Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimabackwardselection.wasp
Title produced by softwareARIMA Backward Selection
Date of computationWed, 21 Dec 2016 18:34:49 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/21/t1482349384cku9al1es3attf9.htm/, Retrieved Fri, 01 Nov 2024 03:41:03 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=302478, Retrieved Fri, 01 Nov 2024 03:41:03 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact110
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [ARIMA Backward Selection] [] [2016-12-17 12:00:37] [eb6a9be7d7ae5e3521cb27c679af9160]
- R P     [ARIMA Backward Selection] [] [2016-12-21 17:34:49] [349958aef20b862f8399a5ba04d6f6e3] [Current]
- RMP       [ARIMA Forecasting] [] [2016-12-21 19:47:52] [eb6a9be7d7ae5e3521cb27c679af9160]
Feedback Forum

Post a new message
Dataseries X:
990
1384
1350
716
2068
1392
734
758
558
1620
3132
1392
918
776
1348
502
1274
1638
912
1250
1614
2840
1150
1652
1526
1412
882
848
820
1226
1212
2110
1178
2548
1568
2088
2178
3016
5514
1358
3604
1962
2036
2246
3434
4316
3032
5296
3850
2098
3992
4860
7336
9614
2988
2756
3540
2710
3730
3508
2640
2788
3502
3700
3250
4866
2836
3498
3468
3924
5738
7028
5608
6030
11976
7774
7906
10940
7626
5930
6286
6788
6932
6660
4910
4182
3550
3184
3872
3226
2504
3648
4448
2954
3842
3982
4864
6796
5844
5656
6118
7068
7696
7016
5820
4904
3860
7222
7738
7142
13804
7964
9716
8462
6884
8072
7320
11700
10792
10930
7112
8196
16818
10524
14878
13696




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time3 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302478&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]3 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=302478&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302478&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R ServerBig Analytics Cloud Computing Center







ARIMA Parameter Estimation and Backward Selection
Iterationar1ar2ar3ma1
Estimates ( 1 )0.23440.06860.0616-0.7522
(p-val)(0.4635 )(0.7138 )(0.6779 )(0.0143 )
Estimates ( 2 )0.139700.0301-0.6548
(p-val)(0.4552 )(NA )(0.7779 )(0 )
Estimates ( 3 )0.11600-0.6318
(p-val)(0.4754 )(NA )(NA )(0 )
Estimates ( 4 )000-0.5488
(p-val)(NA )(NA )(NA )(0 )
Estimates ( 5 )NANANANA
(p-val)(NA )(NA )(NA )(NA )
Estimates ( 6 )NANANANA
(p-val)(NA )(NA )(NA )(NA )
Estimates ( 7 )NANANANA
(p-val)(NA )(NA )(NA )(NA )

\begin{tabular}{lllllllll}
\hline
ARIMA Parameter Estimation and Backward Selection \tabularnewline
Iteration & ar1 & ar2 & ar3 & ma1 \tabularnewline
Estimates ( 1 ) & 0.2344 & 0.0686 & 0.0616 & -0.7522 \tabularnewline
(p-val) & (0.4635 ) & (0.7138 ) & (0.6779 ) & (0.0143 ) \tabularnewline
Estimates ( 2 ) & 0.1397 & 0 & 0.0301 & -0.6548 \tabularnewline
(p-val) & (0.4552 ) & (NA ) & (0.7779 ) & (0 ) \tabularnewline
Estimates ( 3 ) & 0.116 & 0 & 0 & -0.6318 \tabularnewline
(p-val) & (0.4754 ) & (NA ) & (NA ) & (0 ) \tabularnewline
Estimates ( 4 ) & 0 & 0 & 0 & -0.5488 \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (0 ) \tabularnewline
Estimates ( 5 ) & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 6 ) & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 7 ) & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302478&T=1

