Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_decomposeloess.wasp
Title produced by softwareDecomposition by Loess
Date of computationWed, 21 Dec 2016 16:35:59 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/21/t14823345972al9z5ezlj2ix6o.htm/, Retrieved Fri, 01 Nov 2024 03:38:10 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=302389, Retrieved Fri, 01 Nov 2024 03:38:10 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact100
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Decomposition by Loess] [] [2016-12-21 15:35:59] [361c8dad91b3f1ef2e651cd04783c23b] [Current]
Feedback Forum

Post a new message
Dataseries X:
5300
3800
3900
5400
6100
4200
4000
4600
7300
4400
4000
5300
9300
4300
3400
6000
6500
3400
2900
5000
5800
3000
2300
4000
5800
2900
2200
3900
5300
3000
2000
3700
6000
2800
1800
3900
5400
2400
1700
3500
5400
3900
2900
4600
5400
2900
2700
4500
6300
2800
1900
5100
6200
3500
3500
6000
6000
3400
2800
4900




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302389&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=302389&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302389&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Seasonal Decomposition by Loess - Parameters
ComponentWindowDegreeJump
Seasonal601061
Trend711
Low-pass511

\begin{tabular}{lllllllll}
\hline
Seasonal Decomposition by Loess - Parameters \tabularnewline
Component & Window & Degree & Jump \tabularnewline
Seasonal & 601 & 0 & 61 \tabularnewline
Trend & 7 & 1 & 1 \tabularnewline
Low-pass & 5 & 1 & 1 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302389&T=1

[TABLE]
[ROW][C]Seasonal Decomposition by Loess - Parameters[/C][/ROW]
[ROW][C]Component[/C][C]Window[/C][C]Degree[/C][C]Jump[/C][/ROW]
[ROW][C]Seasonal[/C][C]601[/C][C]0[/C][C]61[/C][/ROW]
[ROW][C]Trend[/C][C]7[/C][C]1[/C][C]1[/C][/ROW]
[ROW][C]Low-pass[/C][C]5[/C][C]1[/C][C]1[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302389&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302389&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Seasonal Decomposition by Loess - Parameters
ComponentWindowDegreeJump
Seasonal601061
Trend711
Low-pass511







Seasonal Decomposition by Loess - Time Series Components
tObservedFittedSeasonalTrendRemainder
153004701.403242314941899.853861603153998.74289608191-598.59675768506
238004136.48216112484-871.6336621616474335.1515010368336.482161124842
339004635.3851222474-1456.698275360784621.31315311338735.385122247398
454005519.00264002697428.4791609282724852.51819904476119.002640026968
561005437.352180942021899.853861603154862.79395745484-662.647819057984
642004424.78914023959-871.6336621616474846.84452192205224.789140239592
740004559.60738524753-1456.698275360784897.09089011325559.607385247527
846003755.36579982284428.4791609282725016.15503924889-844.634200177164
973007636.633077819491899.853861603155063.51306057736336.633077819493
1044004469.70748756038-871.6336621616475201.9261746012769.7074875603757
1140004008.68762927552-1456.698275360785448.010646085268.68762927551779
1253004431.6047476323428.4791609282725739.91609143942-868.395252367695
13930010968.59236968251899.853861603155731.553768714391668.59236968246
1443003799.40404388817-871.6336621616475672.22961827348-500.595956111832
1534002907.17198517236-1456.698275360785349.52629018841-492.828014827639
1660006602.38514512304428.4791609282724969.13569394869602.385145123041
1765006333.867490174381899.853861603154766.27864822248-166.132509825624
1834003133.90126539473-871.6336621616474537.73239676692-266.098734605272
