Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_exponentialsmoothing.wasp
Title produced by softwareExponential Smoothing
Date of computationWed, 21 Dec 2016 15:17:07 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/21/t1482332299kye3hitwrz996d8.htm/, Retrieved Fri, 01 Nov 2024 03:34:01 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=302356, Retrieved Fri, 01 Nov 2024 03:34:01 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact69
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Exponential Smoothing] [opqs] [2016-12-21 14:17:07] [6db9e6f0306aa16a744aea8c8a65c446] [Current]
Feedback Forum

Post a new message
Dataseries X:
2850
2360
2880
3000
3120
2910
3380
3730
2960
4070
4660
3880
4190
4140
4060
4250
4380
4780
4460
4820
4580
4630
5030
4370
4240
4220
4070
4290
4340
4250
4520
4680
4200
4490
4840
3840
3940
3510
3240
3410
3290
3190
3790
4090
4180
5020
5910
5850
6660
6950
6850
6360
5600
5290
5630
5410
5020
5070
5370
4860
4440
4220
3720
3650
3650
3040
3530
3520
3030
2920
3530
2920
3520
3380
2920
3000
2860
2760
2810
3400
2730
2670
2900
2240
2920
2650
2370
2560
2430
1930
2360
2470
2720
2750
3010
2610
3440
3540
2790
3060
3050
3000
3200
3530
3640
3830
4460
3420
5180
5310
4870
4550
4510
4380
5260
5270
4610
4840
5050
4760
5210
5540
4830
5210
5320
5150




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302356&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=302356&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302356&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Estimated Parameters of Exponential Smoothing
ParameterValue
alpha0.757882519041001
betaFALSE
gammaFALSE

\begin{tabular}{lllllllll}
\hline
Estimated Parameters of Exponential Smoothing \tabularnewline
Parameter & Value \tabularnewline
alpha & 0.757882519041001 \tabularnewline
beta & FALSE \tabularnewline
gamma & FALSE \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302356&T=1

[TABLE]
[ROW][C]Estimated Parameters of Exponential Smoothing[/C][/ROW]
[ROW][C]Parameter[/C][C]Value[/C][/ROW]
[ROW][C]alpha[/C][C]0.757882519041001[/C][/ROW]
[ROW][C]beta[/C][C]FALSE[/C][/ROW]
[ROW][C]gamma[/C][C]FALSE[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302356&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302356&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimated Parameters of Exponential Smoothing
ParameterValue
alpha0.757882519041001
betaFALSE
gammaFALSE







Interpolation Forecasts of Exponential Smoothing
tObservedFittedResiduals
223602850-490
328802478.63756566991401.362434330091
430002782.82313844843217.176861551573
531202947.41768535855172.582314641448
629103078.21480472094-168.214804720939
733802950.72774477904429.272255220956
837303276.06568292031453.934317079686
929603620.09456662782-660.094566627823
1040703119.82043366665950.17956633335
1146603839.94491694066820.055083059345
1238804461.45032904205-581.450329042049
1341904020.77928897044169.220711029559
1441404149.02870771943-9.02870771943253
1540604142.18600796934-82.1860079693442
1642504079.89866921961170.101330780386
1743804208.81549428368171.184505716321
1847804338.55323869675441.446761303247
1944604673.11802217575-213.11802217575
2048204511.59959867616308.400401323844
2145804745.33087170473-165.330871704727
2246304620.02949418199.97050581809617
2350304627.58596624744402.414033752564
2443704932.56852784528-562.56852784528
2542404506.20767482871-266.207674828711
2642204304.45353164148-84.4535316414795
2740704240.44767633913-170.447676339126
2842904111.26836203054178.731637969457
2943404246.7259460471693.2740539528404
3042504317.4167210181-67.416721018104
3145204266.32276666742253.677233332581
3246804458.58030728887221.419692711132
3342004626.39042176606-426.390421766065
3444904303.23657482304186.763425176956
3548404444.78130996088395.218690039119
3638404744.31064633981-904.310646339814
3739404058.9494156962-118.9494156962
3835103968.79973288991-458.799732889909
3932403621.08343559197-381.083435591966
4034103332.2669614607377.7330385392725
4132903391.17947252158-101.179472521583
4231903314.49731901169-124.497319011686
4337903220.14297726526569.857022734742
4440903652.02765314867437.97234685133
4541803983.95923865066196.040761349345
4650204132.53510469681887.464895303188
4759104805.129235109651104.87076489035
4858505642.49147361951207.508526380493
4966605799.75855831524860.241441684759
5069506451.72050912275498.279490877251
5168506829.3578248552720.6421751447324
5263606845.00216855244-485.002168552443
5356006477.42750330957-877.427503309569
5452905812.44053682546-522.440536825457
5556305416.49198672705213.508013272954
5654105578.30597766179-168.305977661792
5750205450.74981934182-430.749819341815
