0520.00260.01010.0102168.57194886.380169.90260.03960.1575
340.0620.02930.01330.013523057.71817914.936488.96590.46260.2083
350.07080.01070.01290.01312997.27897212.413984.92590.16680.2024
360.07130.01090.01270.01283874.43686795.166882.43280.18960.2008
370.09080.01890.01340.013510054.36587157.384.60080.30540.2124
380.10050.07440.01950.0199178267.394124268.3094155.78291.28610.3198
390.10930.04920.02220.022775216.295828899.9445169.99980.83540.3667
400.10680.03910.02360.024156764.336731221.9772176.69740.72580.3966
410.1290.06340.02670.0273131104.071738905.2153197.2441.1030.4509
420.13750.07410.030.0308188541.360649593.5113222.6961.32270.5132
430.14620.0610.03210.033125691.127354666.6857233.80911.080.551
440.14040.08810.03560.0367339605.131972475.3386269.21241.77520.6275

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast Performance \tabularnewline
time & % S.E. & PE & MAPE & sMAPE & Sq.E & MSE & RMSE & ScaledE & MASE \tabularnewline
29 & 0.0205 & 0.0166 & 0.0166 & 0.0168 & 6165.76 & 0 & 0 & 0.2392 & 0.2392 \tabularnewline
30 & 0.0261 & 0.004 & 0.0103 & 0.0104 & 359.5009 & 3262.6305 & 57.1194 & 0.0578 & 0.1485 \tabularnewline
31 & 0.0311 & -0.0033 & 0.008 & 0.008 & 249.4404 & 2258.2338 & 47.5209 & -0.0481 & 0.115 \tabularnewline
32 & 0.0317 & 0.0241 & 0.012 & 0.0121 & 17488.627 & 6065.8321 & 77.8835 & 0.4028 & 0.187 \tabularnewline
33 & 0.052 & 0.0026 & 0.0101 & 0.0102 & 168.5719 & 4886.3801 & 69.9026 & 0.0396 & 0.1575 \tabularnewline
34 & 0.062 & 0.0293 & 0.0133 & 0.0135 & 23057.7181 & 7914.9364 & 88.9659 & 0.4626 & 0.2083 \tabularnewline
35 & 0.0708 & 0.0107 & 0.0129 & 0.0131 & 2997.2789 & 7212.4139 & 84.9259 & 0.1668 & 0.2024 \tabularnewline
36 & 0.0713 & 0.0109 & 0.0127 & 0.0128 & 3874.4368 & 6795.1668 & 82.4328 & 0.1896 & 0.2008 \tabularnewline
37 & 0.0908 & 0.0189 & 0.0134 & 0.0135 & 10054.3658 & 7157.3 & 84.6008 & 0.3054 & 0.2124 \tabularnewline
38 & 0.1005 & 0.0744 & 0.0195 & 0.0199 & 178267.3941 & 24268.3094 & 155.7829 & 1.2861 & 0.3198 \tabularnewline
39 & 0.1093 & 0.0492 & 0.0222 & 0.0227 & 75216.2958 & 28899.9445 & 169.9998 & 0.8354 & 0.3667 \tabularnewline
40 & 0.1068 & 0.0391 & 0.0236 & 0.0241 & 56764.3367 & 31221.9772 & 176.6974 & 0.7258 & 0.3966 \tabularnewline
41 & 0.129 & 0.0634 & 0.0267 & 0.0273 & 131104.0717 & 38905.2153 & 197.244 & 1.103 & 0.4509 \tabularnewline
42 & 0.1375 & 0.0741 & 0.03 & 0.0308 & 188541.3606 & 49593.5113 & 222.696 & 1.3227 & 0.5132 \tabularnewline
43 & 0.1462 & 0.061 & 0.0321 & 0.033 & 125691.1273 & 54666.6857 & 233.8091 & 1.08 & 0.551 \tabularnewline
44 & 0.1404 & 0.0881 & 0.0356 & 0.0367 & 339605.1319 & 72475.3386 & 269.2124 & 1.7752 & 0.6275 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302714&T=2

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast Performance[/C][/ROW]
[ROW][C]time[/C][C]% S.E.[/C][C]PE[/C][C]MAPE[/C][C]sMAPE[/C][C]Sq.E[/C][C]MSE[/C][C]RMSE[/C][C]ScaledE[/C][C]MASE[/C][/ROW]
[ROW][C]29[/C][C]0.0205[/C][C]0.0166[/C][C]0.0166[/C][C]0.0168[/C][C]6165.76[/C][C]0[/C][C]0[/C][C]0.2392[/C][C]0.2392[/C][/ROW]
