Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimaforecasting.wasp
Title produced by softwareARIMA Forecasting
Date of computationThu, 22 Dec 2016 20:40:53 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/22/t14824356598a1vxrl0yh8v6yp.htm/, Retrieved Fri, 01 Nov 2024 03:43:30 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=302651, Retrieved Fri, 01 Nov 2024 03:43:30 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact102
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [ARIMA Forecasting] [] [2016-12-22 19:40:53] [59384cc4294cbecf8e09b453c4247580] [Current]
Feedback Forum

Post a new message
Dataseries X:
2622.4
2607.5
2556.6
2569.3
2533.2
2529
2577.8
2556.6
2558.7
2541.7
2473.8
2461
2435.5
2414.3
2350.6
2329.4
2278.4
2252.9
2269.9
2227.4
2195.6
2204.1
2195.6
2202
2157.4
2142.5
2125.5
2110.7
2072.4
2076.7
2095.8
2023.6
2004.5
1985.4
1953.5
1915.3
1881.3
1821.9
1775.2
1790
1758.2
1747.6
1679.6
1692.3
1675.4
1639.3
1622.3
1577.7
1581.9
1562.8
1552.2
1535.2
1507.6




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302651&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=302651&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302651&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[47])
411758.2-------
421747.6-------
431679.6-------
441692.3-------
451675.4-------
461639.3-------
471622.3-------
481577.71605.57481550.85111660.29840.1590.274600.2746
491581.91586.30861505.69521666.92190.45730.58290.01170.1908
501562.81574.14991465.33741682.96240.4190.44450.01670.1929
511552.21562.04791416.88071707.21510.44710.49590.0630.208
521535.21550.74351372.691728.79690.43210.49360.16480.2154
531507.61542.2151330.45291753.97710.37430.52590.22930.2293

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast \tabularnewline
time & Y[t] & F[t] & 95% LB & 95% UB & p-value(H0: Y[t] = F[t]) & P(F[t]>Y[t-1]) & P(F[t]>Y[t-s]) & P(F[t]>Y[47]) \tabularnewline
41 & 1758.2 & - & - & - & - & - & - & - \tabularnewline
42 & 1747.6 & - & - & - & - & - & - & - \tabularnewline
43 & 1679.6 & - & - & - & - & - & - & - \tabularnewline
44 & 1692.3 & - & - & - & - & - & - & - \tabularnewline
45 & 1675.4 & - & - & - & - & - & - & - \tabularnewline
46 & 1639.3 & - & - & - & - & - & - & - \tabularnewline
47 & 1622.3 & - & - & - & - & - & - & - \tabularnewline
48 & 1577.7 & 1605.5748 & 1550.8511 & 1660.2984 & 0.159 & 0.2746 & 0 & 0.2746 \tabularnewline
49 & 1581.9 & 1586.3086 & 1505.6952 & 1666.9219 & 0.4573 & 0.5829 & 0.0117 & 0.1908 \tabularnewline
50 & 1562.8 & 1574.1499 & 1465.3374 & 1682.9624 & 0.419 & 0.4445 & 0.0167 & 0.1929 \tabularnewline
51 & 1552.2 & 1562.0479 & 1416.8807 & 1707.2151 & 0.4471 & 0.4959 & 0.063 & 0.208 \tabularnewline
52 & 1535.2 & 1550.7435 & 1372.69 & 1728.7969 & 0.4321 & 0.4936 & 0.1648 & 0.2154 \tabularnewline
53 & 1507.6 & 1542.215 & 1330.4529 & 1753.9771 & 0.3743 & 0.5259 & 0.2293 & 0.2293 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302651&T=1