5850705124.29206118258-54.2920611825839
5953705083.1450570896286.8549429104
6048605300.5474038219-440.547403821896
6144404966.66422765638-526.664227656384
6242204567.51461611138-347.514616111381
6337204304.13936344932-584.139363449321
6436503861.43035120734-211.430351207342
6536503701.1909840326-51.190984032598
6630403662.39423210178-622.394232101785
6735303190.69252363989339.307476360105
6835203447.8477285531472.1522714468638
6930303502.53067379182-472.530673791815
7029203144.40793641433-224.407936414333
7135302974.33308427185555.666915728154
7229203395.46332611164-475.463326111643
7335203035.11798280654484.882017193462
7433803402.6015874348-22.6015874348013
7529203385.47223941539-465.472239415389
7630003032.6989660636-32.6989660635982
7728603007.91699129328-147.916991293282
7827602895.81328932296-135.813289322964
7928102792.8827714916317.1172285083685
8034002805.85561975255594.144380247446
8127303256.14725932854-526.147259328543
8226702857.38944904211-187.389449042108
8329002715.37026136037184.62973863963
8422402855.29791277045-615.297912770455
8529202388.97438067931531.025619320688
8626502791.42941472538-141.429414725383
8723702684.24253362682-314.242533626815
8825602446.0836106519113.916389348102
8924302532.41885077109-102.418850771093
9019302454.79739415141-524.797394151413
9123602057.06262308579302.937376914213
9224702286.6535654132183.346434586796
9327202425.60862311503294.391376884969
9427502648.72270141256101.27729858744
9530102725.47899558768284.521004412323
9626102941.11249113176-331.112491131764
9734402690.16812226688749.831877733119
9835403258.4525946205281.547405379499
9927903471.83245143897-681.832451438974
10030602955.0835555785104.916444421497
10130503034.5978947654915.4021052345074
10230003046.27088107916-46.2708810791555
10332003011.20298916864188.797010831362
10435303154.28894332492375.711056675078
10536403439.03378538939200.966214610613
10638303591.34256636061238.657433639387
10744603772.21686335509687.783136644908
10834204293.47567950946-873.475679509456
10951803631.483731201781548.51626879822
11053104805.07714177455504.922858225453
11148705187.74934948784-317.749349487836
11245504946.93267207436-396.932672074356
11345104646.10433867297-136.104338672967
11443804542.95323962709-162.953239627089
11552604419.45382789262840.546172107381
11652705056.48907817963213.510921820368
11746105218.30527345162-608.305273451619
11848404757.2813404621882.7186595378189
11950504819.9723665244230.027633475602
12047604994.30628883193-234.306288831927
12152104816.72964842484393.270351575162
12255405114.78237314076425.217626859237
12348305437.04737932548-607.047379325479
12452104976.97678230505233.023217694954
12553205153.58100552674166.418994473263
12651505279.7070522744-129.707052274404

\begin{tabular}{lllllllll}
\hline
Interpolation Forecasts of Exponential Smoothing \tabularnewline
t & Observed & Fitted & Residuals \tabularnewline
2 & 2360 & 2850 & -490 \tabularnewline
3 & 2880 & 2478.63756566991 & 401.362434330091 \tabularnewline
4 & 3000 & 2782.82313844843 & 217.176861551573 \tabularnewline
5 & 3120 & 2947.41768535855 & 172.582314641448 \tabularnewline
6 & 2910 & 3078.21480472094 & -168.214804720939 \tabularnewline
7 & 3380 & 2950.72774477904 & 429.272255220956 \tabularnewline
8 & 3730 & 3276.06568292031 & 453.934317079686 \tabularnewline
9 & 2960 & 3620.09456662782 & -660.094566627823 \tabularnewline
10 & 4070 & 3119.82043366665 & 950.17956633335 \tabularnewline
11 & 4660 & 3839.94491694066 & 820.055083059345 \tabularnewline
12 & 3880 & 4461.45032904205 & -581.450329042049 \tabularnewline
13 & 4190 & 4020.77928897044 & 169.220711029559 \tabularnewline
14 & 4140 & 4149.02870771943 & -9.02870771943253 \tabularnewline
15 & 4060 & 4142.18600796934 & -82.1860079693442 \tabularnewline
16 & 4250 & 4079.89866921961 & 170.101330780386 \tabularnewline
17 & 4380 & 4208.81549428368 & 171.184505716321 \tabularnewline
18 & 4780 & 4338.55323869675 & 441.446761303247 \tabularnewline
19 & 4460 & 4673.11802217575 & -213.11802217575 \tabularnewline
20 & 4820 & 4511.59959867616 & 308.400401323844 \tabularnewline
21 & 4580 & 4745.33087170473 & -165.330871704727 \tabularnewline
22 & 4630 & 4620.0294941819 & 9.97050581809617 \tabularnewline
23 & 5030 & 4627.58596624744 & 402.414033752564 \tabularnewline
24 & 4370 & 4932.56852784528 & -562.56852784528 \tabularnewline
25 & 4240 & 4506.20767482871 & -266.207674828711 \tabularnewline
26 & 4220 & 4304.45353164148 & -84.4535316414795 \tabularnewline
27 & 4070 & 4240.44767633913 & -170.447676339126 \tabularnewline
28 & 4290 & 4111.26836203054 & 178.731637969457 \tabularnewline
29 & 4340 & 4246.72594604716 & 93.2740539528404 \tabularnewline