[ROW][C]30[/C][C]0.0261[/C][C]0.004[/C][C]0.0103[/C][C]0.0104[/C][C]359.5009[/C][C]3262.6305[/C][C]57.1194[/C][C]0.0578[/C][C]0.1485[/C][/ROW]
[ROW][C]31[/C][C]0.0311[/C][C]-0.0033[/C][C]0.008[/C][C]0.008[/C][C]249.4404[/C][C]2258.2338[/C][C]47.5209[/C][C]-0.0481[/C][C]0.115[/C][/ROW]
[ROW][C]32[/C][C]0.0317[/C][C]0.0241[/C][C]0.012[/C][C]0.0121[/C][C]17488.627[/C][C]6065.8321[/C][C]77.8835[/C][C]0.4028[/C][C]0.187[/C][/ROW]
[ROW][C]33[/C][C]0.052[/C][C]0.0026[/C][C]0.0101[/C][C]0.0102[/C][C]168.5719[/C][C]4886.3801[/C][C]69.9026[/C][C]0.0396[/C][C]0.1575[/C][/ROW]
[ROW][C]34[/C][C]0.062[/C][C]0.0293[/C][C]0.0133[/C][C]0.0135[/C][C]23057.7181[/C][C]7914.9364[/C][C]88.9659[/C][C]0.4626[/C][C]0.2083[/C][/ROW]
[ROW][C]35[/C][C]0.0708[/C][C]0.0107[/C][C]0.0129[/C][C]0.0131[/C][C]2997.2789[/C][C]7212.4139[/C][C]84.9259[/C][C]0.1668[/C][C]0.2024[/C][/ROW]
[ROW][C]36[/C][C]0.0713[/C][C]0.0109[/C][C]0.0127[/C][C]0.0128[/C][C]3874.4368[/C][C]6795.1668[/C][C]82.4328[/C][C]0.1896[/C][C]0.2008[/C][/ROW]
[ROW][C]37[/C][C]0.0908[/C][C]0.0189[/C][C]0.0134[/C][C]0.0135[/C][C]10054.3658[/C][C]7157.3[/C][C]84.6008[/C][C]0.3054[/C][C]0.2124[/C][/ROW]
[ROW][C]38[/C][C]0.1005[/C][C]0.0744[/C][C]0.0195[/C][C]0.0199[/C][C]178267.3941[/C][C]24268.3094[/C][C]155.7829[/C][C]1.2861[/C][C]0.3198[/C][/ROW]
[ROW][C]39[/C][C]0.1093[/C][C]0.0492[/C][C]0.0222[/C][C]0.0227[/C][C]75216.2958[/C][C]28899.9445[/C][C]169.9998[/C][C]0.8354[/C][C]0.3667[/C][/ROW]
[ROW][C]40[/C][C]0.1068[/C][C]0.0391[/C][C]0.0236[/C][C]0.0241[/C][C]56764.3367[/C][C]31221.9772[/C][C]176.6974[/C][C]0.7258[/C][C]0.3966[/C][/ROW]
[ROW][C]41[/C][C]0.129[/C][C]0.0634[/C][C]0.0267[/C][C]0.0273[/C][C]131104.0717[/C][C]38905.2153[/C][C]197.244[/C][C]1.103[/C][C]0.4509[/C][/ROW]
[ROW][C]42[/C][C]0.1375[/C][C]0.0741[/C][C]0.03[/C][C]0.0308[/C][C]188541.3606[/C][C]49593.5113[/C][C]222.696[/C][C]1.3227[/C][C]0.5132[/C][/ROW]
[ROW][C]43[/C][C]0.1462[/C][C]0.061[/C][C]0.0321[/C][C]0.033[/C][C]125691.1273[/C][C]54666.6857[/C][C]233.8091[/C][C]1.08[/C][C]0.551[/C][/ROW]
[ROW][C]44[/C][C]0.1404[/C][C]0.0881[/C][C]0.0356[/C][C]0.0367[/C][C]339605.1319[/C][C]72475.3386[/C][C]269.2124[/C][C]1.7752[/C][C]0.6275[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302714&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302714&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPEsMAPESq.EMSERMSEScaledEMASE
290.02050.01660.01660.01686165.76000.23920.2392
300.02610.0040.01030.0104359.50093262.630557.11940.05780.1485
310.0311-0.00330.0080.008249.44042258.233847.5209-0.04810.115
320.03170.02410.0120.012117488.6276065.832177.88350.40280.187
330.0520.00260.01010.0102168.57194886.380169.90260.03960.1575
340.0620.02930.01330.013523057.71817914.936488.96590.46260.2083
350.07080.01070.01290.01312997.27897212.413984.92590.16680.2024
360.07130.01090.01270.01283874.43686795.166882.43280.18960.2008
370.09080.01890.01340.013510054.36587157.384.60080.30540.2124
380.10050.07440.01950.0199178267.394124268.3094155.78291.28610.3198