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast[/C][/ROW]
[ROW][C]time[/C][C]Y[t][/C][C]F[t][/C][C]95% LB[/C][C]95% UB[/C][C]p-value(H0: Y[t] = F[t])[/C][C]P(F[t]>Y[t-1])[/C][C]P(F[t]>Y[t-s])[/C][C]P(F[t]>Y[47])[/C][/ROW]
[ROW][C]41[/C][C]1758.2[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]42[/C][C]1747.6[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]43[/C][C]1679.6[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]44[/C][C]1692.3[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]45[/C][C]1675.4[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]46[/C][C]1639.3[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]47[/C][C]1622.3[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]48[/C][C]1577.7[/C][C]1605.5748[/C][C]1550.8511[/C][C]1660.2984[/C][C]0.159[/C][C]0.2746[/C][C]0[/C][C]0.2746[/C][/ROW]
[ROW][C]49[/C][C]1581.9[/C][C]1586.3086[/C][C]1505.6952[/C][C]1666.9219[/C][C]0.4573[/C][C]0.5829[/C][C]0.0117[/C][C]0.1908[/C][/ROW]
[ROW][C]50[/C][C]1562.8[/C][C]1574.1499[/C][C]1465.3374[/C][C]1682.9624[/C][C]0.419[/C][C]0.4445[/C][C]0.0167[/C][C]0.1929[/C][/ROW]
[ROW][C]51[/C][C]1552.2[/C][C]1562.0479[/C][C]1416.8807[/C][C]1707.2151[/C][C]0.4471[/C][C]0.4959[/C][C]0.063[/C][C]0.208[/C][/ROW]
[ROW][C]52[/C][C]1535.2[/C][C]1550.7435[/C][C]1372.69[/C][C]1728.7969[/C][C]0.4321[/C][C]0.4936[/C][C]0.1648[/C][C]0.2154[/C][/ROW]
[ROW][C]53[/C][C]1507.6[/C][C]1542.215[/C][C]1330.4529[/C][C]1753.9771[/C][C]0.3743[/C][C]0.5259[/C][C]0.2293[/C][C]0.2293[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302651&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302651&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[47])
411758.2-------
421747.6-------
431679.6-------
441692.3-------
451675.4-------
461639.3-------
471622.3-------
481577.71605.57481550.85111660.29840.1590.274600.2746
491581.91586.30861505.69521666.92190.45730.58290.01170.1908
501562.81574.14991465.33741682.96240.4190.44450.01670.1929
511552.21562.04791416.88071707.21510.44710.49590.0630.208
521535.21550.74351372.691728.79690.43210.49360.16480.2154
531507.61542.2151330.45291753.97710.37430.52590.22930.2293







Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPEsMAPESq.EMSERMSEScaledEMASE
480.0174-0.01770.01770.0175777.002300-1.77551.7755
490.0259-0.00280.01020.010119.4353398.218819.9554-0.28081.0281
500.0353-0.00730.00920.0092128.8206308.419417.5619-0.72290.9264
510.0474-0.00630.00850.008596.9812255.559815.9862-0.62730.8516
520.0586-0.01010.00880.0088241.5989252.767715.8987-0.990.8793
530.0701-0.0230.01120.01111198.198410.339420.2568-2.20481.1002

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast Performance \tabularnewline
time & % S.E. & PE & MAPE & sMAPE & Sq.E & MSE & RMSE & ScaledE & MASE \tabularnewline
48 & 0.0174 & -0.0177 & 0.0177 & 0.0175 & 777.0023 & 0 & 0 & -1.7755 & 1.7755 \tabularnewline
49 & 0.0259 & -0.0028 & 0.0102 & 0.0101 & 19.4353 & 398.2188 & 19.9554 & -0.2808 & 1.0281 \tabularnewline
50 & 0.0353 & -0.0073 & 0.0092 & 0.0092 & 128.8206 & 308.4194 & 17.5619 & -0.7229 & 0.9264 \tabularnewline
51 & 0.0474 & -0.0063 & 0.0085 & 0.0085 & 96.9812 & 255.5598 & 15.9862 & -0.6273 & 0.8516 \tabularnewline
52 & 0.0586 & -0.0101 & 0.0088 & 0.0088 & 241.5989 & 252.7677 & 15.8987 & -0.99 & 0.8793 \tabularnewline
53 & 0.0701 & -0.023 & 0.0112 & 0.0111 & 1198.198 & 410.3394 & 20.2568 & -2.2048 & 1.1002 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302651&T=2