30 & 4250 & 4317.4167210181 & -67.416721018104 \tabularnewline
31 & 4520 & 4266.32276666742 & 253.677233332581 \tabularnewline
32 & 4680 & 4458.58030728887 & 221.419692711132 \tabularnewline
33 & 4200 & 4626.39042176606 & -426.390421766065 \tabularnewline
34 & 4490 & 4303.23657482304 & 186.763425176956 \tabularnewline
35 & 4840 & 4444.78130996088 & 395.218690039119 \tabularnewline
36 & 3840 & 4744.31064633981 & -904.310646339814 \tabularnewline
37 & 3940 & 4058.9494156962 & -118.9494156962 \tabularnewline
38 & 3510 & 3968.79973288991 & -458.799732889909 \tabularnewline
39 & 3240 & 3621.08343559197 & -381.083435591966 \tabularnewline
40 & 3410 & 3332.26696146073 & 77.7330385392725 \tabularnewline
41 & 3290 & 3391.17947252158 & -101.179472521583 \tabularnewline
42 & 3190 & 3314.49731901169 & -124.497319011686 \tabularnewline
43 & 3790 & 3220.14297726526 & 569.857022734742 \tabularnewline
44 & 4090 & 3652.02765314867 & 437.97234685133 \tabularnewline
45 & 4180 & 3983.95923865066 & 196.040761349345 \tabularnewline
46 & 5020 & 4132.53510469681 & 887.464895303188 \tabularnewline
47 & 5910 & 4805.12923510965 & 1104.87076489035 \tabularnewline
48 & 5850 & 5642.49147361951 & 207.508526380493 \tabularnewline
49 & 6660 & 5799.75855831524 & 860.241441684759 \tabularnewline
50 & 6950 & 6451.72050912275 & 498.279490877251 \tabularnewline
51 & 6850 & 6829.35782485527 & 20.6421751447324 \tabularnewline
52 & 6360 & 6845.00216855244 & -485.002168552443 \tabularnewline
53 & 5600 & 6477.42750330957 & -877.427503309569 \tabularnewline
54 & 5290 & 5812.44053682546 & -522.440536825457 \tabularnewline
55 & 5630 & 5416.49198672705 & 213.508013272954 \tabularnewline
56 & 5410 & 5578.30597766179 & -168.305977661792 \tabularnewline
57 & 5020 & 5450.74981934182 & -430.749819341815 \tabularnewline
58 & 5070 & 5124.29206118258 & -54.2920611825839 \tabularnewline
59 & 5370 & 5083.1450570896 & 286.8549429104 \tabularnewline
60 & 4860 & 5300.5474038219 & -440.547403821896 \tabularnewline
61 & 4440 & 4966.66422765638 & -526.664227656384 \tabularnewline
62 & 4220 & 4567.51461611138 & -347.514616111381 \tabularnewline
63 & 3720 & 4304.13936344932 & -584.139363449321 \tabularnewline
64 & 3650 & 3861.43035120734 & -211.430351207342 \tabularnewline
65 & 3650 & 3701.1909840326 & -51.190984032598 \tabularnewline
66 & 3040 & 3662.39423210178 & -622.394232101785 \tabularnewline
67 & 3530 & 3190.69252363989 & 339.307476360105 \tabularnewline
68 & 3520 & 3447.84772855314 & 72.1522714468638 \tabularnewline
69 & 3030 & 3502.53067379182 & -472.530673791815 \tabularnewline
70 & 2920 & 3144.40793641433 & -224.407936414333 \tabularnewline
71 & 3530 & 2974.33308427185 & 555.666915728154 \tabularnewline
72 & 2920 & 3395.46332611164 & -475.463326111643 \tabularnewline
73 & 3520 & 3035.11798280654 & 484.882017193462 \tabularnewline
74 & 3380 & 3402.6015874348 & -22.6015874348013 \tabularnewline
75 & 2920 & 3385.47223941539 & -465.472239415389 \tabularnewline
76 & 3000 & 3032.6989660636 & -32.6989660635982 \tabularnewline
77 & 2860 & 3007.91699129328 & -147.916991293282 \tabularnewline
78 & 2760 & 2895.81328932296 & -135.813289322964 \tabularnewline
79 & 2810 & 2792.88277149163 & 17.1172285083685 \tabularnewline
80 & 3400 & 2805.85561975255 & 594.144380247446 \tabularnewline
81 & 2730 & 3256.14725932854 & -526.147259328543 \tabularnewline
82 & 2670 & 2857.38944904211 & -187.389449042108 \tabularnewline
83 & 2900 & 2715.37026136037 & 184.62973863963 \tabularnewline
84 & 2240 & 2855.29791277045 & -615.297912770455 \tabularnewline
85 & 2920 & 2388.97438067931 & 531.025619320688 \tabularnewline
86 & 2650 & 2791.42941472538 & -141.429414725383 \tabularnewline
87 & 2370 & 2684.24253362682 & -314.242533626815 \tabularnewline
88 & 2560 & 2446.0836106519 & 113.916389348102 \tabularnewline
89 & 2430 & 2532.41885077109 & -102.418850771093 \tabularnewline
90 & 1930 & 2454.79739415141 & -524.797394151413 \tabularnewline
91 & 2360 & 2057.06262308579 & 302.937376914213 \tabularnewline
92 & 2470 & 2286.6535654132 & 183.346434586796 \tabularnewline
93 & 2720 & 2425.60862311503 & 294.391376884969 \tabularnewline
94 & 2750 & 2648.72270141256 & 101.27729858744 \tabularnewline
95 & 3010 & 2725.47899558768 & 284.521004412323 \tabularnewline
96 & 2610 & 2941.11249113176 & -331.112491131764 \tabularnewline
97 & 3440 & 2690.16812226688 & 749.831877733119 \tabularnewline
98 & 3540 & 3258.4525946205 & 281.547405379499 \tabularnewline
99 & 2790 & 3471.83245143897 & -681.832451438974 \tabularnewline
100 & 3060 & 2955.0835555785 & 104.916444421497 \tabularnewline
101 & 3050 & 3034.59789476549 & 15.4021052345074 \tabularnewline
