Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_decompose.wasp
Title produced by softwareClassical Decomposition
Date of computationWed, 21 Dec 2016 14:34:33 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/21/t1482327355uz8js9dfwjztgs9.htm/, Retrieved Fri, 01 Nov 2024 03:39:24 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=302275, Retrieved Fri, 01 Nov 2024 03:39:24 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact81
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Classical Decomposition] [Classical Decompo...] [2016-12-21 13:34:33] [c6c2c19ee5e10dd65276916b11a37d00] [Current]
Feedback Forum

Post a new message
Dataseries X:
7020
6240
6040
6580
5900
6100
6460
8740
6940
7260
7380
7640
6640
5860
6160
5580
6140
5680
5740
6280
7060
6820
6560
6100
5860
5780
5220
5080
4840
5040
4420
5160
5240
5560
6120
5300
5540
4520
5160
4740
4480
4520
4640
4720
4700
5060
5500
4980
5100
4620
4960
4640
4660
4920
4540
4660
4840
5260
4640
5020
6420
4300
4680
4540
4240
4540
4740
5160
5200
5420
5140
4600
4800
4840
4720
4600
4340
4460
4360
4720
4920
5000
4680
4480
4840
4480
4500
4380
4460
4540
4920
4600
4880
5120
4560
4520
4600
4580
4360
4540
4420
4680
4760
4940
4780
5340
5140
4700




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302275&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=302275&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302275&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
17020NANA294.922NA
26240NANA-278.932NA
36040NANA-150.391NA
46580NANA-336.641NA
55900NANA-379.974NA
66100NANA-252.995NA
764606532.216842.5-310.286-72.2135
887407049.36810.83238.4641690.7
969407023.366800223.359-83.3594
1072607221.076763.33457.73438.9323
1173807092.736731.67361.068287.266
1276406857.846724.17133.672782.161
1366406971.596676.67294.922-331.589
1458606265.236544.17-278.932-405.234
1561606296.286446.67-150.391-136.276
1655806096.696433.33-336.641-516.693
1761406000.866380.83-379.974139.141
1856806029.516282.5-252.995-349.505
1957405875.556185.83-310.286-135.547
2062806388.466150238.464-108.464
2170606330.866107.5223.359729.141
2268206505.236047.5457.734314.766
2365606333.575972.5361.068226.432
2461006025.345891.67133.67274.6615
2558606104.925810294.922-244.922
2657805429.45708.33-278.932350.599
2752205435.445585.83-150.391-215.443
2850805120.865457.5-336.641-40.8594
2948405006.695386.67-379.974-166.693
3050405082.015335-252.995-42.0052
3144204978.055288.33-310.286-558.047
3251605460.965222.5238.464-300.964
3352405390.865167.5223.359-150.859
3455605608.575150.83457.734-48.5677
3561205482.735121.67361.068637.266
3653005218.675085133.67281.3281
3755405367.425072.5294.922172.578
3845204784.45063.33-278.932-264.401
3951604872.115022.5-150.391287.891
4047404642.534979.17-336.64197.474
4144804552.534932.5-379.974-72.526
4245204640.344893.33-252.995-120.339
4346404551.384861.67-310.28688.6198
4447205085.964847.5238.464-365.964
4547005066.694843.33223.359-366.693
4650605288.574830.83457.734-228.568
4755005195.234834.17361.068304.766
4849804992.014858.33133.672-12.0052
4951005165.764870.83294.922-65.7552
5046204585.234864.17-278.93234.7656
5149604717.114867.5-150.391242.891
5246404545.034881.67-336.64194.974
5346604474.194854.17-379.974185.807
5449204567.014820-252.995352.995
5545404566.384876.67-310.286-26.3802
5646605156.84918.33238.464-496.797
5748405116.694893.33223.359-276.693
5852605335.234877.5457.734-75.2344