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast Performance[/C][/ROW]
[ROW][C]time[/C][C]% S.E.[/C][C]PE[/C][C]MAPE[/C][C]sMAPE[/C][C]Sq.E[/C][C]MSE[/C][C]RMSE[/C][C]ScaledE[/C][C]MASE[/C][/ROW]
[ROW][C]48[/C][C]0.0174[/C][C]-0.0177[/C][C]0.0177[/C][C]0.0175[/C][C]777.0023[/C][C]0[/C][C]0[/C][C]-1.7755[/C][C]1.7755[/C][/ROW]
[ROW][C]49[/C][C]0.0259[/C][C]-0.0028[/C][C]0.0102[/C][C]0.0101[/C][C]19.4353[/C][C]398.2188[/C][C]19.9554[/C][C]-0.2808[/C][C]1.0281[/C][/ROW]
[ROW][C]50[/C][C]0.0353[/C][C]-0.0073[/C][C]0.0092[/C][C]0.0092[/C][C]128.8206[/C][C]308.4194[/C][C]17.5619[/C][C]-0.7229[/C][C]0.9264[/C][/ROW]
[ROW][C]51[/C][C]0.0474[/C][C]-0.0063[/C][C]0.0085[/C][C]0.0085[/C][C]96.9812[/C][C]255.5598[/C][C]15.9862[/C][C]-0.6273[/C][C]0.8516[/C][/ROW]
[ROW][C]52[/C][C]0.0586[/C][C]-0.0101[/C][C]0.0088[/C][C]0.0088[/C][C]241.5989[/C][C]252.7677[/C][C]15.8987[/C][C]-0.99[/C][C]0.8793[/C][/ROW]
[ROW][C]53[/C][C]0.0701[/C][C]-0.023[/C][C]0.0112[/C][C]0.0111[/C][C]1198.198[/C][C]410.3394[/C][C]20.2568[/C][C]-2.2048[/C][C]1.1002[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302651&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302651&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPEsMAPESq.EMSERMSEScaledEMASE
480.0174-0.01770.01770.0175777.002300-1.77551.7755
490.0259-0.00280.01020.010119.4353398.218819.9554-0.28081.0281
500.0353-0.00730.00920.0092128.8206308.419417.5619-0.72290.9264
510.0474-0.00630.00850.008596.9812255.559815.9862-0.62730.8516
520.0586-0.01010.00880.0088241.5989252.767715.8987-0.990.8793
530.0701-0.0230.01120.01111198.198410.339420.2568-2.20481.1002



