Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_exponentialsmoothing.wasp
Title produced by softwareExponential Smoothing
Date of computationWed, 21 Dec 2016 16:44:19 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/21/t1482335080b7dzgrgvcfmbo1d.htm/, Retrieved Fri, 01 Nov 2024 03:44:39 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=302393, Retrieved Fri, 01 Nov 2024 03:44:39 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact106
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Exponential Smoothing] [] [2016-12-21 15:44:19] [2802fcbee976b89d2ab84425d3d65dcf] [Current]
Feedback Forum

Post a new message
Dataseries X:
2312
1089
2742
3145
2966
2055
2450
2742
1697
2409
2233
2100
3434
1867
2365
3578
2845
2778
2056
2757
3325
3671
2147
3225
3556
4661
3344
5375
3907
3356
2184
3510
2834
3271
2834
2408
3261
1526
2938
2352
3915
3145
1566
2746
3572
2651
2805
3354
2523
1480
3278
5081
3332
2789
4111
2508
1833
2371
4268
2194
2935
3347
3034
5448
3427
3036
4196
3009
3369
4168
3403
1779
2761
2582
3153
3011
3419
4042
4379
4602
3249
4372
4328
3695
3614
2114
2839
2490
2610
2372
2833
4018
2734
3027
3862
3281
2746
2538
1805
2500
2601
3178
4193
2606
2491
4090
2786
2280
2403
2934
1601
1946
2554
2006
2830
3173
1960
3052
2151
2493
2752
2542
2027
1940
1877




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302393&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=302393&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302393&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Estimated Parameters of Exponential Smoothing
ParameterValue
alpha0.155946510262661
betaFALSE
gammaFALSE

\begin{tabular}{lllllllll}
\hline
Estimated Parameters of Exponential Smoothing \tabularnewline
Parameter & Value \tabularnewline
alpha & 0.155946510262661 \tabularnewline
beta & FALSE \tabularnewline
gamma & FALSE \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302393&T=1

[TABLE]
[ROW][C]Estimated Parameters of Exponential Smoothing[/C][/ROW]
[ROW][C]Parameter[/C][C]Value[/C][/ROW]
[ROW][C]alpha[/C][C]0.155946510262661[/C][/ROW]
[ROW][C]beta[/C][C]FALSE[/C][/ROW]
[ROW][C]gamma[/C][C]FALSE[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302393&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302393&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimated Parameters of Exponential Smoothing
ParameterValue
alpha0.155946510262661
betaFALSE
gammaFALSE







Interpolation Forecasts of Exponential Smoothing
tObservedFittedResiduals
210892312-1223
327422121.27741794877620.722582051234
431452218.07693846088926.923061539116
529662362.62735518989603.372644810109
620552456.72121353598-401.72121353598
724502394.0741921865655.9258078134376
827422402.79562674869339.204373251312
916972455.69336502306-758.693365023064
1024092337.3777823882871.6222176117185
1122332348.5470172821-115.547017282102
1221002330.5278631657-230.527863165699
1334342294.57784738671139.4221526133
1418672472.26675580271-605.266755802713
1523652377.87751745728-12.8775174572779
1635782375.869313548971202.13068645103
1728452563.33739898066281.662601019336
1827782607.26169868113170.738301318866
1920562633.88774093999-577.887740939986
2027572543.76816441682213.231835583178
2133252577.02092505292747.979074947079
2236712693.66565154041977.334348459589
2321472846.07753254252-699.077532542515
2432252737.05883093948487.941169060522
2535562813.15155346795742.84844653205
2646612928.996176358661732.00382364134
2733443199.09612841711144.903871582886
2853753221.693381514012153.30661848599
2939073557.49403419239349.505965807606
3033563611.99826987607-255.998269876071
3121843572.07623305562-1388.07623305562
3235103355.61058853206154.389411467945
3328343379.68707847199-545.687078471987
3432713294.58908288885-23.5890828888541
3528343290.91044773204-456.910447732041
3624083219.65685790568-811.656857905679
3732613093.08180338453167.918196615467
3815263119.26806015631-1593.26806015631
3929382870.8034662619867.1965337380225
4023522881.28253120017-529.28253120017
4139152798.742767516521116.25723248348
4231452972.81918747777172.180812522229
4315662999.6701843248-1433.6701843248
4427462776.09432221172-30.0943222117235
4535722771.40121768409800.598782315915
4626512896.25180390679-245.251803906788
4728052858.0056409519-53.005640951902
4833542849.73959622122504.260403778783
4925232928.37724645416-405.377246454159
5014802865.16007952975-1385.16007952975
5132782649.14919897193628.850801028068
5250812747.216286868142333.78371313186
5333323111.16171263889220.838287361113
5427893145.60067288524-356.600672885236
5541113089.990042391471021.00995760853
5625083249.21298222394-741.212982223945
5718333133.62340428474-1300.62340428474
