Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimabackwardselection.wasp
Title produced by softwareARIMA Backward Selection
Date of computationThu, 22 Dec 2016 20:28:21 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/22/t1482434936r3y4zz9802i48a2.htm/, Retrieved Fri, 01 Nov 2024 03:33:01 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=302645, Retrieved Fri, 01 Nov 2024 03:33:01 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact128
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [ARIMA Backward Selection] [] [2016-12-22 19:28:21] [59384cc4294cbecf8e09b453c4247580] [Current]
Feedback Forum

Post a new message
Dataseries X:
2622.4
2607.5
2556.6
2569.3
2533.2
2529
2577.8
2556.6
2558.7
2541.7
2473.8
2461
2435.5
2414.3
2350.6
2329.4
2278.4
2252.9
2269.9
2227.4
2195.6
2204.1
2195.6
2202
2157.4
2142.5
2125.5
2110.7
2072.4
2076.7
2095.8
2023.6
2004.5
1985.4
1953.5
1915.3
1881.3
1821.9
1775.2
1790
1758.2
1747.6
1679.6
1692.3
1675.4
1639.3
1622.3
1577.7
1581.9
1562.8
1552.2
1535.2
1507.6




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time3 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302645&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]3 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=302645&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302645&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R ServerBig Analytics Cloud Computing Center







ARIMA Parameter Estimation and Backward Selection
Iterationar1ar2ar3sar1sar2
Estimates ( 1 )0.080.22160.30510.01970.2083
(p-val)(0.5782 )(0.1223 )(0.0614 )(0.9142 )(0.2894 )
Estimates ( 2 )0.08620.22220.31300.203
(p-val)(0.5107 )(0.1186 )(0.0308 )(NA )(0.2861 )
Estimates ( 3 )00.24140.341800.1947
(p-val)(NA )(0.0874 )(0.0159 )(NA )(0.3169 )
Estimates ( 4 )00.29140.394300
(p-val)(NA )(0.0198 )(0.0019 )(NA )(NA )
Estimates ( 5 )NANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )
Estimates ( 6 )NANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )
Estimates ( 7 )NANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )
Estimates ( 8 )NANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )
Estimates ( 9 )NANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )

\begin{tabular}{lllllllll}
\hline
ARIMA Parameter Estimation and Backward Selection \tabularnewline
Iteration & ar1 & ar2 & ar3 & sar1 & sar2 \tabularnewline
Estimates ( 1 ) & 0.08 & 0.2216 & 0.3051 & 0.0197 & 0.2083 \tabularnewline
(p-val) & (0.5782 ) & (0.1223 ) & (0.0614 ) & (0.9142 ) & (0.2894 ) \tabularnewline
Estimates ( 2 ) & 0.0862 & 0.2222 & 0.313 & 0 & 0.203 \tabularnewline
(p-val) & (0.5107 ) & (0.1186 ) & (0.0308 ) & (NA ) & (0.2861 ) \tabularnewline
Estimates ( 3 ) & 0 & 0.2414 & 0.3418 & 0 & 0.1947 \tabularnewline
(p-val) & (NA ) & (0.0874 ) & (0.0159 ) & (NA ) & (0.3169 ) \tabularnewline
Estimates ( 4 ) & 0 & 0.2914 & 0.3943 & 0 & 0 \tabularnewline
(p-val) & (NA ) & (0.0198 ) & (0.0019 ) & (NA ) & (NA ) \tabularnewline