102 & 3000 & 3046.27088107916 & -46.2708810791555 \tabularnewline
103 & 3200 & 3011.20298916864 & 188.797010831362 \tabularnewline
104 & 3530 & 3154.28894332492 & 375.711056675078 \tabularnewline
105 & 3640 & 3439.03378538939 & 200.966214610613 \tabularnewline
106 & 3830 & 3591.34256636061 & 238.657433639387 \tabularnewline
107 & 4460 & 3772.21686335509 & 687.783136644908 \tabularnewline
108 & 3420 & 4293.47567950946 & -873.475679509456 \tabularnewline
109 & 5180 & 3631.48373120178 & 1548.51626879822 \tabularnewline
110 & 5310 & 4805.07714177455 & 504.922858225453 \tabularnewline
111 & 4870 & 5187.74934948784 & -317.749349487836 \tabularnewline
112 & 4550 & 4946.93267207436 & -396.932672074356 \tabularnewline
113 & 4510 & 4646.10433867297 & -136.104338672967 \tabularnewline
114 & 4380 & 4542.95323962709 & -162.953239627089 \tabularnewline
115 & 5260 & 4419.45382789262 & 840.546172107381 \tabularnewline
116 & 5270 & 5056.48907817963 & 213.510921820368 \tabularnewline
117 & 4610 & 5218.30527345162 & -608.305273451619 \tabularnewline
118 & 4840 & 4757.28134046218 & 82.7186595378189 \tabularnewline
119 & 5050 & 4819.9723665244 & 230.027633475602 \tabularnewline
120 & 4760 & 4994.30628883193 & -234.306288831927 \tabularnewline
121 & 5210 & 4816.72964842484 & 393.270351575162 \tabularnewline
122 & 5540 & 5114.78237314076 & 425.217626859237 \tabularnewline
123 & 4830 & 5437.04737932548 & -607.047379325479 \tabularnewline
124 & 5210 & 4976.97678230505 & 233.023217694954 \tabularnewline
125 & 5320 & 5153.58100552674 & 166.418994473263 \tabularnewline
126 & 5150 & 5279.7070522744 & -129.707052274404 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302356&T=2

[TABLE]
[ROW][C]Interpolation Forecasts of Exponential Smoothing[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Fitted[/C][C]Residuals[/C][/ROW]
[ROW][C]2[/C][C]2360[/C][C]2850[/C][C]-490[/C][/ROW]
[ROW][C]3[/C][C]2880[/C][C]2478.63756566991[/C][C]401.362434330091[/C][/ROW]
[ROW][C]4[/C][C]3000[/C][C]2782.82313844843[/C][C]217.176861551573[/C][/ROW]
[ROW][C]5[/C][C]3120[/C][C]2947.41768535855[/C][C]172.582314641448[/C][/ROW]
[ROW][C]6[/C][C]2910[/C][C]3078.21480472094[/C][C]-168.214804720939[/C][/ROW]
[ROW][C]7[/C][C]3380[/C][C]2950.72774477904[/C][C]429.272255220956[/C][/ROW]
[ROW][C]8[/C][C]3730[/C][C]3276.06568292031[/C][C]453.934317079686[/C][/ROW]
[ROW][C]9[/C][C]2960[/C][C]3620.09456662782[/C][C]-660.094566627823[/C][/ROW]
[ROW][C]10[/C][C]4070[/C][C]3119.82043366665[/C][C]950.17956633335[/C][/ROW]
[ROW][C]11[/C][C]4660[/C][C]3839.94491694066[/C][C]820.055083059345[/C][/ROW]
[ROW][C]12[/C][C]3880[/C][C]4461.45032904205[/C][C]-581.450329042049[/C][/ROW]
[ROW][C]13[/C][C]4190[/C][C]4020.77928897044[/C][C]169.220711029559[/C][/ROW]
[ROW][C]14[/C][C]4140[/C][C]4149.02870771943[/C][C]-9.02870771943253[/C][/ROW]
[ROW][C]15[/C][C]4060[/C][C]4142.18600796934[/C][C]-82.1860079693442[/C][/ROW]
[ROW][C]16[/C][C]4250[/C][C]4079.89866921961[/C][C]170.101330780386[/C][/ROW]
[ROW][C]17[/C][C]4380[/C][C]4208.81549428368[/C][C]171.184505716321[/C][/ROW]
[ROW][C]18[/C][C]4780[/C][C]4338.55323869675[/C][C]441.446761303247[/C][/ROW]
[ROW][C]19[/C][C]4460[/C][C]4673.11802217575[/C][C]-213.11802217575[/C][/ROW]
[ROW][C]20[/C][C]4820[/C][C]4511.59959867616[/C][C]308.400401323844[/C][/ROW]
[ROW][C]21[/C][C]4580[/C][C]4745.33087170473[/C][C]-165.330871704727[/C][/ROW]
[ROW][C]22[/C][C]4630[/C][C]4620.0294941819[/C][C]9.97050581809617[/C][/ROW]
[ROW][C]23[/C][C]5030[/C][C]4627.58596624744[/C][C]402.414033752564[/C][/ROW]
[ROW][C]24[/C][C]4370[/C][C]4932.56852784528[/C][C]-562.56852784528[/C][/ROW]
[ROW][C]25[/C][C]4240[/C][C]4506.20767482871[/C][C]-266.207674828711[/C][/ROW]
[ROW][C]26[/C][C]4220[/C][C]4304.45353164148[/C][C]-84.4535316414795[/C][/ROW]
[ROW][C]27[/C][C]4070[/C][C]4240.44767633913[/C][C]-170.447676339126[/C][/ROW]
[ROW][C]28[/C][C]4290[/C][C]4111.26836203054[/C][C]178.731637969457[/C][/ROW]
[ROW][C]29[/C][C]4340[/C][C]4246.72594604716[/C][C]93.2740539528404[/C][/ROW]
[ROW][C]30[/C][C]4250[/C][C]4317.4167210181[/C][C]-67.416721018104[/C][/ROW]
[ROW][C]31[/C][C]4520[/C][C]4266.32276666742[/C][C]253.677233332581[/C][/ROW]
[ROW][C]32[/C][C]4680[/C][C]4458.58030728887[/C][C]221.419692711132[/C][/ROW]
[ROW][C]33[/C][C]4200[/C][C]4626.39042176606[/C][C]-426.390421766065[/C][/ROW]
[ROW][C]34[/C][C]4490[/C][C]4303.23657482304[/C][C]186.763425176956[/C][/ROW]
[ROW][C]35[/C][C]4840[/C][C]4444.78130996088[/C][C]395.218690039119[/C][/ROW]
[ROW][C]36[/C][C]3840[/C][C]4744.31064633981[/C][C]-904.310646339814[/C][/ROW]
[ROW][C]37[/C][C]3940[/C][C]4058.9494156962[/C][C]-118.9494156962[/C][/ROW]
[ROW][C]38[/C][C]3510[/C][C]3968.79973288991[/C][C]-458.799732889909[/C][/ROW]