390.10930.04920.02220.022775216.295828899.9445169.99980.83540.3667
400.10680.03910.02360.024156764.336731221.9772176.69740.72580.3966
410.1290.06340.02670.0273131104.071738905.2153197.2441.1030.4509
420.13750.07410.030.0308188541.360649593.5113222.6961.32270.5132
430.14620.0610.03210.033125691.127354666.6857233.80911.080.551
440.14040.08810.03560.0367339605.131972475.3386269.21241.77520.6275



Parameters (Session):
par4 = 12 ;
Parameters (R input):
par1 = 16 ; par2 = 1 ; par3 = 1 ; par4 = 1 ; par5 = 4 ; par6 = 1 ; par7 = 1 ; par8 = 2 ; par9 = 0 ; par10 = FALSE ;
R code (references can be found in the software module):
par1 <- as.numeric(par1) #cut off periods
par2 <- as.numeric(par2) #lambda
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #p
par7 <- as.numeric(par7) #q
par8 <- as.numeric(par8) #P
par9 <- as.numeric(par9) #Q
if (par10 == 'TRUE') par10 <- TRUE
if (par10 == 'FALSE') par10 <- FALSE
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
lx <- length(x)
first <- lx - 2*par1
nx <- lx - par1
nx1 <- nx + 1
fx <- lx - nx
if (fx < 1) {
fx <- par5*2
nx1 <- lx + fx - 1
first <- lx - 2*fx
}
first <- 1
if (fx < 3) fx <- round(lx/10,0)
(arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML'))
(forecast <- predict(arima.out,fx))
(lb <- forecast$pred - 1.96 * forecast$se)
(ub <- forecast$pred + 1.96 * forecast$se)
if (par2 == 0) {
x <- exp(x)
forecast$pred <- exp(forecast$pred)
lb <- exp(lb)
ub <- exp(ub)
}
if (par2 != 0) {
x <- x^(1/par2)
forecast$pred <- forecast$pred^(1/par2)
lb <- lb^(1/par2)
ub <- ub^(1/par2)
}
if (par2 < 0) {
olb <- lb
lb <- ub
ub <- olb
}
(actandfor <- c(x[1:nx], forecast$pred))
(perc.se <- (ub-forecast$pred)/1.96/forecast$pred)
bitmap(file='test1.png')
opar <- par(mar=c(4,4,2,2),las=1)
ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub))
plot(x,ylim=ylim,type='n',xlim=c(first,lx))
usr <- par('usr')
rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon')
rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender')
abline(h= (-3:3)*2 , col ='gray', lty =3)
polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA)
lines(nx1:lx, lb , lty=2)
lines(nx1:lx, ub , lty=2)
lines(x, lwd=2)
lines(nx1:lx, forecast$pred , lwd=2 , col ='white')
box()
par(opar)
dev.off()
prob.dec <- array(NA, dim=fx)
prob.sdec <- array(NA, dim=fx)
prob.ldec <- array(NA, dim=fx)
prob.pval <- array(NA, dim=fx)
perf.pe <- array(0, dim=fx)
perf.spe <- array(0, dim=fx)
perf.scalederr <- array(0, dim=fx)
perf.mase <- array(0, dim=fx)
perf.mase1 <- array(0, dim=fx)
perf.mape <- array(0, dim=fx)
perf.smape <- array(0, dim=fx)
perf.mape1 <- array(0, dim=fx)
perf.smape1 <- array(0,dim=fx)
perf.se <- array(0, dim=fx)
perf.mse <- array(0, dim=fx)
perf.mse1 <- array(0, dim=fx)
perf.rmse <- array(0, dim=fx)
perf.scaleddenom <- 0
for (i in 2:fx) {
perf.scaleddenom = perf.scaleddenom + abs(x[nx+i] - x[nx+i-1])
}
perf.scaleddenom = perf.scaleddenom / (fx-1)
for (i in 1:fx) {
locSD <- (ub[i] - forecast$pred[i]) / 1.96
perf.scalederr[i] = (x[nx+i] - forecast$pred[i]) / perf.scaleddenom