Parameters (Session):
par1 = FALSE ; par2 = 1 ; par3 = 1 ; par4 = 0 ; par5 = 6 ; par6 = 3 ; par7 = 0 ; par8 = 2 ; par9 = 0 ;
Parameters (R input):
par1 = 6 ; par2 = 1 ; par3 = 1 ; par4 = 0 ; par5 = 6 ; par6 = 3 ; par7 = 0 ; par8 = 0 ; par9 = 0 ; par10 = FALSE ;
R code (references can be found in the software module):
par1 <- as.numeric(par1) #cut off periods
par2 <- as.numeric(par2) #lambda
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #p
par7 <- as.numeric(par7) #q
par8 <- as.numeric(par8) #P
par9 <- as.numeric(par9) #Q
if (par10 == 'TRUE') par10 <- TRUE
if (par10 == 'FALSE') par10 <- FALSE
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
lx <- length(x)
first <- lx - 2*par1
nx <- lx - par1
nx1 <- nx + 1
fx <- lx - nx
if (fx < 1) {
fx <- par5*2
nx1 <- lx + fx - 1
first <- lx - 2*fx
}
first <- 1
if (fx < 3) fx <- round(lx/10,0)
(arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML'))
(forecast <- predict(arima.out,fx))
(lb <- forecast$pred - 1.96 * forecast$se)
(ub <- forecast$pred + 1.96 * forecast$se)
if (par2 == 0) {
x <- exp(x)
forecast$pred <- exp(forecast$pred)
lb <- exp(lb)
ub <- exp(ub)
}
if (par2 != 0) {
x <- x^(1/par2)
forecast$pred <- forecast$pred^(1/par2)
lb <- lb^(1/par2)
ub <- ub^(1/par2)
}
if (par2 < 0) {
olb <- lb
lb <- ub
ub <- olb
}
(actandfor <- c(x[1:nx], forecast$pred))
(perc.se <- (ub-forecast$pred)/1.96/forecast$pred)
bitmap(file='test1.png')
opar <- par(mar=c(4,4,2,2),las=1)
ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub))
plot(x,ylim=ylim,type='n',xlim=c(first,lx))
usr <- par('usr')
rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon')
rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender')
abline(h= (-3:3)*2 , col ='gray', lty =3)
polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA)
lines(nx1:lx, lb , lty=2)
lines(nx1:lx, ub , lty=2)
lines(x, lwd=2)
lines(nx1:lx, forecast$pred , lwd=2 , col ='white')
box()
par(opar)
dev.off()
prob.dec <- array(NA, dim=fx)
prob.sdec <- array(NA, dim=fx)
prob.ldec <- array(NA, dim=fx)
prob.pval <- array(NA, dim=fx)
perf.pe <- array(0, dim=fx)
perf.spe <- array(0, dim=fx)
perf.scalederr <- array(0, dim=fx)
perf.mase <- array(0, dim=fx)
perf.mase1 <- array(0, dim=fx)
perf.mape <- array(0, dim=fx)
perf.smape <- array(0, dim=fx)
perf.mape1 <- array(0, dim=fx)
perf.smape1 <- array(0,dim=fx)
perf.se <- array(0, dim=fx)
perf.mse <- array(0, dim=fx)
perf.mse1 <- array(0, dim=fx)
perf.rmse <- array(0, dim=fx)
perf.scaleddenom <- 0
for (i in 2:fx) {
perf.scaleddenom = perf.scaleddenom + abs(x[nx+i] - x[nx+i-1])
}
perf.scaleddenom = perf.scaleddenom / (fx-1)
for (i in 1:fx) {
locSD <- (ub[i] - forecast$pred[i]) / 1.96
perf.scalederr[i] = (x[nx+i] - forecast$pred[i]) / perf.scaleddenom
perf.pe[i] = (x[nx+i] - forecast$pred[i]) / x[nx+i]
perf.spe[i] = 2*(x[nx+i] - forecast$pred[i]) / (x[nx+i] + forecast$pred[i])
perf.se[i] = (x[nx+i] - forecast$pred[i])^2
prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD)
prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD)
prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD)
prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD)
}
perf.mape[1] = abs(perf.pe[1])
perf.smape[1] = abs(perf.spe[1])
perf.mape1[1] = perf.mape[1]
perf.smape1[1] = perf.smape[1]
perf.mse[1] = perf.se[1]
perf.mase[1] = abs(perf.scalederr[1])
perf.mase1[1] = perf.mase[1]
for (i in 2:fx) {
perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i])
perf.mape1[i] = perf.mape[i] / i
perf.smape[i] = perf.smape[i-1] + abs(perf.spe[i])
perf.smape1[i] = perf.smape[i] / i
perf.mse[i] = perf.mse[i-1] + perf.se[i]
perf.mse1[i] = perf.mse[i] / i
perf.mase[i] = perf.mase[i-1] + abs(perf.scalederr[i])
perf.mase1[i] = perf.mase[i] / i
}
perf.rmse = sqrt(perf.mse1)
bitmap(file='test2.png')
plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub)))
dum <- forecast$pred
dum[1:par1] <- x[(nx+1):lx]
lines(dum, lty=1)
lines(ub,lty=3)
lines(lb,lty=3)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'Y[t]',1,header=TRUE)
a<-table.element(a,'F[t]',1,header=TRUE)
a<-table.element(a,'95% LB',1,header=TRUE)
a<-table.element(a,'95% UB',1,header=TRUE)
a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE)
mylab <- paste('P(F[t]>Y[',nx,sep='')
mylab <- paste(mylab,'])',sep='')
a<-table.element(a,mylab,1,header=TRUE)
a<-table.row.end(a)
for (i in (nx-par5):nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.row.end(a)
}
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(x[nx+i],4))
a<-table.element(a,round(forecast$pred[i],4))
a<-table.element(a,round(lb[i],4))
a<-table.element(a,round(ub[i],4))
a<-table.element(a,round((1-prob.pval[i]),4))
a<-table.element(a,round((1-prob.dec[i]),4))
a<-table.element(a,round((1-prob.sdec[i]),4))
a<-table.element(a,round((1-prob.ldec[i]),4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',10,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'% S.E.',1,header=TRUE)
a<-table.element(a,'PE',1,header=TRUE)
a<-table.element(a,'MAPE',1,header=TRUE)
a<-table.element(a,'sMAPE',1,header=TRUE)
a<-table.element(a,'Sq.E',1,header=TRUE)
a<-table.element(a,'MSE',1,header=TRUE)
a<-table.element(a,'RMSE',1,header=TRUE)
a<-table.element(a,'ScaledE',1,header=TRUE)
a<-table.element(a,'MASE',1,header=TRUE)
a<-table.row.end(a)
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(perc.se[i],4))
a<-table.element(a,round(perf.pe[i],4))
a<-table.element(a,round(perf.mape1[i],4))
a<-table.element(a,round(perf.smape1[i],4))
a<-table.element(a,round(perf.se[i],4))
a<-table.element(a,round(perf.mse1[i],4))
a<-table.element(a,round(perf.rmse[i],4))
a<-table.element(a,round(perf.scalederr[i],4))
a<-table.element(a,round(perf.mase1[i],4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')