[ROW][C]39[/C][C]3240[/C][C]3621.08343559197[/C][C]-381.083435591966[/C][/ROW]
[ROW][C]40[/C][C]3410[/C][C]3332.26696146073[/C][C]77.7330385392725[/C][/ROW]
[ROW][C]41[/C][C]3290[/C][C]3391.17947252158[/C][C]-101.179472521583[/C][/ROW]
[ROW][C]42[/C][C]3190[/C][C]3314.49731901169[/C][C]-124.497319011686[/C][/ROW]
[ROW][C]43[/C][C]3790[/C][C]3220.14297726526[/C][C]569.857022734742[/C][/ROW]
[ROW][C]44[/C][C]4090[/C][C]3652.02765314867[/C][C]437.97234685133[/C][/ROW]
[ROW][C]45[/C][C]4180[/C][C]3983.95923865066[/C][C]196.040761349345[/C][/ROW]
[ROW][C]46[/C][C]5020[/C][C]4132.53510469681[/C][C]887.464895303188[/C][/ROW]
[ROW][C]47[/C][C]5910[/C][C]4805.12923510965[/C][C]1104.87076489035[/C][/ROW]
[ROW][C]48[/C][C]5850[/C][C]5642.49147361951[/C][C]207.508526380493[/C][/ROW]
[ROW][C]49[/C][C]6660[/C][C]5799.75855831524[/C][C]860.241441684759[/C][/ROW]
[ROW][C]50[/C][C]6950[/C][C]6451.72050912275[/C][C]498.279490877251[/C][/ROW]
[ROW][C]51[/C][C]6850[/C][C]6829.35782485527[/C][C]20.6421751447324[/C][/ROW]
[ROW][C]52[/C][C]6360[/C][C]6845.00216855244[/C][C]-485.002168552443[/C][/ROW]
[ROW][C]53[/C][C]5600[/C][C]6477.42750330957[/C][C]-877.427503309569[/C][/ROW]
[ROW][C]54[/C][C]5290[/C][C]5812.44053682546[/C][C]-522.440536825457[/C][/ROW]
[ROW][C]55[/C][C]5630[/C][C]5416.49198672705[/C][C]213.508013272954[/C][/ROW]
[ROW][C]56[/C][C]5410[/C][C]5578.30597766179[/C][C]-168.305977661792[/C][/ROW]
[ROW][C]57[/C][C]5020[/C][C]5450.74981934182[/C][C]-430.749819341815[/C][/ROW]
[ROW][C]58[/C][C]5070[/C][C]5124.29206118258[/C][C]-54.2920611825839[/C][/ROW]
[ROW][C]59[/C][C]5370[/C][C]5083.1450570896[/C][C]286.8549429104[/C][/ROW]
[ROW][C]60[/C][C]4860[/C][C]5300.5474038219[/C][C]-440.547403821896[/C][/ROW]
[ROW][C]61[/C][C]4440[/C][C]4966.66422765638[/C][C]-526.664227656384[/C][/ROW]
[ROW][C]62[/C][C]4220[/C][C]4567.51461611138[/C][C]-347.514616111381[/C][/ROW]
[ROW][C]63[/C][C]3720[/C][C]4304.13936344932[/C][C]-584.139363449321[/C][/ROW]
[ROW][C]64[/C][C]3650[/C][C]3861.43035120734[/C][C]-211.430351207342[/C][/ROW]
[ROW][C]65[/C][C]3650[/C][C]3701.1909840326[/C][C]-51.190984032598[/C][/ROW]
[ROW][C]66[/C][C]3040[/C][C]3662.39423210178[/C][C]-622.394232101785[/C][/ROW]
[ROW][C]67[/C][C]3530[/C][C]3190.69252363989[/C][C]339.307476360105[/C][/ROW]
[ROW][C]68[/C][C]3520[/C][C]3447.84772855314[/C][C]72.1522714468638[/C][/ROW]
[ROW][C]69[/C][C]3030[/C][C]3502.53067379182[/C][C]-472.530673791815[/C][/ROW]
[ROW][C]70[/C][C]2920[/C][C]3144.40793641433[/C][C]-224.407936414333[/C][/ROW]
[ROW][C]71[/C][C]3530[/C][C]2974.33308427185[/C][C]555.666915728154[/C][/ROW]
[ROW][C]72[/C][C]2920[/C][C]3395.46332611164[/C][C]-475.463326111643[/C][/ROW]
[ROW][C]73[/C][C]3520[/C][C]3035.11798280654[/C][C]484.882017193462[/C][/ROW]
[ROW][C]74[/C][C]3380[/C][C]3402.6015874348[/C][C]-22.6015874348013[/C][/ROW]
[ROW][C]75[/C][C]2920[/C][C]3385.47223941539[/C][C]-465.472239415389[/C][/ROW]
[ROW][C]76[/C][C]3000[/C][C]3032.6989660636[/C][C]-32.6989660635982[/C][/ROW]
[ROW][C]77[/C][C]2860[/C][C]3007.91699129328[/C][C]-147.916991293282[/C][/ROW]
[ROW][C]78[/C][C]2760[/C][C]2895.81328932296[/C][C]-135.813289322964[/C][/ROW]
[ROW][C]79[/C][C]2810[/C][C]2792.88277149163[/C][C]17.1172285083685[/C][/ROW]
[ROW][C]80[/C][C]3400[/C][C]2805.85561975255[/C][C]594.144380247446[/C][/ROW]
[ROW][C]81[/C][C]2730[/C][C]3256.14725932854[/C][C]-526.147259328543[/C][/ROW]
[ROW][C]82[/C][C]2670[/C][C]2857.38944904211[/C][C]-187.389449042108[/C][/ROW]
[ROW][C]83[/C][C]2900[/C][C]2715.37026136037[/C][C]184.62973863963[/C][/ROW]
[ROW][C]84[/C][C]2240[/C][C]2855.29791277045[/C][C]-615.297912770455[/C][/ROW]
[ROW][C]85[/C][C]2920[/C][C]2388.97438067931[/C][C]531.025619320688[/C][/ROW]
[ROW][C]86[/C][C]2650[/C][C]2791.42941472538[/C][C]-141.429414725383[/C][/ROW]
[ROW][C]87[/C][C]2370[/C][C]2684.24253362682[/C][C]-314.242533626815[/C][/ROW]
[ROW][C]88[/C][C]2560[/C][C]2446.0836106519[/C][C]113.916389348102[/C][/ROW]
[ROW][C]89[/C][C]2430[/C][C]2532.41885077109[/C][C]-102.418850771093[/C][/ROW]
[ROW][C]90[/C][C]1930[/C][C]2454.79739415141[/C][C]-524.797394151413[/C][/ROW]
[ROW][C]91[/C][C]2360[/C][C]2057.06262308579[/C][C]302.937376914213[/C][/ROW]
[ROW][C]92[/C][C]2470[/C][C]2286.6535654132[/C][C]183.346434586796[/C][/ROW]
[ROW][C]93[/C][C]2720[/C][C]2425.60862311503[/C][C]294.391376884969[/C][/ROW]
[ROW][C]94[/C][C]2750[/C][C]2648.72270141256[/C][C]101.27729858744[/C][/ROW]
[ROW][C]95[/C][C]3010[/C][C]2725.47899558768[/C][C]284.521004412323[/C][/ROW]
[ROW][C]96[/C][C]2610[/C][C]2941.11249113176[/C][C]-331.112491131764[/C][/ROW]
[ROW][C]97[/C][C]3440[/C][C]2690.16812226688[/C][C]749.831877733119[/C][/ROW]