perf.pe[i] = (x[nx+i] - forecast$pred[i]) / x[nx+i]
perf.spe[i] = 2*(x[nx+i] - forecast$pred[i]) / (x[nx+i] + forecast$pred[i])
perf.se[i] = (x[nx+i] - forecast$pred[i])^2
prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD)
prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD)
prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD)
prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD)
}
perf.mape[1] = abs(perf.pe[1])
perf.smape[1] = abs(perf.spe[1])
perf.mape1[1] = perf.mape[1]
perf.smape1[1] = perf.smape[1]
perf.mse[1] = perf.se[1]
perf.mase[1] = abs(perf.scalederr[1])
perf.mase1[1] = perf.mase[1]
for (i in 2:fx) {
perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i])
perf.mape1[i] = perf.mape[i] / i
perf.smape[i] = perf.smape[i-1] + abs(perf.spe[i])
perf.smape1[i] = perf.smape[i] / i
perf.mse[i] = perf.mse[i-1] + perf.se[i]
perf.mse1[i] = perf.mse[i] / i
perf.mase[i] = perf.mase[i-1] + abs(perf.scalederr[i])
perf.mase1[i] = perf.mase[i] / i
}
perf.rmse = sqrt(perf.mse1)
bitmap(file='test2.png')
plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub)))
dum <- forecast$pred
dum[1:par1] <- x[(nx+1):lx]
lines(dum, lty=1)
lines(ub,lty=3)
lines(lb,lty=3)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'Y[t]',1,header=TRUE)
a<-table.element(a,'F[t]',1,header=TRUE)
a<-table.element(a,'95% LB',1,header=TRUE)
a<-table.element(a,'95% UB',1,header=TRUE)
a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE)
mylab <- paste('P(F[t]>Y[',nx,sep='')
mylab <- paste(mylab,'])',sep='')
a<-table.element(a,mylab,1,header=TRUE)
a<-table.row.end(a)
for (i in (nx-par5):nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.row.end(a)
}
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(x[nx+i],4))
a<-table.element(a,round(forecast$pred[i],4))
a<-table.element(a,round(lb[i],4))
a<-table.element(a,round(ub[i],4))
a<-table.element(a,round((1-prob.pval[i]),4))
a<-table.element(a,round((1-prob.dec[i]),4))
a<-table.element(a,round((1-prob.sdec[i]),4))
a<-table.element(a,round((1-prob.ldec[i]),4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',10,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'% S.E.',1,header=TRUE)
a<-table.element(a,'PE',1,header=TRUE)
a<-table.element(a,'MAPE',1,header=TRUE)
a<-table.element(a,'sMAPE',1,header=TRUE)
a<-table.element(a,'Sq.E',1,header=TRUE)
a<-table.element(a,'MSE',1,header=TRUE)
a<-table.element(a,'RMSE',1,header=TRUE)
a<-table.element(a,'ScaledE',1,header=TRUE)
a<-table.element(a,'MASE',1,header=TRUE)
a<-table.row.end(a)
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(perc.se[i],4))
a<-table.element(a,round(perf.pe[i],4))
a<-table.element(a,round(perf.mape1[i],4))
a<-table.element(a,round(perf.smape1[i],4))
a<-table.element(a,round(perf.se[i],4))
a<-table.element(a,round(perf.mse1[i],4))
a<-table.element(a,round(perf.rmse[i],4))
a<-table.element(a,round(perf.scalederr[i],4))
a<-table.element(a,round(perf.mase1[i],4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')