5823712930.79572322059-559.795723220594
5942682843.497533724381424.50246627562
6021943065.64372220062-871.643722200617
6129352929.713925531075.28607446892511
6233472930.53827039749416.461729602507
6330342995.4840237869638.5159762130438
6454483001.490455866742446.50954413326
6534273383.0150815986243.9849184013847
6630363389.8743761275-353.874376127499
6741963334.68890209904861.311097900961
6830093469.0073620672-460.007362067195
6933693397.27081925768-28.2708192576838
7041683392.86208365218775.137916347819
7134033513.74213667889-110.742136678894
7217793496.47228692479-1717.47228692479
7327613228.63847730604-467.638477306038
7425823155.71188870562-573.711888705617
7531533066.2435217657886.7564782342242
7630113079.77289178908-68.7728917890813
7734193069.0479993139349.952000686098
7840423123.62179258034918.378207419664
7943793266.839669128711112.16033087129
8046023440.277191580651161.72280841935
8132493621.44380944619-372.443809446189
8243723563.36249709412808.637502905875
8343283689.46669373981638.533306260192
8436953789.04373453756-94.0437345375644
8536143774.37794232436-160.377942324363
8621143749.36756189577-1635.36756189577
8728393494.33769762137-655.33769762137
8824903392.14007063375-902.140070633751
8926103251.45447485031-641.454474850308
9023723151.42188800503-779.421888005034
9128333029.87376454831-196.873764548315
9240182999.171988004731018.82801199527
9327343158.05466103324-424.054661033239
9430273091.92481648449-64.9248164844898
9538623081.80001792429780.19998207571
9632813203.4694824359977.5305175640124
9727463215.56009608895-469.560096088953
9825383142.33383774528-604.333837745281
9918053048.09008471526-1243.09008471526
10025002854.2345240618-354.234524061803
10126012798.99288621981-197.992886219811
10231782768.116586557409.883413443001
10341932832.036474497981360.96352550202
10426063044.27398689479-438.27398689479
10524912975.92668809964-484.926688099644
10640902900.304063357281189.69593664272
10727863085.83299295038-299.832992950376
10822803039.07508403816-759.075084038156
10924032920.69997365507-517.699973655069
11029342839.9664694004994.03353059951
11116012854.63067034516-1253.63067034516
11219462659.13134214659-713.131342146593
11325542547.92099797996.07900202009569
11420062548.86899713082-542.868997130818
11528302464.21047149848365.789528501523
11631732521.25407195891651.745928041086
11719602622.89157501482-662.891575014821
11830522519.51594720874532.484052791259
11921512602.55497701206-451.554977012056
12024932532.13655415529-39.13655415529
12127522526.03334511107225.966654888933
12225422561.27205637672-19.2720563767234
12320272558.26664643919-531.266646439188
12419402475.41746690805-535.41746690805
12518772391.92098141007-514.920981410066

\begin{tabular}{lllllllll}
\hline
Interpolation Forecasts of Exponential Smoothing \tabularnewline
t & Observed & Fitted & Residuals \tabularnewline
2 & 1089 & 2312 & -1223 \tabularnewline
3 & 2742 & 2121.27741794877 & 620.722582051234 \tabularnewline
4 & 3145 & 2218.07693846088 & 926.923061539116 \tabularnewline
5 & 2966 & 2362.62735518989 & 603.372644810109 \tabularnewline
6 & 2055 & 2456.72121353598 & -401.72121353598 \tabularnewline
7 & 2450 & 2394.07419218656 & 55.9258078134376 \tabularnewline
8 & 2742 & 2402.79562674869 & 339.204373251312 \tabularnewline
9 & 1697 & 2455.69336502306 & -758.693365023064 \tabularnewline
10 & 2409 & 2337.37778238828 & 71.6222176117185 \tabularnewline
11 & 2233 & 2348.5470172821 & -115.547017282102 \tabularnewline
12 & 2100 & 2330.5278631657 & -230.527863165699 \tabularnewline
13 & 3434 & 2294.5778473867 & 1139.4221526133 \tabularnewline
14 & 1867 & 2472.26675580271 & -605.266755802713 \tabularnewline
15 & 2365 & 2377.87751745728 & -12.8775174572779 \tabularnewline
16 & 3578 & 2375.86931354897 & 1202.13068645103 \tabularnewline
17 & 2845 & 2563.33739898066 & 281.662601019336 \tabularnewline
18 & 2778 & 2607.26169868113 & 170.738301318866 \tabularnewline
19 & 2056 & 2633.88774093999 & -577.887740939986 \tabularnewline
20 & 2757 & 2543.76816441682 & 213.231835583178 \tabularnewline
21 & 3325 & 2577.02092505292 & 747.979074947079 \tabularnewline
22 & 3671 & 2693.66565154041 & 977.334348459589 \tabularnewline
23 & 2147 & 2846.07753254252 & -699.077532542515 \tabularnewline
24 & 3225 & 2737.05883093948 & 487.941169060522 \tabularnewline
25 & 3556 & 2813.15155346795 & 742.84844653205 \tabularnewline
26 & 4661 & 2928.99617635866 & 1732.00382364134 \tabularnewline
27 & 3344 & 3199.09612841711 & 144.903871582886 \tabularnewline
28 & 5375 & 3221.69338151401 & 2153.30661848599 \tabularnewline
29 & 3907 & 3557.49403419239 & 349.505965807606 \tabularnewline