5946405216.94855.83361.068-576.901
6050204956.174822.5133.67263.8281
6164205109.924815294.9221310.08
6243004565.234844.17-278.932-265.234
6346804729.614880-150.391-49.6094
6445404565.034901.67-336.641-25.026
6542404549.194929.17-379.974-309.193
6645404679.514932.5-252.995-139.505
6747404537.214847.5-310.286202.786
6851605040.964802.5238.464119.036
6952005050.034826.67223.359149.974
7054205288.574830.83457.734131.432
7151405198.574837.5361.068-58.5677
7246004972.014838.33133.672-372.005
7348005114.094819.17294.922-314.089
7448404506.074785-278.932333.932
7547204604.614755-150.391115.391
7646004389.194725.83-336.641210.807
7743404309.194689.17-379.97430.8073
7844604412.014665-252.99547.9948
7943604351.384661.67-310.2868.61979
8047204886.84648.33238.464-166.797
8149204847.534624.17223.35972.474
8250005063.574605.83457.734-63.5677
8346804962.734601.67361.068-282.734
8444804743.674610133.672-263.672
8548404931.594636.67294.922-91.5885
8644804376.074655-278.932103.932
8745004497.944648.33-150.3912.05729
8843804315.034651.67-336.64164.974
8944604271.694651.67-379.974188.307
9045404395.344648.33-252.995144.661
9149204329.714640-310.286590.286
9246004872.634634.17238.464-272.63
9348804855.864632.5223.35924.1406
9451205091.074633.33457.73428.9323
9545604999.44638.33361.068-439.401
9645204776.174642.5133.672-256.172
9746004936.594641.67294.922-336.589
9845804370.234649.17-278.932209.766
9943604508.784659.17-150.391-148.776
10045404327.534664.17-336.641212.474
10144204317.534697.5-379.974102.474
10246804476.174729.17-252.995203.828
1034760NANA-310.286NA
1044940NANA238.464NA
1054780NANA223.359NA
1065340NANA457.734NA
1075140NANA361.068NA
1084700NANA133.672NA

\begin{tabular}{lllllllll}
\hline
Classical Decomposition by Moving Averages \tabularnewline
t & Observations & Fit & Trend & Seasonal & Random \tabularnewline
1 & 7020 & NA & NA & 294.922 & NA \tabularnewline
2 & 6240 & NA & NA & -278.932 & NA \tabularnewline
3 & 6040 & NA & NA & -150.391 & NA \tabularnewline
4 & 6580 & NA & NA & -336.641 & NA \tabularnewline
5 & 5900 & NA & NA & -379.974 & NA \tabularnewline
6 & 6100 & NA & NA & -252.995 & NA \tabularnewline
7 & 6460 & 6532.21 & 6842.5 & -310.286 & -72.2135 \tabularnewline
8 & 8740 & 7049.3 & 6810.83 & 238.464 & 1690.7 \tabularnewline
9 & 6940 & 7023.36 & 6800 & 223.359 & -83.3594 \tabularnewline
10 & 7260 & 7221.07 & 6763.33 & 457.734 & 38.9323 \tabularnewline
11 & 7380 & 7092.73 & 6731.67 & 361.068 & 287.266 \tabularnewline
12 & 7640 & 6857.84 & 6724.17 & 133.672 & 782.161 \tabularnewline
13 & 6640 & 6971.59 & 6676.67 & 294.922 & -331.589 \tabularnewline
14 & 5860 & 6265.23 & 6544.17 & -278.932 & -405.234 \tabularnewline
15 & 6160 & 6296.28 & 6446.67 & -150.391 & -136.276 \tabularnewline
16 & 5580 & 6096.69 & 6433.33 & -336.641 & -516.693 \tabularnewline
17 & 6140 & 6000.86 & 6380.83 & -379.974 & 139.141 \tabularnewline
18 & 5680 & 6029.51 & 6282.5 & -252.995 & -349.505 \tabularnewline
19 & 5740 & 5875.55 & 6185.83 & -310.286 & -135.547 \tabularnewline
20 & 6280 & 6388.46 & 6150 & 238.464 & -108.464 \tabularnewline
21 & 7060 & 6330.86 & 6107.5 & 223.359 & 729.141 \tabularnewline
22 & 6820 & 6505.23 & 6047.5 & 457.734 & 314.766 \tabularnewline
23 & 6560 & 6333.57 & 5972.5 & 361.068 & 226.432 \tabularnewline
24 & 6100 & 6025.34 & 5891.67 & 133.672 & 74.6615 \tabularnewline
25 & 5860 & 6104.92 & 5810 & 294.922 & -244.922 \tabularnewline