[TABLE]
[ROW][C]ARIMA Parameter Estimation and Backward Selection[/C][/ROW]
[ROW][C]Iteration[/C][C]ar1[/C][C]ar2[/C][C]ar3[/C][C]ma1[/C][/ROW]
[ROW][C]Estimates ( 1 )[/C][C]0.2344[/C][C]0.0686[/C][C]0.0616[/C][C]-0.7522[/C][/ROW]
[ROW][C](p-val)[/C][C](0.4635 )[/C][C](0.7138 )[/C][C](0.6779 )[/C][C](0.0143 )[/C][/ROW]
[ROW][C]Estimates ( 2 )[/C][C]0.1397[/C][C]0[/C][C]0.0301[/C][C]-0.6548[/C][/ROW]
[ROW][C](p-val)[/C][C](0.4552 )[/C][C](NA )[/C][C](0.7779 )[/C][C](0 )[/C][/ROW]
[ROW][C]Estimates ( 3 )[/C][C]0.116[/C][C]0[/C][C]0[/C][C]-0.6318[/C][/ROW]
[ROW][C](p-val)[/C][C](0.4754 )[/C][C](NA )[/C][C](NA )[/C][C](0 )[/C][/ROW]
[ROW][C]Estimates ( 4 )[/C][C]0[/C][C]0[/C][C]0[/C][C]-0.5488[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](0 )[/C][/ROW]
[ROW][C]Estimates ( 5 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 6 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 7 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302478&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302478&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ARIMA Parameter Estimation and Backward Selection
Iterationar1ar2ar3ma1
Estimates ( 1 )0.23440.06860.0616-0.7522
(p-val)(0.4635 )(0.7138 )(0.6779 )(0.0143 )
Estimates ( 2 )0.139700.0301-0.6548
(p-val)(0.4552 )(NA )(0.7779 )(0 )
Estimates ( 3 )0.11600-0.6318
(p-val)(0.4754 )(NA )(NA )(0 )
Estimates ( 4 )000-0.5488
(p-val)(NA )(NA )(NA )(0 )
Estimates ( 5 )NANANANA
(p-val)(NA )(NA )(NA )(NA )
Estimates ( 6 )NANANANA
(p-val)(NA )(NA )(NA )(NA )
Estimates ( 7 )NANANANA
(p-val)(NA )(NA )(NA )(NA )







Estimated ARIMA Residuals
Value
0.0157853349678737
2.00900434027156
0.65779148589196
-3.52951886681616
5.56305999883869
-0.459161787752709
-4.01131075732476
-1.87573656932694
-2.84126073295985
5.06670991675938
8.22660073681744
-2.4071799175409
-3.49145144976898
-2.87955197119929
1.83592227174937
-5.08015444652722
2.89728304968352
3.04686981207181
-2.32112272669956
1.05441306424884
2.29313860926152
6.10032031832026
-4.01220944826441
0.925491121698246
-0.32366624005822
-0.70819597956986
-3.50250864150928
-2.08582457596646
-1.48850693743369
1.63779694161741
0.65943292017883
4.67533005409614
-1.98246150248759
5.38069483013285
-1.37709466141031
1.90487929985094
1.29846018047893
3.78753407281576
8.77153944919645
-8.70132506217314
4.61960777027431
-3.78867955530134
-1.42094455256123
-0.0902214419452498
3.89999181301967
4.47932719484728
-1.20541852249538
5.84656742559041
-0.719567935869218
-5.88469940552614
3.21760355170327
3.56453996133822
7.33097116143998
8.0298649853734
-10.0259591292052
-5.41756474045113
-0.828213331370787
-3.47742604764064
1.3309122144256
-0.18327854412701
-2.85448361198236
-0.961444279409971
1.61351669243924
1.3367596630614
-0.575002390227542
4.24312125541505
-3.63211403573099
0.48306269469715
-0.0290524186303749
1.31231581847494
5.1712266179279
5.43926651660635
0.139432788755691
1.36460846394956
11.0242724727223
-1.01850910152591
0.387944942950398
5.24471953194333
-2.81657291808428
-4.55500825421817
-1.7189982402556
-0.14262985816643
0.0776308639144432
-0.530456686719745
-4.15613572736572