30 & 3356 & 3611.99826987607 & -255.998269876071 \tabularnewline
31 & 2184 & 3572.07623305562 & -1388.07623305562 \tabularnewline
32 & 3510 & 3355.61058853206 & 154.389411467945 \tabularnewline
33 & 2834 & 3379.68707847199 & -545.687078471987 \tabularnewline
34 & 3271 & 3294.58908288885 & -23.5890828888541 \tabularnewline
35 & 2834 & 3290.91044773204 & -456.910447732041 \tabularnewline
36 & 2408 & 3219.65685790568 & -811.656857905679 \tabularnewline
37 & 3261 & 3093.08180338453 & 167.918196615467 \tabularnewline
38 & 1526 & 3119.26806015631 & -1593.26806015631 \tabularnewline
39 & 2938 & 2870.80346626198 & 67.1965337380225 \tabularnewline
40 & 2352 & 2881.28253120017 & -529.28253120017 \tabularnewline
41 & 3915 & 2798.74276751652 & 1116.25723248348 \tabularnewline
42 & 3145 & 2972.81918747777 & 172.180812522229 \tabularnewline
43 & 1566 & 2999.6701843248 & -1433.6701843248 \tabularnewline
44 & 2746 & 2776.09432221172 & -30.0943222117235 \tabularnewline
45 & 3572 & 2771.40121768409 & 800.598782315915 \tabularnewline
46 & 2651 & 2896.25180390679 & -245.251803906788 \tabularnewline
47 & 2805 & 2858.0056409519 & -53.005640951902 \tabularnewline
48 & 3354 & 2849.73959622122 & 504.260403778783 \tabularnewline
49 & 2523 & 2928.37724645416 & -405.377246454159 \tabularnewline
50 & 1480 & 2865.16007952975 & -1385.16007952975 \tabularnewline
51 & 3278 & 2649.14919897193 & 628.850801028068 \tabularnewline
52 & 5081 & 2747.21628686814 & 2333.78371313186 \tabularnewline
53 & 3332 & 3111.16171263889 & 220.838287361113 \tabularnewline
54 & 2789 & 3145.60067288524 & -356.600672885236 \tabularnewline
55 & 4111 & 3089.99004239147 & 1021.00995760853 \tabularnewline
56 & 2508 & 3249.21298222394 & -741.212982223945 \tabularnewline
57 & 1833 & 3133.62340428474 & -1300.62340428474 \tabularnewline
58 & 2371 & 2930.79572322059 & -559.795723220594 \tabularnewline
59 & 4268 & 2843.49753372438 & 1424.50246627562 \tabularnewline
60 & 2194 & 3065.64372220062 & -871.643722200617 \tabularnewline
61 & 2935 & 2929.71392553107 & 5.28607446892511 \tabularnewline
62 & 3347 & 2930.53827039749 & 416.461729602507 \tabularnewline
63 & 3034 & 2995.48402378696 & 38.5159762130438 \tabularnewline
64 & 5448 & 3001.49045586674 & 2446.50954413326 \tabularnewline
65 & 3427 & 3383.01508159862 & 43.9849184013847 \tabularnewline
66 & 3036 & 3389.8743761275 & -353.874376127499 \tabularnewline
67 & 4196 & 3334.68890209904 & 861.311097900961 \tabularnewline
68 & 3009 & 3469.0073620672 & -460.007362067195 \tabularnewline
69 & 3369 & 3397.27081925768 & -28.2708192576838 \tabularnewline
70 & 4168 & 3392.86208365218 & 775.137916347819 \tabularnewline
71 & 3403 & 3513.74213667889 & -110.742136678894 \tabularnewline
72 & 1779 & 3496.47228692479 & -1717.47228692479 \tabularnewline
73 & 2761 & 3228.63847730604 & -467.638477306038 \tabularnewline
74 & 2582 & 3155.71188870562 & -573.711888705617 \tabularnewline
75 & 3153 & 3066.24352176578 & 86.7564782342242 \tabularnewline
76 & 3011 & 3079.77289178908 & -68.7728917890813 \tabularnewline
77 & 3419 & 3069.0479993139 & 349.952000686098 \tabularnewline
78 & 4042 & 3123.62179258034 & 918.378207419664 \tabularnewline
79 & 4379 & 3266.83966912871 & 1112.16033087129 \tabularnewline
80 & 4602 & 3440.27719158065 & 1161.72280841935 \tabularnewline
81 & 3249 & 3621.44380944619 & -372.443809446189 \tabularnewline
82 & 4372 & 3563.36249709412 & 808.637502905875 \tabularnewline
83 & 4328 & 3689.46669373981 & 638.533306260192 \tabularnewline
84 & 3695 & 3789.04373453756 & -94.0437345375644 \tabularnewline
85 & 3614 & 3774.37794232436 & -160.377942324363 \tabularnewline
86 & 2114 & 3749.36756189577 & -1635.36756189577 \tabularnewline
87 & 2839 & 3494.33769762137 & -655.33769762137 \tabularnewline
88 & 2490 & 3392.14007063375 & -902.140070633751 \tabularnewline
89 & 2610 & 3251.45447485031 & -641.454474850308 \tabularnewline
90 & 2372 & 3151.42188800503 & -779.421888005034 \tabularnewline
91 & 2833 & 3029.87376454831 & -196.873764548315 \tabularnewline
92 & 4018 & 2999.17198800473 & 1018.82801199527 \tabularnewline
93 & 2734 & 3158.05466103324 & -424.054661033239 \tabularnewline
94 & 3027 & 3091.92481648449 & -64.9248164844898 \tabularnewline
95 & 3862 & 3081.80001792429 & 780.19998207571 \tabularnewline
96 & 3281 & 3203.46948243599 & 77.5305175640124 \tabularnewline
97 & 2746 & 3215.56009608895 & -469.560096088953 \tabularnewline
98 & 2538 & 3142.33383774528 & -604.333837745281 \tabularnewline
99 & 1805 & 3048.09008471526 & -1243.09008471526 \tabularnewline
100 & 2500 & 2854.2345240618 & -354.234524061803 \tabularnewline
101 & 2601 & 2798.99288621981 & -197.992886219811 \tabularnewline