26 & 5780 & 5429.4 & 5708.33 & -278.932 & 350.599 \tabularnewline
27 & 5220 & 5435.44 & 5585.83 & -150.391 & -215.443 \tabularnewline
28 & 5080 & 5120.86 & 5457.5 & -336.641 & -40.8594 \tabularnewline
29 & 4840 & 5006.69 & 5386.67 & -379.974 & -166.693 \tabularnewline
30 & 5040 & 5082.01 & 5335 & -252.995 & -42.0052 \tabularnewline
31 & 4420 & 4978.05 & 5288.33 & -310.286 & -558.047 \tabularnewline
32 & 5160 & 5460.96 & 5222.5 & 238.464 & -300.964 \tabularnewline
33 & 5240 & 5390.86 & 5167.5 & 223.359 & -150.859 \tabularnewline
34 & 5560 & 5608.57 & 5150.83 & 457.734 & -48.5677 \tabularnewline
35 & 6120 & 5482.73 & 5121.67 & 361.068 & 637.266 \tabularnewline
36 & 5300 & 5218.67 & 5085 & 133.672 & 81.3281 \tabularnewline
37 & 5540 & 5367.42 & 5072.5 & 294.922 & 172.578 \tabularnewline
38 & 4520 & 4784.4 & 5063.33 & -278.932 & -264.401 \tabularnewline
39 & 5160 & 4872.11 & 5022.5 & -150.391 & 287.891 \tabularnewline
40 & 4740 & 4642.53 & 4979.17 & -336.641 & 97.474 \tabularnewline
41 & 4480 & 4552.53 & 4932.5 & -379.974 & -72.526 \tabularnewline
42 & 4520 & 4640.34 & 4893.33 & -252.995 & -120.339 \tabularnewline
43 & 4640 & 4551.38 & 4861.67 & -310.286 & 88.6198 \tabularnewline
44 & 4720 & 5085.96 & 4847.5 & 238.464 & -365.964 \tabularnewline
45 & 4700 & 5066.69 & 4843.33 & 223.359 & -366.693 \tabularnewline
46 & 5060 & 5288.57 & 4830.83 & 457.734 & -228.568 \tabularnewline
47 & 5500 & 5195.23 & 4834.17 & 361.068 & 304.766 \tabularnewline
48 & 4980 & 4992.01 & 4858.33 & 133.672 & -12.0052 \tabularnewline
49 & 5100 & 5165.76 & 4870.83 & 294.922 & -65.7552 \tabularnewline
50 & 4620 & 4585.23 & 4864.17 & -278.932 & 34.7656 \tabularnewline
51 & 4960 & 4717.11 & 4867.5 & -150.391 & 242.891 \tabularnewline
52 & 4640 & 4545.03 & 4881.67 & -336.641 & 94.974 \tabularnewline
53 & 4660 & 4474.19 & 4854.17 & -379.974 & 185.807 \tabularnewline
54 & 4920 & 4567.01 & 4820 & -252.995 & 352.995 \tabularnewline
55 & 4540 & 4566.38 & 4876.67 & -310.286 & -26.3802 \tabularnewline
56 & 4660 & 5156.8 & 4918.33 & 238.464 & -496.797 \tabularnewline
57 & 4840 & 5116.69 & 4893.33 & 223.359 & -276.693 \tabularnewline
58 & 5260 & 5335.23 & 4877.5 & 457.734 & -75.2344 \tabularnewline
59 & 4640 & 5216.9 & 4855.83 & 361.068 & -576.901 \tabularnewline
60 & 5020 & 4956.17 & 4822.5 & 133.672 & 63.8281 \tabularnewline
61 & 6420 & 5109.92 & 4815 & 294.922 & 1310.08 \tabularnewline
62 & 4300 & 4565.23 & 4844.17 & -278.932 & -265.234 \tabularnewline
63 & 4680 & 4729.61 & 4880 & -150.391 & -49.6094 \tabularnewline
64 & 4540 & 4565.03 & 4901.67 & -336.641 & -25.026 \tabularnewline
65 & 4240 & 4549.19 & 4929.17 & -379.974 & -309.193 \tabularnewline
66 & 4540 & 4679.51 & 4932.5 & -252.995 & -139.505 \tabularnewline
67 & 4740 & 4537.21 & 4847.5 & -310.286 & 202.786 \tabularnewline
68 & 5160 & 5040.96 & 4802.5 & 238.464 & 119.036 \tabularnewline
69 & 5200 & 5050.03 & 4826.67 & 223.359 & 149.974 \tabularnewline
70 & 5420 & 5288.57 & 4830.83 & 457.734 & 131.432 \tabularnewline
71 & 5140 & 5198.57 & 4837.5 & 361.068 & -58.5677 \tabularnewline
72 & 4600 & 4972.01 & 4838.33 & 133.672 & -372.005 \tabularnewline
73 & 4800 & 5114.09 & 4819.17 & 294.922 & -314.089 \tabularnewline
74 & 4840 & 4506.07 & 4785 & -278.932 & 333.932 \tabularnewline
75 & 4720 & 4604.61 & 4755 & -150.391 & 115.391 \tabularnewline
76 & 4600 & 4389.19 & 4725.83 & -336.641 & 210.807 \tabularnewline