Estimates ( 5 ) & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 6 ) & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 7 ) & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 8 ) & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 9 ) & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302645&T=1

[TABLE]
[ROW][C]ARIMA Parameter Estimation and Backward Selection[/C][/ROW]
[ROW][C]Iteration[/C][C]ar1[/C][C]ar2[/C][C]ar3[/C][C]sar1[/C][C]sar2[/C][/ROW]
[ROW][C]Estimates ( 1 )[/C][C]0.08[/C][C]0.2216[/C][C]0.3051[/C][C]0.0197[/C][C]0.2083[/C][/ROW]
[ROW][C](p-val)[/C][C](0.5782 )[/C][C](0.1223 )[/C][C](0.0614 )[/C][C](0.9142 )[/C][C](0.2894 )[/C][/ROW]
[ROW][C]Estimates ( 2 )[/C][C]0.0862[/C][C]0.2222[/C][C]0.313[/C][C]0[/C][C]0.203[/C][/ROW]
[ROW][C](p-val)[/C][C](0.5107 )[/C][C](0.1186 )[/C][C](0.0308 )[/C][C](NA )[/C][C](0.2861 )[/C][/ROW]
[ROW][C]Estimates ( 3 )[/C][C]0[/C][C]0.2414[/C][C]0.3418[/C][C]0[/C][C]0.1947[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](0.0874 )[/C][C](0.0159 )[/C][C](NA )[/C][C](0.3169 )[/C][/ROW]
[ROW][C]Estimates ( 4 )[/C][C]0[/C][C]0.2914[/C][C]0.3943[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](0.0198 )[/C][C](0.0019 )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 5 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 6 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 7 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 8 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 9 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302645&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302645&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ARIMA Parameter Estimation and Backward Selection
Iterationar1ar2ar3sar1sar2
Estimates ( 1 )0.080.22160.30510.01970.2083
(p-val)(0.5782 )(0.1223 )(0.0614 )(0.9142 )(0.2894 )
Estimates ( 2 )0.08620.22220.31300.203
(p-val)(0.5107 )(0.1186 )(0.0308 )(NA )(0.2861 )
Estimates ( 3 )00.24140.341800.1947
(p-val)(NA )(0.0874 )(0.0159 )(NA )(0.3169 )
Estimates ( 4 )00.29140.394300
(p-val)(NA )(0.0198 )(0.0019 )(NA )(NA )
Estimates ( 5 )NANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )
Estimates ( 6 )NANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )
Estimates ( 7 )NANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )
Estimates ( 8 )NANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )
Estimates ( 9 )NANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )







Estimated ARIMA Residuals
Value
2.62239827890718
-13.0056695479807
-43.0115289998637
20.3342985328432
-18.0622905376014
10.4523650447898
52.7820609838151
-7.23132876760302
-6.8721137671494
-27.0456500850577
-59.48289180178
-6.36848650139771
-2.65642412986247
5.79182900517736
-45.0598172617763
-11.1301030727076
-24.7340622392508
-0.582926653249615
26.2044025276978
-17.3856847789302
-25.5826206166298
18.508086565038
25.6085647969921
17.0503692507232
-44.8111216052657
-14.5318618066071
1.92851557892345
5.4748215983941
-23.5792445980251
13.4123039606993
26.2864032721177
-56.4649799372903
-19.8870904218372
-10.7221912740229
-5.27946192695867
-30.024035102746
-10.9232034808692
-36.6405363947663
-23.7971064221663