102 & 3178 & 2768.116586557 & 409.883413443001 \tabularnewline
103 & 4193 & 2832.03647449798 & 1360.96352550202 \tabularnewline
104 & 2606 & 3044.27398689479 & -438.27398689479 \tabularnewline
105 & 2491 & 2975.92668809964 & -484.926688099644 \tabularnewline
106 & 4090 & 2900.30406335728 & 1189.69593664272 \tabularnewline
107 & 2786 & 3085.83299295038 & -299.832992950376 \tabularnewline
108 & 2280 & 3039.07508403816 & -759.075084038156 \tabularnewline
109 & 2403 & 2920.69997365507 & -517.699973655069 \tabularnewline
110 & 2934 & 2839.96646940049 & 94.03353059951 \tabularnewline
111 & 1601 & 2854.63067034516 & -1253.63067034516 \tabularnewline
112 & 1946 & 2659.13134214659 & -713.131342146593 \tabularnewline
113 & 2554 & 2547.9209979799 & 6.07900202009569 \tabularnewline
114 & 2006 & 2548.86899713082 & -542.868997130818 \tabularnewline
115 & 2830 & 2464.21047149848 & 365.789528501523 \tabularnewline
116 & 3173 & 2521.25407195891 & 651.745928041086 \tabularnewline
117 & 1960 & 2622.89157501482 & -662.891575014821 \tabularnewline
118 & 3052 & 2519.51594720874 & 532.484052791259 \tabularnewline
119 & 2151 & 2602.55497701206 & -451.554977012056 \tabularnewline
120 & 2493 & 2532.13655415529 & -39.13655415529 \tabularnewline
121 & 2752 & 2526.03334511107 & 225.966654888933 \tabularnewline
122 & 2542 & 2561.27205637672 & -19.2720563767234 \tabularnewline
123 & 2027 & 2558.26664643919 & -531.266646439188 \tabularnewline
124 & 1940 & 2475.41746690805 & -535.41746690805 \tabularnewline
125 & 1877 & 2391.92098141007 & -514.920981410066 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302393&T=2

[TABLE]
[ROW][C]Interpolation Forecasts of Exponential Smoothing[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Fitted[/C][C]Residuals[/C][/ROW]
[ROW][C]2[/C][C]1089[/C][C]2312[/C][C]-1223[/C][/ROW]
[ROW][C]3[/C][C]2742[/C][C]2121.27741794877[/C][C]620.722582051234[/C][/ROW]
[ROW][C]4[/C][C]3145[/C][C]2218.07693846088[/C][C]926.923061539116[/C][/ROW]
[ROW][C]5[/C][C]2966[/C][C]2362.62735518989[/C][C]603.372644810109[/C][/ROW]
[ROW][C]6[/C][C]2055[/C][C]2456.72121353598[/C][C]-401.72121353598[/C][/ROW]
[ROW][C]7[/C][C]2450[/C][C]2394.07419218656[/C][C]55.9258078134376[/C][/ROW]
[ROW][C]8[/C][C]2742[/C][C]2402.79562674869[/C][C]339.204373251312[/C][/ROW]
[ROW][C]9[/C][C]1697[/C][C]2455.69336502306[/C][C]-758.693365023064[/C][/ROW]
[ROW][C]10[/C][C]2409[/C][C]2337.37778238828[/C][C]71.6222176117185[/C][/ROW]
[ROW][C]11[/C][C]2233[/C][C]2348.5470172821[/C][C]-115.547017282102[/C][/ROW]
[ROW][C]12[/C][C]2100[/C][C]2330.5278631657[/C][C]-230.527863165699[/C][/ROW]
[ROW][C]13[/C][C]3434[/C][C]2294.5778473867[/C][C]1139.4221526133[/C][/ROW]
[ROW][C]14[/C][C]1867[/C][C]2472.26675580271[/C][C]-605.266755802713[/C][/ROW]
[ROW][C]15[/C][C]2365[/C][C]2377.87751745728[/C][C]-12.8775174572779[/C][/ROW]
[ROW][C]16[/C][C]3578[/C][C]2375.86931354897[/C][C]1202.13068645103[/C][/ROW]
[ROW][C]17[/C][C]2845[/C][C]2563.33739898066[/C][C]281.662601019336[/C][/ROW]
[ROW][C]18[/C][C]2778[/C][C]2607.26169868113[/C][C]170.738301318866[/C][/ROW]
[ROW][C]19[/C][C]2056[/C][C]2633.88774093999[/C][C]-577.887740939986[/C][/ROW]
[ROW][C]20[/C][C]2757[/C][C]2543.76816441682[/C][C]213.231835583178[/C][/ROW]
[ROW][C]21[/C][C]3325[/C][C]2577.02092505292[/C][C]747.979074947079[/C][/ROW]
[ROW][C]22[/C][C]3671[/C][C]2693.66565154041[/C][C]977.334348459589[/C][/ROW]
[ROW][C]23[/C][C]2147[/C][C]2846.07753254252[/C][C]-699.077532542515[/C][/ROW]
[ROW][C]24[/C][C]3225[/C][C]2737.05883093948[/C][C]487.941169060522[/C][/ROW]
[ROW][C]25[/C][C]3556[/C][C]2813.15155346795[/C][C]742.84844653205[/C][/ROW]
[ROW][C]26[/C][C]4661[/C][C]2928.99617635866[/C][C]1732.00382364134[/C][/ROW]
[ROW][C]27[/C][C]3344[/C][C]3199.09612841711[/C][C]144.903871582886[/C][/ROW]
[ROW][C]28[/C][C]5375[/C][C]3221.69338151401[/C][C]2153.30661848599[/C][/ROW]
[ROW][C]29[/C][C]3907[/C][C]3557.49403419239[/C][C]349.505965807606[/C][/ROW]
[ROW][C]30[/C][C]3356[/C][C]3611.99826987607[/C][C]-255.998269876071[/C][/ROW]
[ROW][C]31[/C][C]2184[/C][C]3572.07623305562[/C][C]-1388.07623305562[/C][/ROW]
[ROW][C]32[/C][C]3510[/C][C]3355.61058853206[/C][C]154.389411467945[/C][/ROW]
[ROW][C]33[/C][C]2834[/C][C]3379.68707847199[/C][C]-545.687078471987[/C][/ROW]
[ROW][C]34[/C][C]3271[/C][C]3294.58908288885[/C][C]-23.5890828888541[/C][/ROW]
[ROW][C]35[/C][C]2834[/C][C]3290.91044773204[/C][C]-456.910447732041[/C][/ROW]
[ROW][C]36[/C][C]2408[/C][C]3219.65685790568[/C][C]-811.656857905679[/C][/ROW]
[ROW][C]37[/C][C]3261[/C][C]3093.08180338453[/C][C]167.918196615467[/C][/ROW]
[ROW][C]38[/C][C]1526[/C][C]3119.26806015631[/C][C]-1593.26806015631[/C][/ROW]