-4.03747442525987
-4.11671984574962
-3.51468562342459
-0.0404086363302625
-2.18126808976564
-3.59583557773309
1.7277511382408
2.85558825841116
-2.79861895417655
1.44615747916848
0.990770502425271
2.87559445498007
5.82214072450424
1.18448747814725
0.56299139089591
1.41541510834251
2.72091619911482
2.69368018068
0.260263897826789
-2.17303142683546
-3.20674927973967
-4.51343044948675
5.2127290018753
3.37267997536541
0.883745854203305
11.1839972045792
-3.09592896188069
2.09083004097617
-1.14447389508781
-3.42820243583905
0.430910418366274
-1.39117101200176
6.53456579358053
1.93926816247634
1.59081422794352
-5.53410887087962
-0.712300651119051
11.561888816631
-2.49676162312876
5.43052225287253
1.21071143493284

\begin{tabular}{lllllllll}
\hline
Estimated ARIMA Residuals \tabularnewline
Value \tabularnewline
0.0157853349678737 \tabularnewline
2.00900434027156 \tabularnewline
0.65779148589196 \tabularnewline
-3.52951886681616 \tabularnewline
5.56305999883869 \tabularnewline
-0.459161787752709 \tabularnewline
-4.01131075732476 \tabularnewline
-1.87573656932694 \tabularnewline
-2.84126073295985 \tabularnewline
5.06670991675938 \tabularnewline
8.22660073681744 \tabularnewline
-2.4071799175409 \tabularnewline
-3.49145144976898 \tabularnewline
-2.87955197119929 \tabularnewline
1.83592227174937 \tabularnewline
-5.08015444652722 \tabularnewline
2.89728304968352 \tabularnewline
3.04686981207181 \tabularnewline
-2.32112272669956 \tabularnewline
1.05441306424884 \tabularnewline
2.29313860926152 \tabularnewline
6.10032031832026 \tabularnewline
-4.01220944826441 \tabularnewline
0.925491121698246 \tabularnewline
-0.32366624005822 \tabularnewline
-0.70819597956986 \tabularnewline
-3.50250864150928 \tabularnewline
-2.08582457596646 \tabularnewline
-1.48850693743369 \tabularnewline
1.63779694161741 \tabularnewline
0.65943292017883 \tabularnewline
4.67533005409614 \tabularnewline
-1.98246150248759 \tabularnewline
5.38069483013285 \tabularnewline
-1.37709466141031 \tabularnewline
1.90487929985094 \tabularnewline
1.29846018047893 \tabularnewline
3.78753407281576 \tabularnewline
8.77153944919645 \tabularnewline
-8.70132506217314 \tabularnewline
4.61960777027431 \tabularnewline
-3.78867955530134 \tabularnewline
-1.42094455256123 \tabularnewline
-0.0902214419452498 \tabularnewline
3.89999181301967 \tabularnewline
4.47932719484728 \tabularnewline
-1.20541852249538 \tabularnewline
5.84656742559041 \tabularnewline
-0.719567935869218 \tabularnewline
-5.88469940552614 \tabularnewline
3.21760355170327 \tabularnewline
3.56453996133822 \tabularnewline
7.33097116143998 \tabularnewline
8.0298649853734 \tabularnewline
-10.0259591292052 \tabularnewline
-5.41756474045113 \tabularnewline
-0.828213331370787 \tabularnewline
-3.47742604764064 \tabularnewline
1.3309122144256 \tabularnewline
-0.18327854412701 \tabularnewline
-2.85448361198236 \tabularnewline
-0.961444279409971 \tabularnewline
1.61351669243924 \tabularnewline
1.3367596630614 \tabularnewline
-0.575002390227542 \tabularnewline
4.24312125541505 \tabularnewline
-3.63211403573099 \tabularnewline
0.48306269469715 \tabularnewline
-0.0290524186303749 \tabularnewline
1.31231581847494 \tabularnewline