77 & 4340 & 4309.19 & 4689.17 & -379.974 & 30.8073 \tabularnewline
78 & 4460 & 4412.01 & 4665 & -252.995 & 47.9948 \tabularnewline
79 & 4360 & 4351.38 & 4661.67 & -310.286 & 8.61979 \tabularnewline
80 & 4720 & 4886.8 & 4648.33 & 238.464 & -166.797 \tabularnewline
81 & 4920 & 4847.53 & 4624.17 & 223.359 & 72.474 \tabularnewline
82 & 5000 & 5063.57 & 4605.83 & 457.734 & -63.5677 \tabularnewline
83 & 4680 & 4962.73 & 4601.67 & 361.068 & -282.734 \tabularnewline
84 & 4480 & 4743.67 & 4610 & 133.672 & -263.672 \tabularnewline
85 & 4840 & 4931.59 & 4636.67 & 294.922 & -91.5885 \tabularnewline
86 & 4480 & 4376.07 & 4655 & -278.932 & 103.932 \tabularnewline
87 & 4500 & 4497.94 & 4648.33 & -150.391 & 2.05729 \tabularnewline
88 & 4380 & 4315.03 & 4651.67 & -336.641 & 64.974 \tabularnewline
89 & 4460 & 4271.69 & 4651.67 & -379.974 & 188.307 \tabularnewline
90 & 4540 & 4395.34 & 4648.33 & -252.995 & 144.661 \tabularnewline
91 & 4920 & 4329.71 & 4640 & -310.286 & 590.286 \tabularnewline
92 & 4600 & 4872.63 & 4634.17 & 238.464 & -272.63 \tabularnewline
93 & 4880 & 4855.86 & 4632.5 & 223.359 & 24.1406 \tabularnewline
94 & 5120 & 5091.07 & 4633.33 & 457.734 & 28.9323 \tabularnewline
95 & 4560 & 4999.4 & 4638.33 & 361.068 & -439.401 \tabularnewline
96 & 4520 & 4776.17 & 4642.5 & 133.672 & -256.172 \tabularnewline
97 & 4600 & 4936.59 & 4641.67 & 294.922 & -336.589 \tabularnewline
98 & 4580 & 4370.23 & 4649.17 & -278.932 & 209.766 \tabularnewline
99 & 4360 & 4508.78 & 4659.17 & -150.391 & -148.776 \tabularnewline
100 & 4540 & 4327.53 & 4664.17 & -336.641 & 212.474 \tabularnewline
101 & 4420 & 4317.53 & 4697.5 & -379.974 & 102.474 \tabularnewline
102 & 4680 & 4476.17 & 4729.17 & -252.995 & 203.828 \tabularnewline
103 & 4760 & NA & NA & -310.286 & NA \tabularnewline
104 & 4940 & NA & NA & 238.464 & NA \tabularnewline
105 & 4780 & NA & NA & 223.359 & NA \tabularnewline
106 & 5340 & NA & NA & 457.734 & NA \tabularnewline
107 & 5140 & NA & NA & 361.068 & NA \tabularnewline
108 & 4700 & NA & NA & 133.672 & NA \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302275&T=1

[TABLE]
[ROW][C]Classical Decomposition by Moving Averages[/C][/ROW]
[ROW][C]t[/C][C]Observations[/C][C]Fit[/C][C]Trend[/C][C]Seasonal[/C][C]Random[/C][/ROW]
[ROW][C]1[/C][C]7020[/C][C]NA[/C][C]NA[/C][C]294.922[/C][C]NA[/C][/ROW]
[ROW][C]2[/C][C]6240[/C][C]NA[/C][C]NA[/C][C]-278.932[/C][C]NA[/C][/ROW]
[ROW][C]3[/C][C]6040[/C][C]NA[/C][C]NA[/C][C]-150.391[/C][C]NA[/C][/ROW]
[ROW][C]4[/C][C]6580[/C][C]NA[/C][C]NA[/C][C]-336.641[/C][C]NA[/C][/ROW]
[ROW][C]5[/C][C]5900[/C][C]NA[/C][C]NA[/C][C]-379.974[/C][C]NA[/C][/ROW]
[ROW][C]6[/C][C]6100[/C][C]NA[/C][C]NA[/C][C]-252.995[/C][C]NA[/C][/ROW]
[ROW][C]7[/C][C]6460[/C][C]6532.21[/C][C]6842.5[/C][C]-310.286[/C][C]-72.2135[/C][/ROW]
[ROW][C]8[/C][C]8740[/C][C]7049.3[/C][C]6810.83[/C][C]238.464[/C][C]1690.7[/C][/ROW]
[ROW][C]9[/C][C]6940[/C][C]7023.36[/C][C]6800[/C][C]223.359[/C][C]-83.3594[/C][/ROW]
[ROW][C]10[/C][C]7260[/C][C]7221.07[/C][C]6763.33[/C][C]457.734[/C][C]38.9323[/C][/ROW]
[ROW][C]11[/C][C]7380[/C][C]7092.73[/C][C]6731.67[/C][C]361.068[/C][C]287.266[/C][/ROW]
[ROW][C]12[/C][C]7640[/C][C]6857.84[/C][C]6724.17[/C][C]133.672[/C][C]782.161[/C][/ROW]
[ROW][C]13[/C][C]6640[/C][C]6971.59[/C][C]6676.67[/C][C]294.922[/C][C]-331.589[/C][/ROW]
[ROW][C]14[/C][C]5860[/C][C]6265.23[/C][C]6544.17[/C][C]-278.932[/C][C]-405.234[/C][/ROW]