[ROW][C]39[/C][C]2938[/C][C]2870.80346626198[/C][C]67.1965337380225[/C][/ROW]
[ROW][C]40[/C][C]2352[/C][C]2881.28253120017[/C][C]-529.28253120017[/C][/ROW]
[ROW][C]41[/C][C]3915[/C][C]2798.74276751652[/C][C]1116.25723248348[/C][/ROW]
[ROW][C]42[/C][C]3145[/C][C]2972.81918747777[/C][C]172.180812522229[/C][/ROW]
[ROW][C]43[/C][C]1566[/C][C]2999.6701843248[/C][C]-1433.6701843248[/C][/ROW]
[ROW][C]44[/C][C]2746[/C][C]2776.09432221172[/C][C]-30.0943222117235[/C][/ROW]
[ROW][C]45[/C][C]3572[/C][C]2771.40121768409[/C][C]800.598782315915[/C][/ROW]
[ROW][C]46[/C][C]2651[/C][C]2896.25180390679[/C][C]-245.251803906788[/C][/ROW]
[ROW][C]47[/C][C]2805[/C][C]2858.0056409519[/C][C]-53.005640951902[/C][/ROW]
[ROW][C]48[/C][C]3354[/C][C]2849.73959622122[/C][C]504.260403778783[/C][/ROW]
[ROW][C]49[/C][C]2523[/C][C]2928.37724645416[/C][C]-405.377246454159[/C][/ROW]
[ROW][C]50[/C][C]1480[/C][C]2865.16007952975[/C][C]-1385.16007952975[/C][/ROW]
[ROW][C]51[/C][C]3278[/C][C]2649.14919897193[/C][C]628.850801028068[/C][/ROW]
[ROW][C]52[/C][C]5081[/C][C]2747.21628686814[/C][C]2333.78371313186[/C][/ROW]
[ROW][C]53[/C][C]3332[/C][C]3111.16171263889[/C][C]220.838287361113[/C][/ROW]
[ROW][C]54[/C][C]2789[/C][C]3145.60067288524[/C][C]-356.600672885236[/C][/ROW]
[ROW][C]55[/C][C]4111[/C][C]3089.99004239147[/C][C]1021.00995760853[/C][/ROW]
[ROW][C]56[/C][C]2508[/C][C]3249.21298222394[/C][C]-741.212982223945[/C][/ROW]
[ROW][C]57[/C][C]1833[/C][C]3133.62340428474[/C][C]-1300.62340428474[/C][/ROW]
[ROW][C]58[/C][C]2371[/C][C]2930.79572322059[/C][C]-559.795723220594[/C][/ROW]
[ROW][C]59[/C][C]4268[/C][C]2843.49753372438[/C][C]1424.50246627562[/C][/ROW]
[ROW][C]60[/C][C]2194[/C][C]3065.64372220062[/C][C]-871.643722200617[/C][/ROW]
[ROW][C]61[/C][C]2935[/C][C]2929.71392553107[/C][C]5.28607446892511[/C][/ROW]
[ROW][C]62[/C][C]3347[/C][C]2930.53827039749[/C][C]416.461729602507[/C][/ROW]
[ROW][C]63[/C][C]3034[/C][C]2995.48402378696[/C][C]38.5159762130438[/C][/ROW]
[ROW][C]64[/C][C]5448[/C][C]3001.49045586674[/C][C]2446.50954413326[/C][/ROW]
[ROW][C]65[/C][C]3427[/C][C]3383.01508159862[/C][C]43.9849184013847[/C][/ROW]
[ROW][C]66[/C][C]3036[/C][C]3389.8743761275[/C][C]-353.874376127499[/C][/ROW]
[ROW][C]67[/C][C]4196[/C][C]3334.68890209904[/C][C]861.311097900961[/C][/ROW]
[ROW][C]68[/C][C]3009[/C][C]3469.0073620672[/C][C]-460.007362067195[/C][/ROW]
[ROW][C]69[/C][C]3369[/C][C]3397.27081925768[/C][C]-28.2708192576838[/C][/ROW]
[ROW][C]70[/C][C]4168[/C][C]3392.86208365218[/C][C]775.137916347819[/C][/ROW]
[ROW][C]71[/C][C]3403[/C][C]3513.74213667889[/C][C]-110.742136678894[/C][/ROW]
[ROW][C]72[/C][C]1779[/C][C]3496.47228692479[/C][C]-1717.47228692479[/C][/ROW]
[ROW][C]73[/C][C]2761[/C][C]3228.63847730604[/C][C]-467.638477306038[/C][/ROW]
[ROW][C]74[/C][C]2582[/C][C]3155.71188870562[/C][C]-573.711888705617[/C][/ROW]
[ROW][C]75[/C][C]3153[/C][C]3066.24352176578[/C][C]86.7564782342242[/C][/ROW]
[ROW][C]76[/C][C]3011[/C][C]3079.77289178908[/C][C]-68.7728917890813[/C][/ROW]
[ROW][C]77[/C][C]3419[/C][C]3069.0479993139[/C][C]349.952000686098[/C][/ROW]
[ROW][C]78[/C][C]4042[/C][C]3123.62179258034[/C][C]918.378207419664[/C][/ROW]
[ROW][C]79[/C][C]4379[/C][C]3266.83966912871[/C][C]1112.16033087129[/C][/ROW]
[ROW][C]80[/C][C]4602[/C][C]3440.27719158065[/C][C]1161.72280841935[/C][/ROW]
[ROW][C]81[/C][C]3249[/C][C]3621.44380944619[/C][C]-372.443809446189[/C][/ROW]
[ROW][C]82[/C][C]4372[/C][C]3563.36249709412[/C][C]808.637502905875[/C][/ROW]
[ROW][C]83[/C][C]4328[/C][C]3689.46669373981[/C][C]638.533306260192[/C][/ROW]
[ROW][C]84[/C][C]3695[/C][C]3789.04373453756[/C][C]-94.0437345375644[/C][/ROW]
[ROW][C]85[/C][C]3614[/C][C]3774.37794232436[/C][C]-160.377942324363[/C][/ROW]
[ROW][C]86[/C][C]2114[/C][C]3749.36756189577[/C][C]-1635.36756189577[/C][/ROW]
[ROW][C]87[/C][C]2839[/C][C]3494.33769762137[/C][C]-655.33769762137[/C][/ROW]
[ROW][C]88[/C][C]2490[/C][C]3392.14007063375[/C][C]-902.140070633751[/C][/ROW]
[ROW][C]89[/C][C]2610[/C][C]3251.45447485031[/C][C]-641.454474850308[/C][/ROW]
[ROW][C]90[/C][C]2372[/C][C]3151.42188800503[/C][C]-779.421888005034[/C][/ROW]
[ROW][C]91[/C][C]2833[/C][C]3029.87376454831[/C][C]-196.873764548315[/C][/ROW]
[ROW][C]92[/C][C]4018[/C][C]2999.17198800473[/C][C]1018.82801199527[/C][/ROW]
[ROW][C]93[/C][C]2734[/C][C]3158.05466103324[/C][C]-424.054661033239[/C][/ROW]
[ROW][C]94[/C][C]3027[/C][C]3091.92481648449[/C][C]-64.9248164844898[/C][/ROW]
[ROW][C]95[/C][C]3862[/C][C]3081.80001792429[/C][C]780.19998207571[/C][/ROW]
[ROW][C]96[/C][C]3281[/C][C]3203.46948243599[/C][C]77.5305175640124[/C][/ROW]
[ROW][C]97[/C][C]2746[/C][C]3215.56009608895[/C][C]-469.560096088953[/C][/ROW]