5.1712266179279 \tabularnewline
5.43926651660635 \tabularnewline
0.139432788755691 \tabularnewline
1.36460846394956 \tabularnewline
11.0242724727223 \tabularnewline
-1.01850910152591 \tabularnewline
0.387944942950398 \tabularnewline
5.24471953194333 \tabularnewline
-2.81657291808428 \tabularnewline
-4.55500825421817 \tabularnewline
-1.7189982402556 \tabularnewline
-0.14262985816643 \tabularnewline
0.0776308639144432 \tabularnewline
-0.530456686719745 \tabularnewline
-4.15613572736572 \tabularnewline
-4.03747442525987 \tabularnewline
-4.11671984574962 \tabularnewline
-3.51468562342459 \tabularnewline
-0.0404086363302625 \tabularnewline
-2.18126808976564 \tabularnewline
-3.59583557773309 \tabularnewline
1.7277511382408 \tabularnewline
2.85558825841116 \tabularnewline
-2.79861895417655 \tabularnewline
1.44615747916848 \tabularnewline
0.990770502425271 \tabularnewline
2.87559445498007 \tabularnewline
5.82214072450424 \tabularnewline
1.18448747814725 \tabularnewline
0.56299139089591 \tabularnewline
1.41541510834251 \tabularnewline
2.72091619911482 \tabularnewline
2.69368018068 \tabularnewline
0.260263897826789 \tabularnewline
-2.17303142683546 \tabularnewline
-3.20674927973967 \tabularnewline
-4.51343044948675 \tabularnewline
5.2127290018753 \tabularnewline
3.37267997536541 \tabularnewline
0.883745854203305 \tabularnewline
11.1839972045792 \tabularnewline
-3.09592896188069 \tabularnewline
2.09083004097617 \tabularnewline
-1.14447389508781 \tabularnewline
-3.42820243583905 \tabularnewline
0.430910418366274 \tabularnewline
-1.39117101200176 \tabularnewline
6.53456579358053 \tabularnewline
1.93926816247634 \tabularnewline
1.59081422794352 \tabularnewline
-5.53410887087962 \tabularnewline
-0.712300651119051 \tabularnewline
11.561888816631 \tabularnewline
-2.49676162312876 \tabularnewline
5.43052225287253 \tabularnewline
1.21071143493284 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302478&T=2

[TABLE]
[ROW][C]Estimated ARIMA Residuals[/C][/ROW]
[ROW][C]Value[/C][/ROW]
[ROW][C]0.0157853349678737[/C][/ROW]
[ROW][C]2.00900434027156[/C][/ROW]
[ROW][C]0.65779148589196[/C][/ROW]
[ROW][C]-3.52951886681616[/C][/ROW]
[ROW][C]5.56305999883869[/C][/ROW]
[ROW][C]-0.459161787752709[/C][/ROW]
[ROW][C]-4.01131075732476[/C][/ROW]
[ROW][C]-1.87573656932694[/C][/ROW]
[ROW][C]-2.84126073295985[/C][/ROW]
[ROW][C]5.06670991675938[/C][/ROW]
[ROW][C]8.22660073681744[/C][/ROW]
[ROW][C]-2.4071799175409[/C][/ROW]
[ROW][C]-3.49145144976898[/C][/ROW]
[ROW][C]-2.87955197119929[/C][/ROW]
[ROW][C]1.83592227174937[/C][/ROW]
[ROW][C]-5.08015444652722[/C][/ROW]
[ROW][C]2.89728304968352[/C][/ROW]
[ROW][C]3.04686981207181[/C][/ROW]
[ROW][C]-2.32112272669956[/C][/ROW]
[ROW][C]1.05441306424884[/C][/ROW]
[ROW][C]2.29313860926152[/C][/ROW]
[ROW][C]6.10032031832026[/C][/ROW]
[ROW][C]-4.01220944826441[/C][/ROW]
[ROW][C]0.925491121698246[/C][/ROW]
[ROW][C]-0.32366624005822[/C][/ROW]
[ROW][C]-0.70819597956986[/C][/ROW]
[ROW][C]-3.50250864150928[/C][/ROW]
[ROW][C]-2.08582457596646[/C][/ROW]
[ROW][C]-1.48850693743369[/C][/ROW]
[ROW][C]1.63779694161741[/C][/ROW]
[ROW][C]0.65943292017883[/C][/ROW]
[ROW][C]4.67533005409614[/C][/ROW]
[ROW][C]-1.98246150248759[/C][/ROW]