1929002888.05390208039-1456.698275360784368.64437328038-11.9460979196083
2050005327.2390331977428.4791609282724244.28180587402327.239033197705
2158005603.851376147011899.853861603154096.29476224984-196.148623852989
2230002982.15864327665-871.6336621616473889.475018885-17.8413567233542
2323002289.30400127074-1456.698275360783767.39427409003-10.6959987292553
2440003818.21840082833428.4791609282723753.3024382434-181.781599171668
2558005955.913362275731899.853861603153744.23277612112155.913362275732
2629002946.5684871338-871.6336621616473725.0651750278546.5684871337953
2722002219.32016467419-1456.698275360783637.3781106865919.3201646741886
2839003800.76195966868428.4791609282723570.75887940305-99.2380403313186
2953005129.490088824271899.853861603153570.65604957258-170.509911175727
3030003327.34231214421-871.6336621616473544.29135001743327.342312144213
3120001882.37208143635-1456.698275360783574.32619392443-117.627918563653
3237003339.99887984989428.4791609282723631.52195922184-360.001120150109
3360006471.081344277461899.853861603153629.0647941194471.081344277456
3428002856.57353508032-871.6336621616473615.0601270813256.5735350803225
3518001529.79083845349-1456.698275360783526.90743690728-270.209161546509
3639003947.71566232742428.4791609282723423.805176744347.715662327425
3754005524.647276258291899.853861603153375.49886213856124.647276258291
3824002370.90241967967-871.6336621616473300.73124248197-29.0975803203282
3917001623.643741314-1456.698275360783233.05453404678-76.356258686003
4035003178.14334002472428.4791609282723393.37749904701-321.856659975285
4154005132.563856642551899.853861603153767.5822817543-267.43614335745
4239004562.52040905926-871.6336621616474109.11325310238662.520409059262
4329003012.49613362062-1456.698275360784244.20214174015112.496133620624
4446004704.62078943149428.4791609282724066.90004964024104.62078943149
4554005006.871404599351899.853861603153893.27473379751-393.128595400655
4629002800.86428935537-871.6336621616473870.76937280628-99.1357106446289
4727002861.89583968449-1456.698275360783994.80243567628161.895839684492
4845004463.92247701894428.4791609282724107.59836205279-36.0775229810606
4963006699.79374694881899.853861603154000.35239144805399.793746948801
5028002553.91066261313-871.6336621616473917.72299954851-246.089337386868
5119001283.35657881766-1456.698275360783973.34169654311-616.643421182339
5251005662.36468362087428.4791609282724109.15615545085562.364683620874
5362006115.161496501441899.853861603154384.98464189541-84.8385034985613
5435003218.26653339105-871.6336621616474653.36712877059-281.733466608948
5535003643.76236616707-1456.698275360784812.93590919371143.762366167066
5660006784.9837998638428.4791609282724786.53703920792784.983799863805
5760005477.428718212351899.853861603154622.71742018451-522.571281787653
5834003207.31800346039-871.6336621616474464.31565870126-192.68199653961
5928002720.54061688822-1456.698275360784336.15765847255-79.4593831117772
6049005128.84759519285428.4791609282724242.67324387888228.847595192848

\begin{tabular}{lllllllll}
\hline
Seasonal Decomposition by Loess - Time Series Components \tabularnewline
t & Observed & Fitted & Seasonal & Trend & Remainder \tabularnewline
1 & 5300 & 4701.40324231494 & 1899.85386160315 & 3998.74289608191 & -598.59675768506 \tabularnewline
2 & 3800 & 4136.48216112484 & -871.633662161647 & 4335.1515010368 & 336.482161124842 \tabularnewline
3 & 3900 & 4635.3851222474 & -1456.69827536078 & 4621.31315311338 & 735.385122247398 \tabularnewline
4 & 5400 & 5519.00264002697 & 428.479160928272 & 4852.51819904476 & 119.002640026968 \tabularnewline