39.9717967780159
5.44061034644687
-0.87397982405696
-71.8859362307485
37.8369641042652
8.03803626302852
-14.3263903680436
-16.753228958117
-24.8419519141585
24.4913543498863
5.12181093972913
8.58244752952623
-21.7601721257706
-18.4692883127225

\begin{tabular}{lllllllll}
\hline
Estimated ARIMA Residuals \tabularnewline
Value \tabularnewline
2.62239827890718 \tabularnewline
-13.0056695479807 \tabularnewline
-43.0115289998637 \tabularnewline
20.3342985328432 \tabularnewline
-18.0622905376014 \tabularnewline
10.4523650447898 \tabularnewline
52.7820609838151 \tabularnewline
-7.23132876760302 \tabularnewline
-6.8721137671494 \tabularnewline
-27.0456500850577 \tabularnewline
-59.48289180178 \tabularnewline
-6.36848650139771 \tabularnewline
-2.65642412986247 \tabularnewline
5.79182900517736 \tabularnewline
-45.0598172617763 \tabularnewline
-11.1301030727076 \tabularnewline
-24.7340622392508 \tabularnewline
-0.582926653249615 \tabularnewline
26.2044025276978 \tabularnewline
-17.3856847789302 \tabularnewline
-25.5826206166298 \tabularnewline
18.508086565038 \tabularnewline
25.6085647969921 \tabularnewline
17.0503692507232 \tabularnewline
-44.8111216052657 \tabularnewline
-14.5318618066071 \tabularnewline
1.92851557892345 \tabularnewline
5.4748215983941 \tabularnewline
-23.5792445980251 \tabularnewline
13.4123039606993 \tabularnewline
26.2864032721177 \tabularnewline
-56.4649799372903 \tabularnewline
-19.8870904218372 \tabularnewline
-10.7221912740229 \tabularnewline
-5.27946192695867 \tabularnewline
-30.024035102746 \tabularnewline
-10.9232034808692 \tabularnewline
-36.6405363947663 \tabularnewline
-23.7971064221663 \tabularnewline
39.9717967780159 \tabularnewline
5.44061034644687 \tabularnewline
-0.87397982405696 \tabularnewline
-71.8859362307485 \tabularnewline
37.8369641042652 \tabularnewline
8.03803626302852 \tabularnewline
-14.3263903680436 \tabularnewline
-16.753228958117 \tabularnewline
-24.8419519141585 \tabularnewline
24.4913543498863 \tabularnewline
5.12181093972913 \tabularnewline
8.58244752952623 \tabularnewline
-21.7601721257706 \tabularnewline
-18.4692883127225 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302645&T=2

[TABLE]
[ROW][C]Estimated ARIMA Residuals[/C][/ROW]
[ROW][C]Value[/C][/ROW]
[ROW][C]2.62239827890718[/C][/ROW]
[ROW][C]-13.0056695479807[/C][/ROW]
[ROW][C]-43.0115289998637[/C][/ROW]
[ROW][C]20.3342985328432[/C][/ROW]
[ROW][C]-18.0622905376014[/C][/ROW]
[ROW][C]10.4523650447898[/C][/ROW]
[ROW][C]52.7820609838151[/C][/ROW]
[ROW][C]-7.23132876760302[/C][/ROW]
[ROW][C]-6.8721137671494[/C][/ROW]
[ROW][C]-27.0456500850577[/C][/ROW]
[ROW][C]-59.48289180178[/C][/ROW]
[ROW][C]-6.36848650139771[/C][/ROW]
[ROW][C]-2.65642412986247[/C][/ROW]
[ROW][C]5.79182900517736[/C][/ROW]
[ROW][C]-45.0598172617763[/C][/ROW]
[ROW][C]-11.1301030727076[/C][/ROW]
[ROW][C]-24.7340622392508[/C][/ROW]
[ROW][C]-0.582926653249615[/C][/ROW]
[ROW][C]26.2044025276978[/C][/ROW]
[ROW][C]-17.3856847789302[/C][/ROW]
[ROW][C]-25.5826206166298[/C][/ROW]
[ROW][C]18.508086565038[/C][/ROW]
[ROW][C]25.6085647969921[/C][/ROW]