[ROW][C]98[/C][C]3540[/C][C]3258.4525946205[/C][C]281.547405379499[/C][/ROW]
[ROW][C]99[/C][C]2790[/C][C]3471.83245143897[/C][C]-681.832451438974[/C][/ROW]
[ROW][C]100[/C][C]3060[/C][C]2955.0835555785[/C][C]104.916444421497[/C][/ROW]
[ROW][C]101[/C][C]3050[/C][C]3034.59789476549[/C][C]15.4021052345074[/C][/ROW]
[ROW][C]102[/C][C]3000[/C][C]3046.27088107916[/C][C]-46.2708810791555[/C][/ROW]
[ROW][C]103[/C][C]3200[/C][C]3011.20298916864[/C][C]188.797010831362[/C][/ROW]
[ROW][C]104[/C][C]3530[/C][C]3154.28894332492[/C][C]375.711056675078[/C][/ROW]
[ROW][C]105[/C][C]3640[/C][C]3439.03378538939[/C][C]200.966214610613[/C][/ROW]
[ROW][C]106[/C][C]3830[/C][C]3591.34256636061[/C][C]238.657433639387[/C][/ROW]
[ROW][C]107[/C][C]4460[/C][C]3772.21686335509[/C][C]687.783136644908[/C][/ROW]
[ROW][C]108[/C][C]3420[/C][C]4293.47567950946[/C][C]-873.475679509456[/C][/ROW]
[ROW][C]109[/C][C]5180[/C][C]3631.48373120178[/C][C]1548.51626879822[/C][/ROW]
[ROW][C]110[/C][C]5310[/C][C]4805.07714177455[/C][C]504.922858225453[/C][/ROW]
[ROW][C]111[/C][C]4870[/C][C]5187.74934948784[/C][C]-317.749349487836[/C][/ROW]
[ROW][C]112[/C][C]4550[/C][C]4946.93267207436[/C][C]-396.932672074356[/C][/ROW]
[ROW][C]113[/C][C]4510[/C][C]4646.10433867297[/C][C]-136.104338672967[/C][/ROW]
[ROW][C]114[/C][C]4380[/C][C]4542.95323962709[/C][C]-162.953239627089[/C][/ROW]
[ROW][C]115[/C][C]5260[/C][C]4419.45382789262[/C][C]840.546172107381[/C][/ROW]
[ROW][C]116[/C][C]5270[/C][C]5056.48907817963[/C][C]213.510921820368[/C][/ROW]
[ROW][C]117[/C][C]4610[/C][C]5218.30527345162[/C][C]-608.305273451619[/C][/ROW]
[ROW][C]118[/C][C]4840[/C][C]4757.28134046218[/C][C]82.7186595378189[/C][/ROW]
[ROW][C]119[/C][C]5050[/C][C]4819.9723665244[/C][C]230.027633475602[/C][/ROW]
[ROW][C]120[/C][C]4760[/C][C]4994.30628883193[/C][C]-234.306288831927[/C][/ROW]
[ROW][C]121[/C][C]5210[/C][C]4816.72964842484[/C][C]393.270351575162[/C][/ROW]
[ROW][C]122[/C][C]5540[/C][C]5114.78237314076[/C][C]425.217626859237[/C][/ROW]
[ROW][C]123[/C][C]4830[/C][C]5437.04737932548[/C][C]-607.047379325479[/C][/ROW]
[ROW][C]124[/C][C]5210[/C][C]4976.97678230505[/C][C]233.023217694954[/C][/ROW]
[ROW][C]125[/C][C]5320[/C][C]5153.58100552674[/C][C]166.418994473263[/C][/ROW]
[ROW][C]126[/C][C]5150[/C][C]5279.7070522744[/C][C]-129.707052274404[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302356&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302356&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Interpolation Forecasts of Exponential Smoothing
tObservedFittedResiduals
223602850-490
328802478.63756566991401.362434330091
430002782.82313844843217.176861551573
531202947.41768535855172.582314641448
629103078.21480472094-168.214804720939
733802950.72774477904429.272255220956
837303276.06568292031453.934317079686
929603620.09456662782-660.094566627823
1040703119.82043366665950.17956633335
1146603839.94491694066820.055083059345
1238804461.45032904205-581.450329042049
1341904020.77928897044169.220711029559
1441404149.02870771943-9.02870771943253
1540604142.18600796934-82.1860079693442
1642504079.89866921961170.101330780386
1743804208.81549428368171.184505716321
1847804338.55323869675441.446761303247
1944604673.11802217575-213.11802217575
2048204511.59959867616308.400401323844
2145804745.33087170473-165.330871704727
2246304620.02949418199.97050581809617
2350304627.58596624744402.414033752564
2443704932.56852784528-562.56852784528
2542404506.20767482871-266.207674828711
2642204304.45353164148-84.4535316414795
2740704240.44767633913-170.447676339126
2842904111.26836203054178.731637969457
2943404246.7259460471693.2740539528404
3042504317.4167210181-67.416721018104
3145204266.32276666742253.677233332581
3246804458.58030728887221.419692711132
3342004626.39042176606-426.390421766065
3444904303.23657482304186.763425176956
3548404444.78130996088395.218690039119
3638404744.31064633981-904.310646339814
3739404058.9494156962-118.9494156962
3835103968.79973288991-458.799732889909
3932403621.08343559197-381.083435591966
4034103332.2669614607377.7330385392725
4132903391.17947252158-101.179472521583
4231903314.49731901169-124.497319011686
4337903220.14297726526569.857022734742
4440903652.02765314867437.97234685133
4541803983.95923865066196.040761349345
4650204132.53510469681887.464895303188
4759104805.129235109651104.87076489035
4858505642.49147361951207.508526380493
4966605799.75855831524860.241441684759
5069506451.72050912275498.279490877251
5168506829.3578248552720.6421751447324
5263606845.00216855244-485.002168552443
5356006477.42750330957-877.427503309569
5452905812.44053682546-522.440536825457
5556305416.49198672705213.508013272954
5654105578.30597766179-168.305977661792