[ROW][C]5.38069483013285[/C][/ROW]
[ROW][C]-1.37709466141031[/C][/ROW]
[ROW][C]1.90487929985094[/C][/ROW]
[ROW][C]1.29846018047893[/C][/ROW]
[ROW][C]3.78753407281576[/C][/ROW]
[ROW][C]8.77153944919645[/C][/ROW]
[ROW][C]-8.70132506217314[/C][/ROW]
[ROW][C]4.61960777027431[/C][/ROW]
[ROW][C]-3.78867955530134[/C][/ROW]
[ROW][C]-1.42094455256123[/C][/ROW]
[ROW][C]-0.0902214419452498[/C][/ROW]
[ROW][C]3.89999181301967[/C][/ROW]
[ROW][C]4.47932719484728[/C][/ROW]
[ROW][C]-1.20541852249538[/C][/ROW]
[ROW][C]5.84656742559041[/C][/ROW]
[ROW][C]-0.719567935869218[/C][/ROW]
[ROW][C]-5.88469940552614[/C][/ROW]
[ROW][C]3.21760355170327[/C][/ROW]
[ROW][C]3.56453996133822[/C][/ROW]
[ROW][C]7.33097116143998[/C][/ROW]
[ROW][C]8.0298649853734[/C][/ROW]
[ROW][C]-10.0259591292052[/C][/ROW]
[ROW][C]-5.41756474045113[/C][/ROW]
[ROW][C]-0.828213331370787[/C][/ROW]
[ROW][C]-3.47742604764064[/C][/ROW]
[ROW][C]1.3309122144256[/C][/ROW]
[ROW][C]-0.18327854412701[/C][/ROW]
[ROW][C]-2.85448361198236[/C][/ROW]
[ROW][C]-0.961444279409971[/C][/ROW]
[ROW][C]1.61351669243924[/C][/ROW]
[ROW][C]1.3367596630614[/C][/ROW]
[ROW][C]-0.575002390227542[/C][/ROW]
[ROW][C]4.24312125541505[/C][/ROW]
[ROW][C]-3.63211403573099[/C][/ROW]
[ROW][C]0.48306269469715[/C][/ROW]
[ROW][C]-0.0290524186303749[/C][/ROW]
[ROW][C]1.31231581847494[/C][/ROW]
[ROW][C]5.1712266179279[/C][/ROW]
[ROW][C]5.43926651660635[/C][/ROW]
[ROW][C]0.139432788755691[/C][/ROW]
[ROW][C]1.36460846394956[/C][/ROW]
[ROW][C]11.0242724727223[/C][/ROW]
[ROW][C]-1.01850910152591[/C][/ROW]
[ROW][C]0.387944942950398[/C][/ROW]
[ROW][C]5.24471953194333[/C][/ROW]
[ROW][C]-2.81657291808428[/C][/ROW]
[ROW][C]-4.55500825421817[/C][/ROW]
[ROW][C]-1.7189982402556[/C][/ROW]
[ROW][C]-0.14262985816643[/C][/ROW]
[ROW][C]0.0776308639144432[/C][/ROW]
[ROW][C]-0.530456686719745[/C][/ROW]
[ROW][C]-4.15613572736572[/C][/ROW]
[ROW][C]-4.03747442525987[/C][/ROW]
[ROW][C]-4.11671984574962[/C][/ROW]
[ROW][C]-3.51468562342459[/C][/ROW]
[ROW][C]-0.0404086363302625[/C][/ROW]
[ROW][C]-2.18126808976564[/C][/ROW]
[ROW][C]-3.59583557773309[/C][/ROW]
[ROW][C]1.7277511382408[/C][/ROW]
[ROW][C]2.85558825841116[/C][/ROW]
[ROW][C]-2.79861895417655[/C][/ROW]
[ROW][C]1.44615747916848[/C][/ROW]
[ROW][C]0.990770502425271[/C][/ROW]
[ROW][C]2.87559445498007[/C][/ROW]
[ROW][C]5.82214072450424[/C][/ROW]
[ROW][C]1.18448747814725[/C][/ROW]
[ROW][C]0.56299139089591[/C][/ROW]
[ROW][C]1.41541510834251[/C][/ROW]
[ROW][C]2.72091619911482[/C][/ROW]
[ROW][C]2.69368018068[/C][/ROW]
[ROW][C]0.260263897826789[/C][/ROW]
[ROW][C]-2.17303142683546[/C][/ROW]
[ROW][C]-3.20674927973967[/C][/ROW]
[ROW][C]-4.51343044948675[/C][/ROW]
[ROW][C]5.2127290018753[/C][/ROW]
[ROW][C]3.37267997536541[/C][/ROW]
[ROW][C]0.883745854203305[/C][/ROW]
[ROW][C]11.1839972045792[/C][/ROW]
[ROW][C]-3.09592896188069[/C][/ROW]
[ROW][C]2.09083004097617[/C][/ROW]
[ROW][C]-1.14447389508781[/C][/ROW]
[ROW][C]-3.42820243583905[/C][/ROW]
[ROW][C]0.430910418366274[/C][/ROW]
[ROW][C]-1.39117101200176[/C][/ROW]
[ROW][C]6.53456579358053[/C][/ROW]
[ROW][C]1.93926816247634[/C][/ROW]
[ROW][C]1.59081422794352[/C][/ROW]
[ROW][C]-5.53410887087962[/C][/ROW]
[ROW][C]-0.712300651119051[/C][/ROW]
[ROW][C]11.561888816631[/C][/ROW]