5 & 6100 & 5437.35218094202 & 1899.85386160315 & 4862.79395745484 & -662.647819057984 \tabularnewline
6 & 4200 & 4424.78914023959 & -871.633662161647 & 4846.84452192205 & 224.789140239592 \tabularnewline
7 & 4000 & 4559.60738524753 & -1456.69827536078 & 4897.09089011325 & 559.607385247527 \tabularnewline
8 & 4600 & 3755.36579982284 & 428.479160928272 & 5016.15503924889 & -844.634200177164 \tabularnewline
9 & 7300 & 7636.63307781949 & 1899.85386160315 & 5063.51306057736 & 336.633077819493 \tabularnewline
10 & 4400 & 4469.70748756038 & -871.633662161647 & 5201.92617460127 & 69.7074875603757 \tabularnewline
11 & 4000 & 4008.68762927552 & -1456.69827536078 & 5448.01064608526 & 8.68762927551779 \tabularnewline
12 & 5300 & 4431.6047476323 & 428.479160928272 & 5739.91609143942 & -868.395252367695 \tabularnewline
13 & 9300 & 10968.5923696825 & 1899.85386160315 & 5731.55376871439 & 1668.59236968246 \tabularnewline
14 & 4300 & 3799.40404388817 & -871.633662161647 & 5672.22961827348 & -500.595956111832 \tabularnewline
15 & 3400 & 2907.17198517236 & -1456.69827536078 & 5349.52629018841 & -492.828014827639 \tabularnewline
16 & 6000 & 6602.38514512304 & 428.479160928272 & 4969.13569394869 & 602.385145123041 \tabularnewline
17 & 6500 & 6333.86749017438 & 1899.85386160315 & 4766.27864822248 & -166.132509825624 \tabularnewline
18 & 3400 & 3133.90126539473 & -871.633662161647 & 4537.73239676692 & -266.098734605272 \tabularnewline
19 & 2900 & 2888.05390208039 & -1456.69827536078 & 4368.64437328038 & -11.9460979196083 \tabularnewline
20 & 5000 & 5327.2390331977 & 428.479160928272 & 4244.28180587402 & 327.239033197705 \tabularnewline
21 & 5800 & 5603.85137614701 & 1899.85386160315 & 4096.29476224984 & -196.148623852989 \tabularnewline
22 & 3000 & 2982.15864327665 & -871.633662161647 & 3889.475018885 & -17.8413567233542 \tabularnewline
23 & 2300 & 2289.30400127074 & -1456.69827536078 & 3767.39427409003 & -10.6959987292553 \tabularnewline
24 & 4000 & 3818.21840082833 & 428.479160928272 & 3753.3024382434 & -181.781599171668 \tabularnewline
25 & 5800 & 5955.91336227573 & 1899.85386160315 & 3744.23277612112 & 155.913362275732 \tabularnewline
26 & 2900 & 2946.5684871338 & -871.633662161647 & 3725.06517502785 & 46.5684871337953 \tabularnewline
27 & 2200 & 2219.32016467419 & -1456.69827536078 & 3637.37811068659 & 19.3201646741886 \tabularnewline
28 & 3900 & 3800.76195966868 & 428.479160928272 & 3570.75887940305 & -99.2380403313186 \tabularnewline
29 & 5300 & 5129.49008882427 & 1899.85386160315 & 3570.65604957258 & -170.509911175727 \tabularnewline
30 & 3000 & 3327.34231214421 & -871.633662161647 & 3544.29135001743 & 327.342312144213 \tabularnewline
31 & 2000 & 1882.37208143635 & -1456.69827536078 & 3574.32619392443 & -117.627918563653 \tabularnewline
32 & 3700 & 3339.99887984989 & 428.479160928272 & 3631.52195922184 & -360.001120150109 \tabularnewline
33 & 6000 & 6471.08134427746 & 1899.85386160315 & 3629.0647941194 & 471.081344277456 \tabularnewline
34 & 2800 & 2856.57353508032 & -871.633662161647 & 3615.06012708132 & 56.5735350803225 \tabularnewline
35 & 1800 & 1529.79083845349 & -1456.69827536078 & 3526.90743690728 & -270.209161546509 \tabularnewline
36 & 3900 & 3947.71566232742 & 428.479160928272 & 3423.8051767443 & 47.715662327425 \tabularnewline
37 & 5400 & 5524.64727625829 & 1899.85386160315 & 3375.49886213856 & 124.647276258291 \tabularnewline
38 & 2400 & 2370.90241967967 & -871.633662161647 & 3300.73124248197 & -29.0975803203282 \tabularnewline