5750205450.74981934182-430.749819341815
5850705124.29206118258-54.2920611825839
5953705083.1450570896286.8549429104
6048605300.5474038219-440.547403821896
6144404966.66422765638-526.664227656384
6242204567.51461611138-347.514616111381
6337204304.13936344932-584.139363449321
6436503861.43035120734-211.430351207342
6536503701.1909840326-51.190984032598
6630403662.39423210178-622.394232101785
6735303190.69252363989339.307476360105
6835203447.8477285531472.1522714468638
6930303502.53067379182-472.530673791815
7029203144.40793641433-224.407936414333
7135302974.33308427185555.666915728154
7229203395.46332611164-475.463326111643
7335203035.11798280654484.882017193462
7433803402.6015874348-22.6015874348013
7529203385.47223941539-465.472239415389
7630003032.6989660636-32.6989660635982
7728603007.91699129328-147.916991293282
7827602895.81328932296-135.813289322964
7928102792.8827714916317.1172285083685
8034002805.85561975255594.144380247446
8127303256.14725932854-526.147259328543
8226702857.38944904211-187.389449042108
8329002715.37026136037184.62973863963
8422402855.29791277045-615.297912770455
8529202388.97438067931531.025619320688
8626502791.42941472538-141.429414725383
8723702684.24253362682-314.242533626815
8825602446.0836106519113.916389348102
8924302532.41885077109-102.418850771093
9019302454.79739415141-524.797394151413
9123602057.06262308579302.937376914213
9224702286.6535654132183.346434586796
9327202425.60862311503294.391376884969
9427502648.72270141256101.27729858744
9530102725.47899558768284.521004412323
9626102941.11249113176-331.112491131764
9734402690.16812226688749.831877733119
9835403258.4525946205281.547405379499
9927903471.83245143897-681.832451438974
10030602955.0835555785104.916444421497
10130503034.5978947654915.4021052345074
10230003046.27088107916-46.2708810791555
10332003011.20298916864188.797010831362
10435303154.28894332492375.711056675078
10536403439.03378538939200.966214610613
10638303591.34256636061238.657433639387
10744603772.21686335509687.783136644908
10834204293.47567950946-873.475679509456
10951803631.483731201781548.51626879822
11053104805.07714177455504.922858225453
11148705187.74934948784-317.749349487836
11245504946.93267207436-396.932672074356
11345104646.10433867297-136.104338672967
11443804542.95323962709-162.953239627089
11552604419.45382789262840.546172107381
11652705056.48907817963213.510921820368
11746105218.30527345162-608.305273451619
11848404757.2813404621882.7186595378189
11950504819.9723665244230.027633475602
12047604994.30628883193-234.306288831927
12152104816.72964842484393.270351575162
12255405114.78237314076425.217626859237
12348305437.04737932548-607.047379325479
12452104976.97678230505233.023217694954
12553205153.58100552674166.418994473263
12651505279.7070522744-129.707052274404







Extrapolation Forecasts of Exponential Smoothing
tForecast95% Lower Bound95% Upper Bound
1275181.40434475934322.951561532686039.85712798591
1285181.40434475934104.264700201666258.54398931693
1295181.40434475933923.025051093846439.78363842476
1305181.40434475933764.786160641146598.02252887745
1315181.40434475933622.527918475796740.2807710428
1325181.40434475933492.207983979816870.60070553878
1335181.40434475933371.246070431086991.56261908751
1345181.40434475933257.875917371987104.93277214661
1355181.40434475933150.825549485567211.98314003304
1365181.40434475933049.142898157697313.6657913609
1375181.40434475932952.093350413337410.71533910526
1385181.40434475932859.095979713857503.71270980474

\begin{tabular}{lllllllll}
\hline
Extrapolation Forecasts of Exponential Smoothing \tabularnewline
t & Forecast & 95% Lower Bound & 95% Upper Bound \tabularnewline
127 & 5181.4043447593 & 4322.95156153268 & 6039.85712798591 \tabularnewline
128 & 5181.4043447593 & 4104.26470020166 & 6258.54398931693 \tabularnewline
129 & 5181.4043447593 & 3923.02505109384 & 6439.78363842476 \tabularnewline
130 & 5181.4043447593 & 3764.78616064114 & 6598.02252887745 \tabularnewline
131 & 5181.4043447593 & 3622.52791847579 & 6740.2807710428 \tabularnewline
132 & 5181.4043447593 & 3492.20798397981 & 6870.60070553878 \tabularnewline
133 & 5181.4043447593 & 3371.24607043108 & 6991.56261908751 \tabularnewline
134 & 5181.4043447593 & 3257.87591737198 & 7104.93277214661 \tabularnewline
135 & 5181.4043447593 & 3150.82554948556 & 7211.98314003304 \tabularnewline
136 & 5181.4043447593 & 3049.14289815769 & 7313.6657913609 \tabularnewline
137 & 5181.4043447593 & 2952.09335041333 & 7410.71533910526 \tabularnewline
138 & 5181.4043447593 & 2859.09597971385 & 7503.71270980474 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302356&T=3

[TABLE]