[ROW][C]98[/C][C]2538[/C][C]3142.33383774528[/C][C]-604.333837745281[/C][/ROW]
[ROW][C]99[/C][C]1805[/C][C]3048.09008471526[/C][C]-1243.09008471526[/C][/ROW]
[ROW][C]100[/C][C]2500[/C][C]2854.2345240618[/C][C]-354.234524061803[/C][/ROW]
[ROW][C]101[/C][C]2601[/C][C]2798.99288621981[/C][C]-197.992886219811[/C][/ROW]
[ROW][C]102[/C][C]3178[/C][C]2768.116586557[/C][C]409.883413443001[/C][/ROW]
[ROW][C]103[/C][C]4193[/C][C]2832.03647449798[/C][C]1360.96352550202[/C][/ROW]
[ROW][C]104[/C][C]2606[/C][C]3044.27398689479[/C][C]-438.27398689479[/C][/ROW]
[ROW][C]105[/C][C]2491[/C][C]2975.92668809964[/C][C]-484.926688099644[/C][/ROW]
[ROW][C]106[/C][C]4090[/C][C]2900.30406335728[/C][C]1189.69593664272[/C][/ROW]
[ROW][C]107[/C][C]2786[/C][C]3085.83299295038[/C][C]-299.832992950376[/C][/ROW]
[ROW][C]108[/C][C]2280[/C][C]3039.07508403816[/C][C]-759.075084038156[/C][/ROW]
[ROW][C]109[/C][C]2403[/C][C]2920.69997365507[/C][C]-517.699973655069[/C][/ROW]
[ROW][C]110[/C][C]2934[/C][C]2839.96646940049[/C][C]94.03353059951[/C][/ROW]
[ROW][C]111[/C][C]1601[/C][C]2854.63067034516[/C][C]-1253.63067034516[/C][/ROW]
[ROW][C]112[/C][C]1946[/C][C]2659.13134214659[/C][C]-713.131342146593[/C][/ROW]
[ROW][C]113[/C][C]2554[/C][C]2547.9209979799[/C][C]6.07900202009569[/C][/ROW]
[ROW][C]114[/C][C]2006[/C][C]2548.86899713082[/C][C]-542.868997130818[/C][/ROW]
[ROW][C]115[/C][C]2830[/C][C]2464.21047149848[/C][C]365.789528501523[/C][/ROW]
[ROW][C]116[/C][C]3173[/C][C]2521.25407195891[/C][C]651.745928041086[/C][/ROW]
[ROW][C]117[/C][C]1960[/C][C]2622.89157501482[/C][C]-662.891575014821[/C][/ROW]
[ROW][C]118[/C][C]3052[/C][C]2519.51594720874[/C][C]532.484052791259[/C][/ROW]
[ROW][C]119[/C][C]2151[/C][C]2602.55497701206[/C][C]-451.554977012056[/C][/ROW]
[ROW][C]120[/C][C]2493[/C][C]2532.13655415529[/C][C]-39.13655415529[/C][/ROW]
[ROW][C]121[/C][C]2752[/C][C]2526.03334511107[/C][C]225.966654888933[/C][/ROW]
[ROW][C]122[/C][C]2542[/C][C]2561.27205637672[/C][C]-19.2720563767234[/C][/ROW]
[ROW][C]123[/C][C]2027[/C][C]2558.26664643919[/C][C]-531.266646439188[/C][/ROW]
[ROW][C]124[/C][C]1940[/C][C]2475.41746690805[/C][C]-535.41746690805[/C][/ROW]
[ROW][C]125[/C][C]1877[/C][C]2391.92098141007[/C][C]-514.920981410066[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302393&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302393&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Interpolation Forecasts of Exponential Smoothing
tObservedFittedResiduals
210892312-1223
327422121.27741794877620.722582051234
431452218.07693846088926.923061539116
529662362.62735518989603.372644810109
620552456.72121353598-401.72121353598
724502394.0741921865655.9258078134376
827422402.79562674869339.204373251312
916972455.69336502306-758.693365023064
1024092337.3777823882871.6222176117185
1122332348.5470172821-115.547017282102
1221002330.5278631657-230.527863165699
1334342294.57784738671139.4221526133
1418672472.26675580271-605.266755802713
1523652377.87751745728-12.8775174572779
1635782375.869313548971202.13068645103
1728452563.33739898066281.662601019336
1827782607.26169868113170.738301318866
1920562633.88774093999-577.887740939986
2027572543.76816441682213.231835583178
2133252577.02092505292747.979074947079
2236712693.66565154041977.334348459589
2321472846.07753254252-699.077532542515
2432252737.05883093948487.941169060522
2535562813.15155346795742.84844653205
2646612928.996176358661732.00382364134
2733443199.09612841711144.903871582886
2853753221.693381514012153.30661848599
2939073557.49403419239349.505965807606
3033563611.99826987607-255.998269876071
3121843572.07623305562-1388.07623305562
3235103355.61058853206154.389411467945
3328343379.68707847199-545.687078471987
3432713294.58908288885-23.5890828888541
3528343290.91044773204-456.910447732041
3624083219.65685790568-811.656857905679
3732613093.08180338453167.918196615467
3815263119.26806015631-1593.26806015631
3929382870.8034662619867.1965337380225
4023522881.28253120017-529.28253120017
4139152798.742767516521116.25723248348
4231452972.81918747777172.180812522229
4315662999.6701843248-1433.6701843248
4427462776.09432221172-30.0943222117235
4535722771.40121768409800.598782315915
4626512896.25180390679-245.251803906788
4728052858.0056409519-53.005640951902
4833542849.73959622122504.260403778783
4925232928.37724645416-405.377246454159
5014802865.16007952975-1385.16007952975
5132782649.14919897193628.850801028068
5250812747.216286868142333.78371313186
5333323111.16171263889220.838287361113
5427893145.60067288524-356.600672885236
5541113089.990042391471021.00995760853
5625083249.21298222394-741.212982223945
5718333133.62340428474-1300.62340428474
5823712930.79572322059-559.795723220594