[ROW][C]15[/C][C]6160[/C][C]6296.28[/C][C]6446.67[/C][C]-150.391[/C][C]-136.276[/C][/ROW]
[ROW][C]16[/C][C]5580[/C][C]6096.69[/C][C]6433.33[/C][C]-336.641[/C][C]-516.693[/C][/ROW]
[ROW][C]17[/C][C]6140[/C][C]6000.86[/C][C]6380.83[/C][C]-379.974[/C][C]139.141[/C][/ROW]
[ROW][C]18[/C][C]5680[/C][C]6029.51[/C][C]6282.5[/C][C]-252.995[/C][C]-349.505[/C][/ROW]
[ROW][C]19[/C][C]5740[/C][C]5875.55[/C][C]6185.83[/C][C]-310.286[/C][C]-135.547[/C][/ROW]
[ROW][C]20[/C][C]6280[/C][C]6388.46[/C][C]6150[/C][C]238.464[/C][C]-108.464[/C][/ROW]
[ROW][C]21[/C][C]7060[/C][C]6330.86[/C][C]6107.5[/C][C]223.359[/C][C]729.141[/C][/ROW]
[ROW][C]22[/C][C]6820[/C][C]6505.23[/C][C]6047.5[/C][C]457.734[/C][C]314.766[/C][/ROW]
[ROW][C]23[/C][C]6560[/C][C]6333.57[/C][C]5972.5[/C][C]361.068[/C][C]226.432[/C][/ROW]
[ROW][C]24[/C][C]6100[/C][C]6025.34[/C][C]5891.67[/C][C]133.672[/C][C]74.6615[/C][/ROW]
[ROW][C]25[/C][C]5860[/C][C]6104.92[/C][C]5810[/C][C]294.922[/C][C]-244.922[/C][/ROW]
[ROW][C]26[/C][C]5780[/C][C]5429.4[/C][C]5708.33[/C][C]-278.932[/C][C]350.599[/C][/ROW]
[ROW][C]27[/C][C]5220[/C][C]5435.44[/C][C]5585.83[/C][C]-150.391[/C][C]-215.443[/C][/ROW]
[ROW][C]28[/C][C]5080[/C][C]5120.86[/C][C]5457.5[/C][C]-336.641[/C][C]-40.8594[/C][/ROW]
[ROW][C]29[/C][C]4840[/C][C]5006.69[/C][C]5386.67[/C][C]-379.974[/C][C]-166.693[/C][/ROW]
[ROW][C]30[/C][C]5040[/C][C]5082.01[/C][C]5335[/C][C]-252.995[/C][C]-42.0052[/C][/ROW]
[ROW][C]31[/C][C]4420[/C][C]4978.05[/C][C]5288.33[/C][C]-310.286[/C][C]-558.047[/C][/ROW]
[ROW][C]32[/C][C]5160[/C][C]5460.96[/C][C]5222.5[/C][C]238.464[/C][C]-300.964[/C][/ROW]
[ROW][C]33[/C][C]5240[/C][C]5390.86[/C][C]5167.5[/C][C]223.359[/C][C]-150.859[/C][/ROW]
[ROW][C]34[/C][C]5560[/C][C]5608.57[/C][C]5150.83[/C][C]457.734[/C][C]-48.5677[/C][/ROW]
[ROW][C]35[/C][C]6120[/C][C]5482.73[/C][C]5121.67[/C][C]361.068[/C][C]637.266[/C][/ROW]
[ROW][C]36[/C][C]5300[/C][C]5218.67[/C][C]5085[/C][C]133.672[/C][C]81.3281[/C][/ROW]
[ROW][C]37[/C][C]5540[/C][C]5367.42[/C][C]5072.5[/C][C]294.922[/C][C]172.578[/C][/ROW]
[ROW][C]38[/C][C]4520[/C][C]4784.4[/C][C]5063.33[/C][C]-278.932[/C][C]-264.401[/C][/ROW]
[ROW][C]39[/C][C]5160[/C][C]4872.11[/C][C]5022.5[/C][C]-150.391[/C][C]287.891[/C][/ROW]
[ROW][C]40[/C][C]4740[/C][C]4642.53[/C][C]4979.17[/C][C]-336.641[/C][C]97.474[/C][/ROW]
[ROW][C]41[/C][C]4480[/C][C]4552.53[/C][C]4932.5[/C][C]-379.974[/C][C]-72.526[/C][/ROW]
[ROW][C]42[/C][C]4520[/C][C]4640.34[/C][C]4893.33[/C][C]-252.995[/C][C]-120.339[/C][/ROW]
[ROW][C]43[/C][C]4640[/C][C]4551.38[/C][C]4861.67[/C][C]-310.286[/C][C]88.6198[/C][/ROW]
[ROW][C]44[/C][C]4720[/C][C]5085.96[/C][C]4847.5[/C][C]238.464[/C][C]-365.964[/C][/ROW]
[ROW][C]45[/C][C]4700[/C][C]5066.69[/C][C]4843.33[/C][C]223.359[/C][C]-366.693[/C][/ROW]
[ROW][C]46[/C][C]5060[/C][C]5288.57[/C][C]4830.83[/C][C]457.734[/C][C]-228.568[/C][/ROW]
[ROW][C]47[/C][C]5500[/C][C]5195.23[/C][C]4834.17[/C][C]361.068[/C][C]304.766[/C][/ROW]
[ROW][C]48[/C][C]4980[/C][C]4992.01[/C][C]4858.33[/C][C]133.672[/C][C]-12.0052[/C][/ROW]
[ROW][C]49[/C][C]5100[/C][C]5165.76[/C][C]4870.83[/C][C]294.922[/C][C]-65.7552[/C][/ROW]
[ROW][C]50[/C][C]4620[/C][C]4585.23[/C][C]4864.17[/C][C]-278.932[/C][C]34.7656[/C][/ROW]
[ROW][C]51[/C][C]4960[/C][C]4717.11[/C][C]4867.5[/C][C]-150.391[/C][C]242.891[/C][/ROW]
[ROW][C]52[/C][C]4640[/C][C]4545.03[/C][C]4881.67[/C][C]-336.641[/C][C]94.974[/C][/ROW]