[ROW][C]-2.49676162312876[/C][/ROW]
[ROW][C]5.43052225287253[/C][/ROW]
[ROW][C]1.21071143493284[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302478&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302478&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimated ARIMA Residuals
Value
0.0157853349678737
2.00900434027156
0.65779148589196
-3.52951886681616
5.56305999883869
-0.459161787752709
-4.01131075732476
-1.87573656932694
-2.84126073295985
5.06670991675938
8.22660073681744
-2.4071799175409
-3.49145144976898
-2.87955197119929
1.83592227174937
-5.08015444652722
2.89728304968352
3.04686981207181
-2.32112272669956
1.05441306424884
2.29313860926152
6.10032031832026
-4.01220944826441
0.925491121698246
-0.32366624005822
-0.70819597956986
-3.50250864150928
-2.08582457596646
-1.48850693743369
1.63779694161741
0.65943292017883
4.67533005409614
-1.98246150248759
5.38069483013285
-1.37709466141031
1.90487929985094
1.29846018047893
3.78753407281576
8.77153944919645
-8.70132506217314
4.61960777027431
-3.78867955530134
-1.42094455256123
-0.0902214419452498
3.89999181301967
4.47932719484728
-1.20541852249538
5.84656742559041
-0.719567935869218
-5.88469940552614
3.21760355170327
3.56453996133822
7.33097116143998
8.0298649853734
-10.0259591292052
-5.41756474045113
-0.828213331370787
-3.47742604764064
1.3309122144256
-0.18327854412701
-2.85448361198236
-0.961444279409971
1.61351669243924
1.3367596630614
-0.575002390227542
4.24312125541505
-3.63211403573099
0.48306269469715
-0.0290524186303749
1.31231581847494
5.1712266179279
5.43926651660635
0.139432788755691
1.36460846394956
11.0242724727223
-1.01850910152591
0.387944942950398
5.24471953194333
-2.81657291808428
-4.55500825421817
-1.7189982402556
-0.14262985816643
0.0776308639144432
-0.530456686719745
-4.15613572736572
-4.03747442525987
-4.11671984574962
-3.51468562342459
-0.0404086363302625
-2.18126808976564
-3.59583557773309
1.7277511382408
2.85558825841116
-2.79861895417655
1.44615747916848
0.990770502425271
2.87559445498007
5.82214072450424
1.18448747814725
0.56299139089591
1.41541510834251
2.72091619911482
2.69368018068
0.260263897826789
-2.17303142683546
-3.20674927973967
-4.51343044948675
5.2127290018753
3.37267997536541
0.883745854203305
11.1839972045792
-3.09592896188069
2.09083004097617
-1.14447389508781
-3.42820243583905
0.430910418366274
-1.39117101200176
6.53456579358053
1.93926816247634
1.59081422794352
-5.53410887087962
-0.712300651119051
11.561888816631
-2.49676162312876
5.43052225287253
1.21071143493284



Parameters (Session):
par1 = FALSE ; par2 = 0.4 ; par3 = 1 ; par4 = 0 ; par5 = 12 ; par6 = 3 ; par7 = 1 ; par8 = 0 ; par9 = 0 ;
Parameters (R input):
par1 = FALSE ; par2 = 0.4 ; par3 = 1 ; par4 = 0 ; par5 = 12 ; par6 = 3 ; par7 = 1 ; par8 = 0 ; par9 = 0 ;
R code (references can be found in the software module):
library(lattice)
if (par1 == 'TRUE') par1 <- TRUE
if (par1 == 'FALSE') par1 <- FALSE
par2 <- as.numeric(par2) #Box-Cox lambda transformation parameter
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #degree (p) of the non-seasonal AR(p) polynomial
par7 <- as.numeric(par7) #degree (q) of the non-seasonal MA(q) polynomial