5942682843.497533724381424.50246627562
6021943065.64372220062-871.643722200617
6129352929.713925531075.28607446892511
6233472930.53827039749416.461729602507
6330342995.4840237869638.5159762130438
6454483001.490455866742446.50954413326
6534273383.0150815986243.9849184013847
6630363389.8743761275-353.874376127499
6741963334.68890209904861.311097900961
6830093469.0073620672-460.007362067195
6933693397.27081925768-28.2708192576838
7041683392.86208365218775.137916347819
7134033513.74213667889-110.742136678894
7217793496.47228692479-1717.47228692479
7327613228.63847730604-467.638477306038
7425823155.71188870562-573.711888705617
7531533066.2435217657886.7564782342242
7630113079.77289178908-68.7728917890813
7734193069.0479993139349.952000686098
7840423123.62179258034918.378207419664
7943793266.839669128711112.16033087129
8046023440.277191580651161.72280841935
8132493621.44380944619-372.443809446189
8243723563.36249709412808.637502905875
8343283689.46669373981638.533306260192
8436953789.04373453756-94.0437345375644
8536143774.37794232436-160.377942324363
8621143749.36756189577-1635.36756189577
8728393494.33769762137-655.33769762137
8824903392.14007063375-902.140070633751
8926103251.45447485031-641.454474850308
9023723151.42188800503-779.421888005034
9128333029.87376454831-196.873764548315
9240182999.171988004731018.82801199527
9327343158.05466103324-424.054661033239
9430273091.92481648449-64.9248164844898
9538623081.80001792429780.19998207571
9632813203.4694824359977.5305175640124
9727463215.56009608895-469.560096088953
9825383142.33383774528-604.333837745281
9918053048.09008471526-1243.09008471526
10025002854.2345240618-354.234524061803
10126012798.99288621981-197.992886219811
10231782768.116586557409.883413443001
10341932832.036474497981360.96352550202
10426063044.27398689479-438.27398689479
10524912975.92668809964-484.926688099644
10640902900.304063357281189.69593664272
10727863085.83299295038-299.832992950376
10822803039.07508403816-759.075084038156
10924032920.69997365507-517.699973655069
11029342839.9664694004994.03353059951
11116012854.63067034516-1253.63067034516
11219462659.13134214659-713.131342146593
11325542547.92099797996.07900202009569
11420062548.86899713082-542.868997130818
11528302464.21047149848365.789528501523
11631732521.25407195891651.745928041086
11719602622.89157501482-662.891575014821
11830522519.51594720874532.484052791259
11921512602.55497701206-451.554977012056
12024932532.13655415529-39.13655415529
12127522526.03334511107225.966654888933
12225422561.27205637672-19.2720563767234
12320272558.26664643919-531.266646439188
12419402475.41746690805-535.41746690805
12518772391.92098141007-514.920981410066







Extrapolation Forecasts of Exponential Smoothing
tForecast95% Lower Bound95% Upper Bound
1262311.62085129814752.5863701689793870.65533242731
1272311.62085129814733.7429223175773889.49878027871
1282311.62085129814715.1218678414293908.11983475486
1292311.62085129814696.7155136412763926.52618895501
1302311.62085129814678.5166001840393944.72510241225
1312311.62085129814660.5182680461883962.7234345501
1322311.62085129814642.7140277050463980.52767489124
1332311.62085129814625.0977322007743998.14397039551
1342311.62085129814607.6635523424924015.57815025379
1352311.62085129814590.4059541750224032.83574842126
1362311.62085129814573.3196784593064049.92202413698
1372311.62085129814556.3997219508474066.84198064544

\begin{tabular}{lllllllll}
\hline
Extrapolation Forecasts of Exponential Smoothing \tabularnewline
t & Forecast & 95% Lower Bound & 95% Upper Bound \tabularnewline
126 & 2311.62085129814 & 752.586370168979 & 3870.65533242731 \tabularnewline
127 & 2311.62085129814 & 733.742922317577 & 3889.49878027871 \tabularnewline
128 & 2311.62085129814 & 715.121867841429 & 3908.11983475486 \tabularnewline
129 & 2311.62085129814 & 696.715513641276 & 3926.52618895501 \tabularnewline
130 & 2311.62085129814 & 678.516600184039 & 3944.72510241225 \tabularnewline
131 & 2311.62085129814 & 660.518268046188 & 3962.7234345501 \tabularnewline
132 & 2311.62085129814 & 642.714027705046 & 3980.52767489124 \tabularnewline
133 & 2311.62085129814 & 625.097732200774 & 3998.14397039551 \tabularnewline
134 & 2311.62085129814 & 607.663552342492 & 4015.57815025379 \tabularnewline
135 & 2311.62085129814 & 590.405954175022 & 4032.83574842126 \tabularnewline
136 & 2311.62085129814 & 573.319678459306 & 4049.92202413698 \tabularnewline
137 & 2311.62085129814 & 556.399721950847 & 4066.84198064544 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302393&T=3

[TABLE]
[ROW][C]Extrapolation Forecasts of Exponential Smoothing[/C][/ROW]