[ROW][C]53[/C][C]4660[/C][C]4474.19[/C][C]4854.17[/C][C]-379.974[/C][C]185.807[/C][/ROW]
[ROW][C]54[/C][C]4920[/C][C]4567.01[/C][C]4820[/C][C]-252.995[/C][C]352.995[/C][/ROW]
[ROW][C]55[/C][C]4540[/C][C]4566.38[/C][C]4876.67[/C][C]-310.286[/C][C]-26.3802[/C][/ROW]
[ROW][C]56[/C][C]4660[/C][C]5156.8[/C][C]4918.33[/C][C]238.464[/C][C]-496.797[/C][/ROW]
[ROW][C]57[/C][C]4840[/C][C]5116.69[/C][C]4893.33[/C][C]223.359[/C][C]-276.693[/C][/ROW]
[ROW][C]58[/C][C]5260[/C][C]5335.23[/C][C]4877.5[/C][C]457.734[/C][C]-75.2344[/C][/ROW]
[ROW][C]59[/C][C]4640[/C][C]5216.9[/C][C]4855.83[/C][C]361.068[/C][C]-576.901[/C][/ROW]
[ROW][C]60[/C][C]5020[/C][C]4956.17[/C][C]4822.5[/C][C]133.672[/C][C]63.8281[/C][/ROW]
[ROW][C]61[/C][C]6420[/C][C]5109.92[/C][C]4815[/C][C]294.922[/C][C]1310.08[/C][/ROW]
[ROW][C]62[/C][C]4300[/C][C]4565.23[/C][C]4844.17[/C][C]-278.932[/C][C]-265.234[/C][/ROW]
[ROW][C]63[/C][C]4680[/C][C]4729.61[/C][C]4880[/C][C]-150.391[/C][C]-49.6094[/C][/ROW]
[ROW][C]64[/C][C]4540[/C][C]4565.03[/C][C]4901.67[/C][C]-336.641[/C][C]-25.026[/C][/ROW]
[ROW][C]65[/C][C]4240[/C][C]4549.19[/C][C]4929.17[/C][C]-379.974[/C][C]-309.193[/C][/ROW]
[ROW][C]66[/C][C]4540[/C][C]4679.51[/C][C]4932.5[/C][C]-252.995[/C][C]-139.505[/C][/ROW]
[ROW][C]67[/C][C]4740[/C][C]4537.21[/C][C]4847.5[/C][C]-310.286[/C][C]202.786[/C][/ROW]
[ROW][C]68[/C][C]5160[/C][C]5040.96[/C][C]4802.5[/C][C]238.464[/C][C]119.036[/C][/ROW]
[ROW][C]69[/C][C]5200[/C][C]5050.03[/C][C]4826.67[/C][C]223.359[/C][C]149.974[/C][/ROW]
[ROW][C]70[/C][C]5420[/C][C]5288.57[/C][C]4830.83[/C][C]457.734[/C][C]131.432[/C][/ROW]
[ROW][C]71[/C][C]5140[/C][C]5198.57[/C][C]4837.5[/C][C]361.068[/C][C]-58.5677[/C][/ROW]
[ROW][C]72[/C][C]4600[/C][C]4972.01[/C][C]4838.33[/C][C]133.672[/C][C]-372.005[/C][/ROW]
[ROW][C]73[/C][C]4800[/C][C]5114.09[/C][C]4819.17[/C][C]294.922[/C][C]-314.089[/C][/ROW]
[ROW][C]74[/C][C]4840[/C][C]4506.07[/C][C]4785[/C][C]-278.932[/C][C]333.932[/C][/ROW]
[ROW][C]75[/C][C]4720[/C][C]4604.61[/C][C]4755[/C][C]-150.391[/C][C]115.391[/C][/ROW]
[ROW][C]76[/C][C]4600[/C][C]4389.19[/C][C]4725.83[/C][C]-336.641[/C][C]210.807[/C][/ROW]
[ROW][C]77[/C][C]4340[/C][C]4309.19[/C][C]4689.17[/C][C]-379.974[/C][C]30.8073[/C][/ROW]
[ROW][C]78[/C][C]4460[/C][C]4412.01[/C][C]4665[/C][C]-252.995[/C][C]47.9948[/C][/ROW]
[ROW][C]79[/C][C]4360[/C][C]4351.38[/C][C]4661.67[/C][C]-310.286[/C][C]8.61979[/C][/ROW]
[ROW][C]80[/C][C]4720[/C][C]4886.8[/C][C]4648.33[/C][C]238.464[/C][C]-166.797[/C][/ROW]
[ROW][C]81[/C][C]4920[/C][C]4847.53[/C][C]4624.17[/C][C]223.359[/C][C]72.474[/C][/ROW]
[ROW][C]82[/C][C]5000[/C][C]5063.57[/C][C]4605.83[/C][C]457.734[/C][C]-63.5677[/C][/ROW]
[ROW][C]83[/C][C]4680[/C][C]4962.73[/C][C]4601.67[/C][C]361.068[/C][C]-282.734[/C][/ROW]
[ROW][C]84[/C][C]4480[/C][C]4743.67[/C][C]4610[/C][C]133.672[/C][C]-263.672[/C][/ROW]
[ROW][C]85[/C][C]4840[/C][C]4931.59[/C][C]4636.67[/C][C]294.922[/C][C]-91.5885[/C][/ROW]
[ROW][C]86[/C][C]4480[/C][C]4376.07[/C][C]4655[/C][C]-278.932[/C][C]103.932[/C][/ROW]
[ROW][C]87[/C][C]4500[/C][C]4497.94[/C][C]4648.33[/C][C]-150.391[/C][C]2.05729[/C][/ROW]
[ROW][C]88[/C][C]4380[/C][C]4315.03[/C][C]4651.67[/C][C]-336.641[/C][C]64.974[/C][/ROW]
[ROW][C]89[/C][C]4460[/C][C]4271.69[/C][C]4651.67[/C][C]-379.974[/C][C]188.307[/C][/ROW]
[ROW][C]90[/C][C]4540[/C][C]4395.34[/C][C]4648.33[/C][C]-252.995[/C][C]144.661[/C][/ROW]
[ROW][C]91[/C][C]4920[/C][C]4329.71[/C][C]4640[/C][C]-310.286[/C][C]590.286[/C][/ROW]