[ROW][C]17.0503692507232[/C][/ROW]
[ROW][C]-44.8111216052657[/C][/ROW]
[ROW][C]-14.5318618066071[/C][/ROW]
[ROW][C]1.92851557892345[/C][/ROW]
[ROW][C]5.4748215983941[/C][/ROW]
[ROW][C]-23.5792445980251[/C][/ROW]
[ROW][C]13.4123039606993[/C][/ROW]
[ROW][C]26.2864032721177[/C][/ROW]
[ROW][C]-56.4649799372903[/C][/ROW]
[ROW][C]-19.8870904218372[/C][/ROW]
[ROW][C]-10.7221912740229[/C][/ROW]
[ROW][C]-5.27946192695867[/C][/ROW]
[ROW][C]-30.024035102746[/C][/ROW]
[ROW][C]-10.9232034808692[/C][/ROW]
[ROW][C]-36.6405363947663[/C][/ROW]
[ROW][C]-23.7971064221663[/C][/ROW]
[ROW][C]39.9717967780159[/C][/ROW]
[ROW][C]5.44061034644687[/C][/ROW]
[ROW][C]-0.87397982405696[/C][/ROW]
[ROW][C]-71.8859362307485[/C][/ROW]
[ROW][C]37.8369641042652[/C][/ROW]
[ROW][C]8.03803626302852[/C][/ROW]
[ROW][C]-14.3263903680436[/C][/ROW]
[ROW][C]-16.753228958117[/C][/ROW]
[ROW][C]-24.8419519141585[/C][/ROW]
[ROW][C]24.4913543498863[/C][/ROW]
[ROW][C]5.12181093972913[/C][/ROW]
[ROW][C]8.58244752952623[/C][/ROW]
[ROW][C]-21.7601721257706[/C][/ROW]
[ROW][C]-18.4692883127225[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302645&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302645&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimated ARIMA Residuals
Value
2.62239827890718
-13.0056695479807
-43.0115289998637
20.3342985328432
-18.0622905376014
10.4523650447898
52.7820609838151
-7.23132876760302
-6.8721137671494
-27.0456500850577
-59.48289180178
-6.36848650139771
-2.65642412986247
5.79182900517736
-45.0598172617763
-11.1301030727076
-24.7340622392508
-0.582926653249615
26.2044025276978
-17.3856847789302
-25.5826206166298
18.508086565038
25.6085647969921
17.0503692507232
-44.8111216052657
-14.5318618066071
1.92851557892345
5.4748215983941
-23.5792445980251
13.4123039606993
26.2864032721177
-56.4649799372903
-19.8870904218372
-10.7221912740229
-5.27946192695867
-30.024035102746
-10.9232034808692
-36.6405363947663
-23.7971064221663
39.9717967780159
5.44061034644687
-0.87397982405696
-71.8859362307485
37.8369641042652
8.03803626302852
-14.3263903680436
-16.753228958117
-24.8419519141585
24.4913543498863
5.12181093972913
8.58244752952623
-21.7601721257706
-18.4692883127225



Parameters (Session):
par1 = FALSE ; par2 = 1 ; par3 = 1 ; par4 = 0 ; par5 = 6 ; par6 = 3 ; par7 = 0 ; par8 = 2 ; par9 = 0 ;
Parameters (R input):
par1 = FALSE ; par2 = 1 ; par3 = 1 ; par4 = 0 ; par5 = 6 ; par6 = 3 ; par7 = 0 ; par8 = 2 ; par9 = 0 ;
R code (references can be found in the software module):
library(lattice)
if (par1 == 'TRUE') par1 <- TRUE
if (par1 == 'FALSE') par1 <- FALSE
par2 <- as.numeric(par2) #Box-Cox lambda transformation parameter
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #degree (p) of the non-seasonal AR(p) polynomial
par7 <- as.numeric(par7) #degree (q) of the non-seasonal MA(q) polynomial
par8 <- as.numeric(par8) #degree (P) of the seasonal AR(P) polynomial
par9 <- as.numeric(par9) #degree (Q) of the seasonal MA(Q) polynomial
armaGR <- function(arima.out, names, n){
try1 <- arima.out$coef
try2 <- sqrt(diag(arima.out$var.coef))