[ROW][C]t[/C][C]Forecast[/C][C]95% Lower Bound[/C][C]95% Upper Bound[/C][/ROW]
[ROW][C]126[/C][C]2311.62085129814[/C][C]752.586370168979[/C][C]3870.65533242731[/C][/ROW]
[ROW][C]127[/C][C]2311.62085129814[/C][C]733.742922317577[/C][C]3889.49878027871[/C][/ROW]
[ROW][C]128[/C][C]2311.62085129814[/C][C]715.121867841429[/C][C]3908.11983475486[/C][/ROW]
[ROW][C]129[/C][C]2311.62085129814[/C][C]696.715513641276[/C][C]3926.52618895501[/C][/ROW]
[ROW][C]130[/C][C]2311.62085129814[/C][C]678.516600184039[/C][C]3944.72510241225[/C][/ROW]
[ROW][C]131[/C][C]2311.62085129814[/C][C]660.518268046188[/C][C]3962.7234345501[/C][/ROW]
[ROW][C]132[/C][C]2311.62085129814[/C][C]642.714027705046[/C][C]3980.52767489124[/C][/ROW]
[ROW][C]133[/C][C]2311.62085129814[/C][C]625.097732200774[/C][C]3998.14397039551[/C][/ROW]
[ROW][C]134[/C][C]2311.62085129814[/C][C]607.663552342492[/C][C]4015.57815025379[/C][/ROW]
[ROW][C]135[/C][C]2311.62085129814[/C][C]590.405954175022[/C][C]4032.83574842126[/C][/ROW]
[ROW][C]136[/C][C]2311.62085129814[/C][C]573.319678459306[/C][C]4049.92202413698[/C][/ROW]
[ROW][C]137[/C][C]2311.62085129814[/C][C]556.399721950847[/C][C]4066.84198064544[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302393&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302393&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Extrapolation Forecasts of Exponential Smoothing
tForecast95% Lower Bound95% Upper Bound
1262311.62085129814752.5863701689793870.65533242731
1272311.62085129814733.7429223175773889.49878027871
1282311.62085129814715.1218678414293908.11983475486
1292311.62085129814696.7155136412763926.52618895501
1302311.62085129814678.5166001840393944.72510241225
1312311.62085129814660.5182680461883962.7234345501
1322311.62085129814642.7140277050463980.52767489124
1332311.62085129814625.0977322007743998.14397039551
1342311.62085129814607.6635523424924015.57815025379
1352311.62085129814590.4059541750224032.83574842126
1362311.62085129814573.3196784593064049.92202413698
1372311.62085129814556.3997219508474066.84198064544



Parameters (Session):
par1 = Default ; par2 = 1 ; par3 = 0 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ;
Parameters (R input):
par1 = 12 ; par2 = Single ; par3 = additive ; par4 = 12 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
par4 <- as.numeric(par4)
if (par2 == 'Single') K <- 1
if (par2 == 'Double') K <- 2
if (par2 == 'Triple') K <- par1
nx <- length(x)
nxmK <- nx - K
x <- ts(x, frequency = par1)
if (par2 == 'Single') fit <- HoltWinters(x, gamma=F, beta=F)
if (par2 == 'Double') fit <- HoltWinters(x, gamma=F)
if (par2 == 'Triple') fit <- HoltWinters(x, seasonal=par3)
fit
myresid <- x - fit$fitted[,'xhat']
bitmap(file='test1.png')
op <- par(mfrow=c(2,1))
plot(fit,ylab='Observed (black) / Fitted (red)',main='Interpolation Fit of Exponential Smoothing')
plot(myresid,ylab='Residuals',main='Interpolation Prediction Errors')
par(op)
dev.off()
bitmap(file='test2.png')
p <- predict(fit, par4, prediction.interval=TRUE)
np <- length(p[,1])
plot(fit,p,ylab='Observed (black) / Fitted (red)',main='Extrapolation Fit of Exponential Smoothing')
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(myresid),lag.max = nx/2,main='Residual ACF')
spectrum(myresid,main='Residals Periodogram')
cpgram(myresid,main='Residal Cumulative Periodogram')
qqnorm(myresid,main='Residual Normal QQ Plot')
qqline(myresid)
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimated Parameters of Exponential Smoothing',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'Value',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,fit$alpha)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,fit$beta)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'gamma',header=TRUE)
a<-table.element(a,fit$gamma)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Interpolation Forecasts of Exponential Smoothing',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Fitted',header=TRUE)
a<-table.element(a,'Residuals',header=TRUE)
a<-table.row.end(a)
for (i in 1:nxmK) {
a<-table.row.start(a)
a<-table.element(a,i+K,header=TRUE)
a<-table.element(a,x[i+K])
a<-table.element(a,fit$fitted[i,'xhat'])
a<-table.element(a,myresid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Extrapolation Forecasts of Exponential Smoothing',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Forecast',header=TRUE)
a<-table.element(a,'95% Lower Bound',header=TRUE)
a<-table.element(a,'95% Upper Bound',header=TRUE)
a<-table.row.end(a)
for (i in 1:np) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,p[i,'fit'])
a<-table.element(a,p[i,'lwr'])
a<-table.element(a,p[i,'upr'])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')