39 & 1700 & 1623.643741314 & -1456.69827536078 & 3233.05453404678 & -76.356258686003 \tabularnewline
40 & 3500 & 3178.14334002472 & 428.479160928272 & 3393.37749904701 & -321.856659975285 \tabularnewline
41 & 5400 & 5132.56385664255 & 1899.85386160315 & 3767.5822817543 & -267.43614335745 \tabularnewline
42 & 3900 & 4562.52040905926 & -871.633662161647 & 4109.11325310238 & 662.520409059262 \tabularnewline
43 & 2900 & 3012.49613362062 & -1456.69827536078 & 4244.20214174015 & 112.496133620624 \tabularnewline
44 & 4600 & 4704.62078943149 & 428.479160928272 & 4066.90004964024 & 104.62078943149 \tabularnewline
45 & 5400 & 5006.87140459935 & 1899.85386160315 & 3893.27473379751 & -393.128595400655 \tabularnewline
46 & 2900 & 2800.86428935537 & -871.633662161647 & 3870.76937280628 & -99.1357106446289 \tabularnewline
47 & 2700 & 2861.89583968449 & -1456.69827536078 & 3994.80243567628 & 161.895839684492 \tabularnewline
48 & 4500 & 4463.92247701894 & 428.479160928272 & 4107.59836205279 & -36.0775229810606 \tabularnewline
49 & 6300 & 6699.7937469488 & 1899.85386160315 & 4000.35239144805 & 399.793746948801 \tabularnewline
50 & 2800 & 2553.91066261313 & -871.633662161647 & 3917.72299954851 & -246.089337386868 \tabularnewline
51 & 1900 & 1283.35657881766 & -1456.69827536078 & 3973.34169654311 & -616.643421182339 \tabularnewline
52 & 5100 & 5662.36468362087 & 428.479160928272 & 4109.15615545085 & 562.364683620874 \tabularnewline
53 & 6200 & 6115.16149650144 & 1899.85386160315 & 4384.98464189541 & -84.8385034985613 \tabularnewline
54 & 3500 & 3218.26653339105 & -871.633662161647 & 4653.36712877059 & -281.733466608948 \tabularnewline
55 & 3500 & 3643.76236616707 & -1456.69827536078 & 4812.93590919371 & 143.762366167066 \tabularnewline
56 & 6000 & 6784.9837998638 & 428.479160928272 & 4786.53703920792 & 784.983799863805 \tabularnewline
57 & 6000 & 5477.42871821235 & 1899.85386160315 & 4622.71742018451 & -522.571281787653 \tabularnewline
58 & 3400 & 3207.31800346039 & -871.633662161647 & 4464.31565870126 & -192.68199653961 \tabularnewline
59 & 2800 & 2720.54061688822 & -1456.69827536078 & 4336.15765847255 & -79.4593831117772 \tabularnewline
60 & 4900 & 5128.84759519285 & 428.479160928272 & 4242.67324387888 & 228.847595192848 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302389&T=2

[TABLE]
[ROW][C]Seasonal Decomposition by Loess - Time Series Components[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Fitted[/C][C]Seasonal[/C][C]Trend[/C][C]Remainder[/C][/ROW]
[ROW][C]1[/C][C]5300[/C][C]4701.40324231494[/C][C]1899.85386160315[/C][C]3998.74289608191[/C][C]-598.59675768506[/C][/ROW]
[ROW][C]2[/C][C]3800[/C][C]4136.48216112484[/C][C]-871.633662161647[/C][C]4335.1515010368[/C][C]336.482161124842[/C][/ROW]
[ROW][C]3[/C][C]3900[/C][C]4635.3851222474[/C][C]-1456.69827536078[/C][C]4621.31315311338[/C][C]735.385122247398[/C][/ROW]
[ROW][C]4[/C][C]5400[/C][C]5519.00264002697[/C][C]428.479160928272[/C][C]4852.51819904476[/C][C]119.002640026968[/C][/ROW]
[ROW][C]5[/C][C]6100[/C][C]5437.35218094202[/C][C]1899.85386160315[/C][C]4862.79395745484[/C][C]-662.647819057984[/C][/ROW]
[ROW][C]6[/C][C]4200[/C][C]4424.78914023959[/C][C]-871.633662161647[/C][C]4846.84452192205[/C][C]224.789140239592[/C][/ROW]
[ROW][C]7[/C][C]4000[/C][C]4559.60738524753[/C][C]-1456.69827536078[/C][C]4897.09089011325[/C][C]559.607385247527[/C][/ROW]
[ROW][C]8[/C][C]4600[/C][C]3755.36579982284[/C][C]428.479160928272[/C][C]5016.15503924889[/C][C]-844.634200177164[/C][/ROW]
[ROW][C]9[/C][C]7300[/C][C]7636.63307781949[/C][C]1899.85386160315[/C][C]5063.51306057736[/C][C]336.633077819493[/C][/ROW]