par8 <- as.numeric(par8) #degree (P) of the seasonal AR(P) polynomial
par9 <- as.numeric(par9) #degree (Q) of the seasonal MA(Q) polynomial
armaGR <- function(arima.out, names, n){
try1 <- arima.out$coef
try2 <- sqrt(diag(arima.out$var.coef))
try.data.frame <- data.frame(matrix(NA,ncol=4,nrow=length(names)))
dimnames(try.data.frame) <- list(names,c('coef','std','tstat','pv'))
try.data.frame[,1] <- try1
for(i in 1:length(try2)) try.data.frame[which(rownames(try.data.frame)==names(try2)[i]),2] <- try2[i]
try.data.frame[,3] <- try.data.frame[,1] / try.data.frame[,2]
try.data.frame[,4] <- round((1-pt(abs(try.data.frame[,3]),df=n-(length(try2)+1)))*2,5)
vector <- rep(NA,length(names))
vector[is.na(try.data.frame[,4])] <- 0
maxi <- which.max(try.data.frame[,4])
continue <- max(try.data.frame[,4],na.rm=TRUE) > .05
vector[maxi] <- 0
list(summary=try.data.frame,next.vector=vector,continue=continue)
}
arimaSelect <- function(series, order=c(13,0,0), seasonal=list(order=c(2,0,0),period=12), include.mean=F){
nrc <- order[1]+order[3]+seasonal$order[1]+seasonal$order[3]
coeff <- matrix(NA, nrow=nrc*2, ncol=nrc)
pval <- matrix(NA, nrow=nrc*2, ncol=nrc)
mylist <- rep(list(NULL), nrc)
names <- NULL
if(order[1] > 0) names <- paste('ar',1:order[1],sep='')
if(order[3] > 0) names <- c( names , paste('ma',1:order[3],sep='') )
if(seasonal$order[1] > 0) names <- c(names, paste('sar',1:seasonal$order[1],sep=''))
if(seasonal$order[3] > 0) names <- c(names, paste('sma',1:seasonal$order[3],sep=''))
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML')
mylist[[1]] <- arima.out
last.arma <- armaGR(arima.out, names, length(series))
mystop <- FALSE
i <- 1
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- 2
aic <- arima.out$aic
while(!mystop){
mylist[[i]] <- arima.out
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML', fixed=last.arma$next.vector)
aic <- c(aic, arima.out$aic)
last.arma <- armaGR(arima.out, names, length(series))
mystop <- !last.arma$continue
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- i+1
}
list(coeff, pval, mylist, aic=aic)
}
arimaSelectplot <- function(arimaSelect.out,noms,choix){
noms <- names(arimaSelect.out[[3]][[1]]$coef)
coeff <- arimaSelect.out[[1]]
k <- min(which(is.na(coeff[,1])))-1
coeff <- coeff[1:k,]
pval <- arimaSelect.out[[2]][1:k,]
aic <- arimaSelect.out$aic[1:k]
coeff[coeff==0] <- NA
n <- ncol(coeff)
if(missing(choix)) choix <- k
layout(matrix(c(1,1,1,2,
3,3,3,2,
3,3,3,4,
5,6,7,7),nr=4),
widths=c(10,35,45,15),
heights=c(30,30,15,15))
couleurs <- rainbow(75)[1:50]#(50)
ticks <- pretty(coeff)
par(mar=c(1,1,3,1))
plot(aic,k:1-.5,type='o',pch=21,bg='blue',cex=2,axes=F,lty=2,xpd=NA)
points(aic[choix],k-choix+.5,pch=21,cex=4,bg=2,xpd=NA)
title('aic',line=2)
par(mar=c(3,0,0,0))
plot(0,axes=F,xlab='',ylab='',xlim=range(ticks),ylim=c(.1,1))
rect(xleft = min(ticks) + (0:49)/50*(max(ticks)-min(ticks)),
xright = min(ticks) + (1:50)/50*(max(ticks)-min(ticks)),
ytop = rep(1,50),
ybottom= rep(0,50),col=couleurs,border=NA)
axis(1,ticks)
rect(xleft=min(ticks),xright=max(ticks),ytop=1,ybottom=0)
text(mean(coeff,na.rm=T),.5,'coefficients',cex=2,font=2)
par(mar=c(1,1,3,1))
image(1:n,1:k,t(coeff[k:1,]),axes=F,col=couleurs,zlim=range(ticks))