[ROW][C]92[/C][C]4600[/C][C]4872.63[/C][C]4634.17[/C][C]238.464[/C][C]-272.63[/C][/ROW]
[ROW][C]93[/C][C]4880[/C][C]4855.86[/C][C]4632.5[/C][C]223.359[/C][C]24.1406[/C][/ROW]
[ROW][C]94[/C][C]5120[/C][C]5091.07[/C][C]4633.33[/C][C]457.734[/C][C]28.9323[/C][/ROW]
[ROW][C]95[/C][C]4560[/C][C]4999.4[/C][C]4638.33[/C][C]361.068[/C][C]-439.401[/C][/ROW]
[ROW][C]96[/C][C]4520[/C][C]4776.17[/C][C]4642.5[/C][C]133.672[/C][C]-256.172[/C][/ROW]
[ROW][C]97[/C][C]4600[/C][C]4936.59[/C][C]4641.67[/C][C]294.922[/C][C]-336.589[/C][/ROW]
[ROW][C]98[/C][C]4580[/C][C]4370.23[/C][C]4649.17[/C][C]-278.932[/C][C]209.766[/C][/ROW]
[ROW][C]99[/C][C]4360[/C][C]4508.78[/C][C]4659.17[/C][C]-150.391[/C][C]-148.776[/C][/ROW]
[ROW][C]100[/C][C]4540[/C][C]4327.53[/C][C]4664.17[/C][C]-336.641[/C][C]212.474[/C][/ROW]
[ROW][C]101[/C][C]4420[/C][C]4317.53[/C][C]4697.5[/C][C]-379.974[/C][C]102.474[/C][/ROW]
[ROW][C]102[/C][C]4680[/C][C]4476.17[/C][C]4729.17[/C][C]-252.995[/C][C]203.828[/C][/ROW]
[ROW][C]103[/C][C]4760[/C][C]NA[/C][C]NA[/C][C]-310.286[/C][C]NA[/C][/ROW]
[ROW][C]104[/C][C]4940[/C][C]NA[/C][C]NA[/C][C]238.464[/C][C]NA[/C][/ROW]
[ROW][C]105[/C][C]4780[/C][C]NA[/C][C]NA[/C][C]223.359[/C][C]NA[/C][/ROW]
[ROW][C]106[/C][C]5340[/C][C]NA[/C][C]NA[/C][C]457.734[/C][C]NA[/C][/ROW]
[ROW][C]107[/C][C]5140[/C][C]NA[/C][C]NA[/C][C]361.068[/C][C]NA[/C][/ROW]
[ROW][C]108[/C][C]4700[/C][C]NA[/C][C]NA[/C][C]133.672[/C][C]NA[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302275&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302275&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
17020NANA294.922NA
26240NANA-278.932NA
36040NANA-150.391NA
46580NANA-336.641NA
55900NANA-379.974NA
66100NANA-252.995NA
764606532.216842.5-310.286-72.2135
887407049.36810.83238.4641690.7
969407023.366800223.359-83.3594
1072607221.076763.33457.73438.9323
1173807092.736731.67361.068287.266
1276406857.846724.17133.672782.161
1366406971.596676.67294.922-331.589
1458606265.236544.17-278.932-405.234
1561606296.286446.67-150.391-136.276
1655806096.696433.33-336.641-516.693
1761406000.866380.83-379.974139.141
1856806029.516282.5-252.995-349.505
1957405875.556185.83-310.286-135.547
2062806388.466150238.464-108.464
2170606330.866107.5223.359729.141
2268206505.236047.5457.734314.766
2365606333.575972.5361.068226.432
2461006025.345891.67133.67274.6615
2558606104.925810294.922-244.922
2657805429.45708.33-278.932350.599
2752205435.445585.83-150.391-215.443
2850805120.865457.5-336.641-40.8594
2948405006.695386.67-379.974-166.693
3050405082.015335-252.995-42.0052
3144204978.055288.33-310.286-558.047
3251605460.965222.5238.464-300.964
3352405390.865167.5223.359-150.859
3455605608.575150.83457.734-48.5677
3561205482.735121.67361.068637.266
3653005218.675085133.67281.3281
3755405367.425072.5294.922172.578
3845204784.45063.33-278.932-264.401
3951604872.115022.5-150.391287.891
4047404642.534979.17-336.64197.474
4144804552.534932.5-379.974-72.526
4245204640.344893.33-252.995-120.339
4346404551.384861.67-310.28688.6198
4447205085.964847.5238.464-365.964
4547005066.694843.33223.359-366.693
4650605288.574830.83457.734-228.568
4755005195.234834.17361.068304.766
4849804992.014858.33133.672-12.0052
4951005165.764870.83294.922-65.7552
5046204585.234864.17-278.93234.7656
5149604717.114867.5-150.391242.891
5246404545.034881.67-336.64194.974
5346604474.194854.17-379.974185.807