[ROW][C]10[/C][C]4400[/C][C]4469.70748756038[/C][C]-871.633662161647[/C][C]5201.92617460127[/C][C]69.7074875603757[/C][/ROW]
[ROW][C]11[/C][C]4000[/C][C]4008.68762927552[/C][C]-1456.69827536078[/C][C]5448.01064608526[/C][C]8.68762927551779[/C][/ROW]
[ROW][C]12[/C][C]5300[/C][C]4431.6047476323[/C][C]428.479160928272[/C][C]5739.91609143942[/C][C]-868.395252367695[/C][/ROW]
[ROW][C]13[/C][C]9300[/C][C]10968.5923696825[/C][C]1899.85386160315[/C][C]5731.55376871439[/C][C]1668.59236968246[/C][/ROW]
[ROW][C]14[/C][C]4300[/C][C]3799.40404388817[/C][C]-871.633662161647[/C][C]5672.22961827348[/C][C]-500.595956111832[/C][/ROW]
[ROW][C]15[/C][C]3400[/C][C]2907.17198517236[/C][C]-1456.69827536078[/C][C]5349.52629018841[/C][C]-492.828014827639[/C][/ROW]
[ROW][C]16[/C][C]6000[/C][C]6602.38514512304[/C][C]428.479160928272[/C][C]4969.13569394869[/C][C]602.385145123041[/C][/ROW]
[ROW][C]17[/C][C]6500[/C][C]6333.86749017438[/C][C]1899.85386160315[/C][C]4766.27864822248[/C][C]-166.132509825624[/C][/ROW]
[ROW][C]18[/C][C]3400[/C][C]3133.90126539473[/C][C]-871.633662161647[/C][C]4537.73239676692[/C][C]-266.098734605272[/C][/ROW]
[ROW][C]19[/C][C]2900[/C][C]2888.05390208039[/C][C]-1456.69827536078[/C][C]4368.64437328038[/C][C]-11.9460979196083[/C][/ROW]
[ROW][C]20[/C][C]5000[/C][C]5327.2390331977[/C][C]428.479160928272[/C][C]4244.28180587402[/C][C]327.239033197705[/C][/ROW]
[ROW][C]21[/C][C]5800[/C][C]5603.85137614701[/C][C]1899.85386160315[/C][C]4096.29476224984[/C][C]-196.148623852989[/C][/ROW]
[ROW][C]22[/C][C]3000[/C][C]2982.15864327665[/C][C]-871.633662161647[/C][C]3889.475018885[/C][C]-17.8413567233542[/C][/ROW]
[ROW][C]23[/C][C]2300[/C][C]2289.30400127074[/C][C]-1456.69827536078[/C][C]3767.39427409003[/C][C]-10.6959987292553[/C][/ROW]
[ROW][C]24[/C][C]4000[/C][C]3818.21840082833[/C][C]428.479160928272[/C][C]3753.3024382434[/C][C]-181.781599171668[/C][/ROW]
[ROW][C]25[/C][C]5800[/C][C]5955.91336227573[/C][C]1899.85386160315[/C][C]3744.23277612112[/C][C]155.913362275732[/C][/ROW]
[ROW][C]26[/C][C]2900[/C][C]2946.5684871338[/C][C]-871.633662161647[/C][C]3725.06517502785[/C][C]46.5684871337953[/C][/ROW]
[ROW][C]27[/C][C]2200[/C][C]2219.32016467419[/C][C]-1456.69827536078[/C][C]3637.37811068659[/C][C]19.3201646741886[/C][/ROW]
[ROW][C]28[/C][C]3900[/C][C]3800.76195966868[/C][C]428.479160928272[/C][C]3570.75887940305[/C][C]-99.2380403313186[/C][/ROW]
[ROW][C]29[/C][C]5300[/C][C]5129.49008882427[/C][C]1899.85386160315[/C][C]3570.65604957258[/C][C]-170.509911175727[/C][/ROW]
[ROW][C]30[/C][C]3000[/C][C]3327.34231214421[/C][C]-871.633662161647[/C][C]3544.29135001743[/C][C]327.342312144213[/C][/ROW]
[ROW][C]31[/C][C]2000[/C][C]1882.37208143635[/C][C]-1456.69827536078[/C][C]3574.32619392443[/C][C]-117.627918563653[/C][/ROW]
[ROW][C]32[/C][C]3700[/C][C]3339.99887984989[/C][C]428.479160928272[/C][C]3631.52195922184[/C][C]-360.001120150109[/C][/ROW]
[ROW][C]33[/C][C]6000[/C][C]6471.08134427746[/C][C]1899.85386160315[/C][C]3629.0647941194[/C][C]471.081344277456[/C][/ROW]
[ROW][C]34[/C][C]2800[/C][C]2856.57353508032[/C][C]-871.633662161647[/C][C]3615.06012708132[/C][C]56.5735350803225[/C][/ROW]
[ROW][C]35[/C][C]1800[/C][C]1529.79083845349[/C][C]-1456.69827536078[/C][C]3526.90743690728[/C][C]-270.209161546509[/C][/ROW]
[ROW][C]36[/C][C]3900[/C][C]3947.71566232742[/C][C]428.479160928272[/C][C]3423.8051767443[/C][C]47.715662327425[/C][/ROW]
[ROW][C]37[/C][C]5400[/C][C]5524.64727625829[/C][C]1899.85386160315[/C][C]3375.49886213856[/C][C]124.647276258291[/C][/ROW]