try.data.frame <- data.frame(matrix(NA,ncol=4,nrow=length(names)))
dimnames(try.data.frame) <- list(names,c('coef','std','tstat','pv'))
try.data.frame[,1] <- try1
for(i in 1:length(try2)) try.data.frame[which(rownames(try.data.frame)==names(try2)[i]),2] <- try2[i]
try.data.frame[,3] <- try.data.frame[,1] / try.data.frame[,2]
try.data.frame[,4] <- round((1-pt(abs(try.data.frame[,3]),df=n-(length(try2)+1)))*2,5)
vector <- rep(NA,length(names))
vector[is.na(try.data.frame[,4])] <- 0
maxi <- which.max(try.data.frame[,4])
continue <- max(try.data.frame[,4],na.rm=TRUE) > .05
vector[maxi] <- 0
list(summary=try.data.frame,next.vector=vector,continue=continue)
}
arimaSelect <- function(series, order=c(13,0,0), seasonal=list(order=c(2,0,0),period=12), include.mean=F){
nrc <- order[1]+order[3]+seasonal$order[1]+seasonal$order[3]
coeff <- matrix(NA, nrow=nrc*2, ncol=nrc)
pval <- matrix(NA, nrow=nrc*2, ncol=nrc)
mylist <- rep(list(NULL), nrc)
names <- NULL
if(order[1] > 0) names <- paste('ar',1:order[1],sep='')
if(order[3] > 0) names <- c( names , paste('ma',1:order[3],sep='') )
if(seasonal$order[1] > 0) names <- c(names, paste('sar',1:seasonal$order[1],sep=''))
if(seasonal$order[3] > 0) names <- c(names, paste('sma',1:seasonal$order[3],sep=''))
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML')
mylist[[1]] <- arima.out
last.arma <- armaGR(arima.out, names, length(series))
mystop <- FALSE
i <- 1
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- 2
aic <- arima.out$aic
while(!mystop){
mylist[[i]] <- arima.out
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML', fixed=last.arma$next.vector)
aic <- c(aic, arima.out$aic)
last.arma <- armaGR(arima.out, names, length(series))
mystop <- !last.arma$continue
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- i+1
}
list(coeff, pval, mylist, aic=aic)
}
arimaSelectplot <- function(arimaSelect.out,noms,choix){
noms <- names(arimaSelect.out[[3]][[1]]$coef)
coeff <- arimaSelect.out[[1]]
k <- min(which(is.na(coeff[,1])))-1
coeff <- coeff[1:k,]
pval <- arimaSelect.out[[2]][1:k,]
aic <- arimaSelect.out$aic[1:k]
coeff[coeff==0] <- NA
n <- ncol(coeff)
if(missing(choix)) choix <- k
layout(matrix(c(1,1,1,2,
3,3,3,2,
3,3,3,4,
5,6,7,7),nr=4),
widths=c(10,35,45,15),
heights=c(30,30,15,15))
couleurs <- rainbow(75)[1:50]#(50)
ticks <- pretty(coeff)
par(mar=c(1,1,3,1))
plot(aic,k:1-.5,type='o',pch=21,bg='blue',cex=2,axes=F,lty=2,xpd=NA)
points(aic[choix],k-choix+.5,pch=21,cex=4,bg=2,xpd=NA)
title('aic',line=2)
par(mar=c(3,0,0,0))
plot(0,axes=F,xlab='',ylab='',xlim=range(ticks),ylim=c(.1,1))
rect(xleft = min(ticks) + (0:49)/50*(max(ticks)-min(ticks)),
xright = min(ticks) + (1:50)/50*(max(ticks)-min(ticks)),
ytop = rep(1,50),
ybottom= rep(0,50),col=couleurs,border=NA)
axis(1,ticks)
rect(xleft=min(ticks),xright=max(ticks),ytop=1,ybottom=0)
text(mean(coeff,na.rm=T),.5,'coefficients',cex=2,font=2)
par(mar=c(1,1,3,1))
image(1:n,1:k,t(coeff[k:1,]),axes=F,col=couleurs,zlim=range(ticks))
for(i in 1:n) for(j in 1:k) if(!is.na(coeff[j,i])) {
if(pval[j,i]<.01) symb = 'green'