5449204567.014820-252.995352.995
5545404566.384876.67-310.286-26.3802
5646605156.84918.33238.464-496.797
5748405116.694893.33223.359-276.693
5852605335.234877.5457.734-75.2344
5946405216.94855.83361.068-576.901
6050204956.174822.5133.67263.8281
6164205109.924815294.9221310.08
6243004565.234844.17-278.932-265.234
6346804729.614880-150.391-49.6094
6445404565.034901.67-336.641-25.026
6542404549.194929.17-379.974-309.193
6645404679.514932.5-252.995-139.505
6747404537.214847.5-310.286202.786
6851605040.964802.5238.464119.036
6952005050.034826.67223.359149.974
7054205288.574830.83457.734131.432
7151405198.574837.5361.068-58.5677
7246004972.014838.33133.672-372.005
7348005114.094819.17294.922-314.089
7448404506.074785-278.932333.932
7547204604.614755-150.391115.391
7646004389.194725.83-336.641210.807
7743404309.194689.17-379.97430.8073
7844604412.014665-252.99547.9948
7943604351.384661.67-310.2868.61979
8047204886.84648.33238.464-166.797
8149204847.534624.17223.35972.474
8250005063.574605.83457.734-63.5677
8346804962.734601.67361.068-282.734
8444804743.674610133.672-263.672
8548404931.594636.67294.922-91.5885
8644804376.074655-278.932103.932
8745004497.944648.33-150.3912.05729
8843804315.034651.67-336.64164.974
8944604271.694651.67-379.974188.307
9045404395.344648.33-252.995144.661
9149204329.714640-310.286590.286
9246004872.634634.17238.464-272.63
9348804855.864632.5223.35924.1406
9451205091.074633.33457.73428.9323
9545604999.44638.33361.068-439.401
9645204776.174642.5133.672-256.172
9746004936.594641.67294.922-336.589
9845804370.234649.17-278.932209.766
9943604508.784659.17-150.391-148.776
10045404327.534664.17-336.641212.474
10144204317.534697.5-379.974102.474
10246804476.174729.17-252.995203.828
1034760NANA-310.286NA
1044940NANA238.464NA
1054780NANA223.359NA
1065340NANA457.734NA
1075140NANA361.068NA
1084700NANA133.672NA



Parameters (Session):
par1 = additive ; par2 = 12 ;
Parameters (R input):
par1 = additive ; par2 = 12 ;
R code (references can be found in the software module):
par2 <- as.numeric(par2)
x <- ts(x,freq=par2)
m <- decompose(x,type=par1)
m$figure
bitmap(file='test1.png')
plot(m)
dev.off()
mylagmax <- length(x)/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(as.numeric(m$trend),na.action=na.pass,lag.max = mylagmax,main='Trend')
acf(as.numeric(m$seasonal),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(as.numeric(m$random),na.action=na.pass,lag.max = mylagmax,main='Random')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
spectrum(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
spectrum(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
cpgram(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
cpgram(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Classical Decomposition by Moving Averages',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observations',header=TRUE)
a<-table.element(a,'Fit',header=TRUE)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Random',header=TRUE)
a<-table.row.end(a)
for (i in 1:length(m$trend)) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
if (par1 == 'additive') a<-table.element(a,signif(m$trend[i]+m$seasonal[i],6)) else a<-table.element(a,signif(m$trend[i]*m$seasonal[i],6))
a<-table.element(a,signif(m$trend[i],6))
a<-table.element(a,signif(m$seasonal[i],6))
a<-table.element(a,signif(m$random[i],6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')