[ROW][C]38[/C][C]2400[/C][C]2370.90241967967[/C][C]-871.633662161647[/C][C]3300.73124248197[/C][C]-29.0975803203282[/C][/ROW]
[ROW][C]39[/C][C]1700[/C][C]1623.643741314[/C][C]-1456.69827536078[/C][C]3233.05453404678[/C][C]-76.356258686003[/C][/ROW]
[ROW][C]40[/C][C]3500[/C][C]3178.14334002472[/C][C]428.479160928272[/C][C]3393.37749904701[/C][C]-321.856659975285[/C][/ROW]
[ROW][C]41[/C][C]5400[/C][C]5132.56385664255[/C][C]1899.85386160315[/C][C]3767.5822817543[/C][C]-267.43614335745[/C][/ROW]
[ROW][C]42[/C][C]3900[/C][C]4562.52040905926[/C][C]-871.633662161647[/C][C]4109.11325310238[/C][C]662.520409059262[/C][/ROW]
[ROW][C]43[/C][C]2900[/C][C]3012.49613362062[/C][C]-1456.69827536078[/C][C]4244.20214174015[/C][C]112.496133620624[/C][/ROW]
[ROW][C]44[/C][C]4600[/C][C]4704.62078943149[/C][C]428.479160928272[/C][C]4066.90004964024[/C][C]104.62078943149[/C][/ROW]
[ROW][C]45[/C][C]5400[/C][C]5006.87140459935[/C][C]1899.85386160315[/C][C]3893.27473379751[/C][C]-393.128595400655[/C][/ROW]
[ROW][C]46[/C][C]2900[/C][C]2800.86428935537[/C][C]-871.633662161647[/C][C]3870.76937280628[/C][C]-99.1357106446289[/C][/ROW]
[ROW][C]47[/C][C]2700[/C][C]2861.89583968449[/C][C]-1456.69827536078[/C][C]3994.80243567628[/C][C]161.895839684492[/C][/ROW]
[ROW][C]48[/C][C]4500[/C][C]4463.92247701894[/C][C]428.479160928272[/C][C]4107.59836205279[/C][C]-36.0775229810606[/C][/ROW]
[ROW][C]49[/C][C]6300[/C][C]6699.7937469488[/C][C]1899.85386160315[/C][C]4000.35239144805[/C][C]399.793746948801[/C][/ROW]
[ROW][C]50[/C][C]2800[/C][C]2553.91066261313[/C][C]-871.633662161647[/C][C]3917.72299954851[/C][C]-246.089337386868[/C][/ROW]
[ROW][C]51[/C][C]1900[/C][C]1283.35657881766[/C][C]-1456.69827536078[/C][C]3973.34169654311[/C][C]-616.643421182339[/C][/ROW]
[ROW][C]52[/C][C]5100[/C][C]5662.36468362087[/C][C]428.479160928272[/C][C]4109.15615545085[/C][C]562.364683620874[/C][/ROW]
[ROW][C]53[/C][C]6200[/C][C]6115.16149650144[/C][C]1899.85386160315[/C][C]4384.98464189541[/C][C]-84.8385034985613[/C][/ROW]
[ROW][C]54[/C][C]3500[/C][C]3218.26653339105[/C][C]-871.633662161647[/C][C]4653.36712877059[/C][C]-281.733466608948[/C][/ROW]
[ROW][C]55[/C][C]3500[/C][C]3643.76236616707[/C][C]-1456.69827536078[/C][C]4812.93590919371[/C][C]143.762366167066[/C][/ROW]
[ROW][C]56[/C][C]6000[/C][C]6784.9837998638[/C][C]428.479160928272[/C][C]4786.53703920792[/C][C]784.983799863805[/C][/ROW]
[ROW][C]57[/C][C]6000[/C][C]5477.42871821235[/C][C]1899.85386160315[/C][C]4622.71742018451[/C][C]-522.571281787653[/C][/ROW]
[ROW][C]58[/C][C]3400[/C][C]3207.31800346039[/C][C]-871.633662161647[/C][C]4464.31565870126[/C][C]-192.68199653961[/C][/ROW]
[ROW][C]59[/C][C]2800[/C][C]2720.54061688822[/C][C]-1456.69827536078[/C][C]4336.15765847255[/C][C]-79.4593831117772[/C][/ROW]
[ROW][C]60[/C][C]4900[/C][C]5128.84759519285[/C][C]428.479160928272[/C][C]4242.67324387888[/C][C]228.847595192848[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302389&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302389&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Seasonal Decomposition by Loess - Time Series Components
tObservedFittedSeasonalTrendRemainder
153004701.403242314941899.853861603153998.74289608191-598.59675768506
238004136.48216112484-871.6336621616474335.1515010368336.482161124842
339004635.3851222474-1456.698275360784621.31315311338735.385122247398
454005519.00264002697428.4791609282724852.51819904476119.002640026968
561005437.352180942021899.853861603154862.79395745484-662.647819057984
642004424.78914023959-871.6336621616474846.84452192205224.789140239592