[ROW][C]Extrapolation Forecasts of Exponential Smoothing[/C][/ROW]
[ROW][C]t[/C][C]Forecast[/C][C]95% Lower Bound[/C][C]95% Upper Bound[/C][/ROW]
[ROW][C]127[/C][C]5181.4043447593[/C][C]4322.95156153268[/C][C]6039.85712798591[/C][/ROW]
[ROW][C]128[/C][C]5181.4043447593[/C][C]4104.26470020166[/C][C]6258.54398931693[/C][/ROW]
[ROW][C]129[/C][C]5181.4043447593[/C][C]3923.02505109384[/C][C]6439.78363842476[/C][/ROW]
[ROW][C]130[/C][C]5181.4043447593[/C][C]3764.78616064114[/C][C]6598.02252887745[/C][/ROW]
[ROW][C]131[/C][C]5181.4043447593[/C][C]3622.52791847579[/C][C]6740.2807710428[/C][/ROW]
[ROW][C]132[/C][C]5181.4043447593[/C][C]3492.20798397981[/C][C]6870.60070553878[/C][/ROW]
[ROW][C]133[/C][C]5181.4043447593[/C][C]3371.24607043108[/C][C]6991.56261908751[/C][/ROW]
[ROW][C]134[/C][C]5181.4043447593[/C][C]3257.87591737198[/C][C]7104.93277214661[/C][/ROW]
[ROW][C]135[/C][C]5181.4043447593[/C][C]3150.82554948556[/C][C]7211.98314003304[/C][/ROW]
[ROW][C]136[/C][C]5181.4043447593[/C][C]3049.14289815769[/C][C]7313.6657913609[/C][/ROW]
[ROW][C]137[/C][C]5181.4043447593[/C][C]2952.09335041333[/C][C]7410.71533910526[/C][/ROW]
[ROW][C]138[/C][C]5181.4043447593[/C][C]2859.09597971385[/C][C]7503.71270980474[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302356&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302356&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Extrapolation Forecasts of Exponential Smoothing
tForecast95% Lower Bound95% Upper Bound
1275181.40434475934322.951561532686039.85712798591
1285181.40434475934104.264700201666258.54398931693
1295181.40434475933923.025051093846439.78363842476
1305181.40434475933764.786160641146598.02252887745
1315181.40434475933622.527918475796740.2807710428
1325181.40434475933492.207983979816870.60070553878
1335181.40434475933371.246070431086991.56261908751
1345181.40434475933257.875917371987104.93277214661
1355181.40434475933150.825549485567211.98314003304
1365181.40434475933049.142898157697313.6657913609
1375181.40434475932952.093350413337410.71533910526
1385181.40434475932859.095979713857503.71270980474



Parameters (Session):
par1 = 12 ; par2 = Single ; par3 = additive ; par4 = 12 ;
Parameters (R input):
par1 = 12 ; par2 = Single ; par3 = additive ; par4 = 12 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
par4 <- as.numeric(par4)
if (par2 == 'Single') K <- 1
if (par2 == 'Double') K <- 2
if (par2 == 'Triple') K <- par1
nx <- length(x)
nxmK <- nx - K
x <- ts(x, frequency = par1)
if (par2 == 'Single') fit <- HoltWinters(x, gamma=F, beta=F)
if (par2 == 'Double') fit <- HoltWinters(x, gamma=F)
if (par2 == 'Triple') fit <- HoltWinters(x, seasonal=par3)
fit
myresid <- x - fit$fitted[,'xhat']
bitmap(file='test1.png')
op <- par(mfrow=c(2,1))
plot(fit,ylab='Observed (black) / Fitted (red)',main='Interpolation Fit of Exponential Smoothing')
plot(myresid,ylab='Residuals',main='Interpolation Prediction Errors')
par(op)
dev.off()
bitmap(file='test2.png')
p <- predict(fit, par4, prediction.interval=TRUE)
np <- length(p[,1])
plot(fit,p,ylab='Observed (black) / Fitted (red)',main='Extrapolation Fit of Exponential Smoothing')
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(myresid),lag.max = nx/2,main='Residual ACF')
spectrum(myresid,main='Residals Periodogram')
cpgram(myresid,main='Residal Cumulative Periodogram')
qqnorm(myresid,main='Residual Normal QQ Plot')
qqline(myresid)
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimated Parameters of Exponential Smoothing',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'Value',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,fit$alpha)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,fit$beta)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'gamma',header=TRUE)
a<-table.element(a,fit$gamma)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Interpolation Forecasts of Exponential Smoothing',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Fitted',header=TRUE)
a<-table.element(a,'Residuals',header=TRUE)
a<-table.row.end(a)
for (i in 1:nxmK) {
a<-table.row.start(a)
a<-table.element(a,i+K,header=TRUE)
a<-table.element(a,x[i+K])
a<-table.element(a,fit$fitted[i,'xhat'])
a<-table.element(a,myresid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Extrapolation Forecasts of Exponential Smoothing',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Forecast',header=TRUE)
a<-table.element(a,'95% Lower Bound',header=TRUE)
a<-table.element(a,'95% Upper Bound',header=TRUE)
a<-table.row.end(a)
for (i in 1:np) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,p[i,'fit'])
a<-table.element(a,p[i,'lwr'])
a<-table.element(a,p[i,'upr'])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')