for(i in 1:n) for(j in 1:k) if(!is.na(coeff[j,i])) {
if(pval[j,i]<.01) symb = 'green'
else if( (pval[j,i]<.05) & (pval[j,i]>=.01)) symb = 'orange'
else if( (pval[j,i]<.1) & (pval[j,i]>=.05)) symb = 'red'
else symb = 'black'
polygon(c(i+.5 ,i+.2 ,i+.5 ,i+.5),
c(k-j+0.5,k-j+0.5,k-j+0.8,k-j+0.5),
col=symb)
if(j==choix) {
rect(xleft=i-.5,
xright=i+.5,
ybottom=k-j+1.5,
ytop=k-j+.5,
lwd=4)
text(i,
k-j+1,
round(coeff[j,i],2),
cex=1.2,
font=2)
}
else{
rect(xleft=i-.5,xright=i+.5,ybottom=k-j+1.5,ytop=k-j+.5)
text(i,k-j+1,round(coeff[j,i],2),cex=1.2,font=1)
}
}
axis(3,1:n,noms)
par(mar=c(0.5,0,0,0.5))
plot(0,axes=F,xlab='',ylab='',type='n',xlim=c(0,8),ylim=c(-.2,.8))
cols <- c('green','orange','red','black')
niv <- c('0','0.01','0.05','0.1')
for(i in 0:3){
polygon(c(1+2*i ,1+2*i ,1+2*i-.5 ,1+2*i),
c(.4 ,.7 , .4 , .4),
col=cols[i+1])
text(2*i,0.5,niv[i+1],cex=1.5)
}
text(8,.5,1,cex=1.5)
text(4,0,'p-value',cex=2)
box()
residus <- arimaSelect.out[[3]][[choix]]$res
par(mar=c(1,2,4,1))
acf(residus,main='')
title('acf',line=.5)
par(mar=c(1,2,4,1))
pacf(residus,main='')
title('pacf',line=.5)
par(mar=c(2,2,4,1))
qqnorm(residus,main='')
title('qq-norm',line=.5)
qqline(residus)
residus
}
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
(selection <- arimaSelect(x, order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5)))
bitmap(file='test1.png')
resid <- arimaSelectplot(selection)
dev.off()
resid
bitmap(file='test2.png')
acf(resid,length(resid)/2, main='Residual Autocorrelation Function')
dev.off()
bitmap(file='test3.png')
pacf(resid,length(resid)/2, main='Residual Partial Autocorrelation Function')
dev.off()
bitmap(file='test4.png')
cpgram(resid, main='Residual Cumulative Periodogram')
dev.off()
bitmap(file='test5.png')
hist(resid, main='Residual Histogram', xlab='values of Residuals')
dev.off()
bitmap(file='test6.png')
densityplot(~resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test7.png')
qqnorm(resid, main='Residual Normal Q-Q Plot')
qqline(resid)
dev.off()
ncols <- length(selection[[1]][1,])
nrows <- length(selection[[2]][,1])-1
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'ARIMA Parameter Estimation and Backward Selection', ncols+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Iteration', header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,names(selection[[3]][[1]]$coef)[i],header=TRUE)
}
a<-table.row.end(a)
for (j in 1:nrows) {
a<-table.row.start(a)
mydum <- 'Estimates ('
mydum <- paste(mydum,j)
mydum <- paste(mydum,')')
a<-table.element(a,mydum, header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,round(selection[[1]][j,i],4))
}
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'(p-val)', header=TRUE)
for (i in 1:ncols) {
mydum <- '('
mydum <- paste(mydum,round(selection[[2]][j,i],4),sep='')
mydum <- paste(mydum,')')
a<-table.element(a,mydum)
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimated ARIMA Residuals', 1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Value', 1,TRUE)
a<-table.row.end(a)
for (i in (par4*par5+par3):length(resid)) {
a<-table.row.start(a)
a<-table.element(a,resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')