740004559.60738524753-1456.698275360784897.09089011325559.607385247527
846003755.36579982284428.4791609282725016.15503924889-844.634200177164
973007636.633077819491899.853861603155063.51306057736336.633077819493
1044004469.70748756038-871.6336621616475201.9261746012769.7074875603757
1140004008.68762927552-1456.698275360785448.010646085268.68762927551779
1253004431.6047476323428.4791609282725739.91609143942-868.395252367695
13930010968.59236968251899.853861603155731.553768714391668.59236968246
1443003799.40404388817-871.6336621616475672.22961827348-500.595956111832
1534002907.17198517236-1456.698275360785349.52629018841-492.828014827639
1660006602.38514512304428.4791609282724969.13569394869602.385145123041
1765006333.867490174381899.853861603154766.27864822248-166.132509825624
1834003133.90126539473-871.6336621616474537.73239676692-266.098734605272
1929002888.05390208039-1456.698275360784368.64437328038-11.9460979196083
2050005327.2390331977428.4791609282724244.28180587402327.239033197705
2158005603.851376147011899.853861603154096.29476224984-196.148623852989
2230002982.15864327665-871.6336621616473889.475018885-17.8413567233542
2323002289.30400127074-1456.698275360783767.39427409003-10.6959987292553
2440003818.21840082833428.4791609282723753.3024382434-181.781599171668
2558005955.913362275731899.853861603153744.23277612112155.913362275732
2629002946.5684871338-871.6336621616473725.0651750278546.5684871337953
2722002219.32016467419-1456.698275360783637.3781106865919.3201646741886
2839003800.76195966868428.4791609282723570.75887940305-99.2380403313186
2953005129.490088824271899.853861603153570.65604957258-170.509911175727
3030003327.34231214421-871.6336621616473544.29135001743327.342312144213
3120001882.37208143635-1456.698275360783574.32619392443-117.627918563653
3237003339.99887984989428.4791609282723631.52195922184-360.001120150109
3360006471.081344277461899.853861603153629.0647941194471.081344277456
3428002856.57353508032-871.6336621616473615.0601270813256.5735350803225
3518001529.79083845349-1456.698275360783526.90743690728-270.209161546509
3639003947.71566232742428.4791609282723423.805176744347.715662327425
3754005524.647276258291899.853861603153375.49886213856124.647276258291
3824002370.90241967967-871.6336621616473300.73124248197-29.0975803203282
3917001623.643741314-1456.698275360783233.05453404678-76.356258686003
4035003178.14334002472428.4791609282723393.37749904701-321.856659975285
4154005132.563856642551899.853861603153767.5822817543-267.43614335745
4239004562.52040905926-871.6336621616474109.11325310238662.520409059262
4329003012.49613362062-1456.698275360784244.20214174015112.496133620624
4446004704.62078943149428.4791609282724066.90004964024104.62078943149
4554005006.871404599351899.853861603153893.27473379751-393.128595400655
4629002800.86428935537-871.6336621616473870.76937280628-99.1357106446289
4727002861.89583968449-1456.698275360783994.80243567628161.895839684492
4845004463.92247701894428.4791609282724107.59836205279-36.0775229810606
4963006699.79374694881899.853861603154000.35239144805399.793746948801
5028002553.91066261313-871.6336621616473917.72299954851-246.089337386868
5119001283.35657881766-1456.698275360783973.34169654311-616.643421182339
5251005662.36468362087428.4791609282724109.15615545085562.364683620874
5362006115.161496501441899.853861603154384.98464189541-84.8385034985613
5435003218.26653339105-871.6336621616474653.36712877059-281.733466608948
5535003643.76236616707-1456.698275360784812.93590919371143.762366167066
5660006784.9837998638428.4791609282724786.53703920792784.983799863805