else if( (pval[j,i]<.05) & (pval[j,i]>=.01)) symb = 'orange'
else if( (pval[j,i]<.1) & (pval[j,i]>=.05)) symb = 'red'
else symb = 'black'
polygon(c(i+.5 ,i+.2 ,i+.5 ,i+.5),
c(k-j+0.5,k-j+0.5,k-j+0.8,k-j+0.5),
col=symb)
if(j==choix) {
rect(xleft=i-.5,
xright=i+.5,
ybottom=k-j+1.5,
ytop=k-j+.5,
lwd=4)
text(i,
k-j+1,
round(coeff[j,i],2),
cex=1.2,
font=2)
}
else{
rect(xleft=i-.5,xright=i+.5,ybottom=k-j+1.5,ytop=k-j+.5)
text(i,k-j+1,round(coeff[j,i],2),cex=1.2,font=1)
}
}
axis(3,1:n,noms)
par(mar=c(0.5,0,0,0.5))
plot(0,axes=F,xlab='',ylab='',type='n',xlim=c(0,8),ylim=c(-.2,.8))
cols <- c('green','orange','red','black')
niv <- c('0','0.01','0.05','0.1')
for(i in 0:3){
polygon(c(1+2*i ,1+2*i ,1+2*i-.5 ,1+2*i),
c(.4 ,.7 , .4 , .4),
col=cols[i+1])
text(2*i,0.5,niv[i+1],cex=1.5)
}
text(8,.5,1,cex=1.5)
text(4,0,'p-value',cex=2)
box()
residus <- arimaSelect.out[[3]][[choix]]$res
par(mar=c(1,2,4,1))
acf(residus,main='')
title('acf',line=.5)
par(mar=c(1,2,4,1))
pacf(residus,main='')
title('pacf',line=.5)
par(mar=c(2,2,4,1))
qqnorm(residus,main='')
title('qq-norm',line=.5)
qqline(residus)
residus
}
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
(selection <- arimaSelect(x, order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5)))
bitmap(file='test1.png')
resid <- arimaSelectplot(selection)
dev.off()
resid
bitmap(file='test2.png')
acf(resid,length(resid)/2, main='Residual Autocorrelation Function')
dev.off()
bitmap(file='test3.png')
pacf(resid,length(resid)/2, main='Residual Partial Autocorrelation Function')
dev.off()
bitmap(file='test4.png')
cpgram(resid, main='Residual Cumulative Periodogram')
dev.off()
bitmap(file='test5.png')
hist(resid, main='Residual Histogram', xlab='values of Residuals')
dev.off()
bitmap(file='test6.png')
densityplot(~resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test7.png')
qqnorm(resid, main='Residual Normal Q-Q Plot')
qqline(resid)
dev.off()
ncols <- length(selection[[1]][1,])
nrows <- length(selection[[2]][,1])-1
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'ARIMA Parameter Estimation and Backward Selection', ncols+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Iteration', header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,names(selection[[3]][[1]]$coef)[i],header=TRUE)
}
a<-table.row.end(a)
for (j in 1:nrows) {
a<-table.row.start(a)
mydum <- 'Estimates ('
mydum <- paste(mydum,j)
mydum <- paste(mydum,')')
a<-table.element(a,mydum, header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,round(selection[[1]][j,i],4))
}
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'(p-val)', header=TRUE)
for (i in 1:ncols) {
mydum <- '('
mydum <- paste(mydum,round(selection[[2]][j,i],4),sep='')
mydum <- paste(mydum,')')
a<-table.element(a,mydum)
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimated ARIMA Residuals', 1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Value', 1,TRUE)
a<-table.row.end(a)
for (i in (par4*par5+par3):length(resid)) {
a<-table.row.start(a)
a<-table.element(a,resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')