5760005477.428718212351899.853861603154622.71742018451-522.571281787653
5834003207.31800346039-871.6336621616474464.31565870126-192.68199653961
5928002720.54061688822-1456.698275360784336.15765847255-79.4593831117772
6049005128.84759519285428.4791609282724242.67324387888228.847595192848



Parameters (Session):
par1 = Default ; par2 = 1 ; par3 = 0 ; par4 = 1 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ;
Parameters (R input):
par1 = 4 ; par2 = periodic ; par3 = 0 ; par4 = ; par5 = 1 ; par6 = ; par7 = 1 ; par8 = FALSE ;
R code (references can be found in the software module):
par1 <- as.numeric(par1) #seasonal period
if (par2 != 'periodic') par2 <- as.numeric(par2) #s.window
par3 <- as.numeric(par3) #s.degree
if (par4 == '') par4 <- NULL else par4 <- as.numeric(par4)#t.window
par5 <- as.numeric(par5)#t.degree
if (par6 != '') par6 <- as.numeric(par6)#l.window
par7 <- as.numeric(par7)#l.degree
if (par8 == 'FALSE') par8 <- FALSE else par9 <- TRUE #robust
nx <- length(x)
x <- ts(x,frequency=par1)
if (par6 != '') {
m <- stl(x,s.window=par2, s.degree=par3, t.window=par4, t.degre=par5, l.window=par6, l.degree=par7, robust=par8)
} else {
m <- stl(x,s.window=par2, s.degree=par3, t.window=par4, t.degre=par5, l.degree=par7, robust=par8)
}
m$time.series
m$win
m$deg
m$jump
m$inner
m$outer
bitmap(file='test1.png')
plot(m,main=main)
dev.off()
mylagmax <- nx/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(as.numeric(m$time.series[,'trend']),na.action=na.pass,lag.max = mylagmax,main='Trend')
acf(as.numeric(m$time.series[,'seasonal']),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(as.numeric(m$time.series[,'remainder']),na.action=na.pass,lag.max = mylagmax,main='Remainder')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'trend']),'trend']),main='Trend')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'seasonal']),'seasonal']),main='Seasonal')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'remainder']),'remainder']),main='Remainder')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'trend']),'trend']),main='Trend')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'seasonal']),'seasonal']),main='Seasonal')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'remainder']),'remainder']),main='Remainder')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Seasonal Decomposition by Loess - Parameters',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Component',header=TRUE)
a<-table.element(a,'Window',header=TRUE)
a<-table.element(a,'Degree',header=TRUE)
a<-table.element(a,'Jump',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,m$win['s'])
a<-table.element(a,m$deg['s'])
a<-table.element(a,m$jump['s'])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,m$win['t'])
a<-table.element(a,m$deg['t'])
a<-table.element(a,m$jump['t'])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Low-pass',header=TRUE)
a<-table.element(a,m$win['l'])
a<-table.element(a,m$deg['l'])
a<-table.element(a,m$jump['l'])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Seasonal Decomposition by Loess - Time Series Components',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Fitted',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,'Remainder',header=TRUE)
a<-table.row.end(a)
for (i in 1:nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]+m$time.series[i,'remainder'])
a<-table.element(a,m$time.series[i,'seasonal'])
a<-table.element(a,m$time.series[i,'trend'])
a<-table.element(a,m$time.series[i,'remainder'])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')