Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_pairs.wasp
Title produced by softwareKendall tau Correlation Matrix
Date of computationWed, 21 Dec 2016 14:23:57 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/21/t1482326653gwtn7cpfyny2bl5.htm/, Retrieved Fri, 01 Nov 2024 03:37:40 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=302268, Retrieved Fri, 01 Nov 2024 03:37:40 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact106
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Kendall tau Correlation Matrix] [M&M's] [2016-12-21 13:23:57] [8263efc94e08b372ab727a2b95bd56b1] [Current]
Feedback Forum

Post a new message
Dataseries X:
1	5	4	1	0	9
4	5	1	1	2	5
6	1	5	0	0	7
1	7	0	6	0	6
8	2	2	3	1	5
3	4	3	3	4	3
8	1	1	2	1	6
7	2	2	1	6	2
7	2	3	3	1	3
4	5	2	1	2	7
6	3	1	0	5	4
2	7	2	3	1	5
5	6	1	1	2	2
2	9	2	2	2	2
5	4	1	1	2	5




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302268&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=302268&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302268&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Correlations for all pairs of data series (method=spearman)
blauwgeelbruingroenroodoranje
blauw1-0.847-0.01-0.1850.182-0.193
geel-0.8471-0.2760.2530.011-0.128
bruin-0.01-0.2761-0.052-0.2170.124
groen-0.1850.253-0.0521-0.295-0.124
rood0.1820.011-0.217-0.2951-0.677
oranje-0.193-0.1280.124-0.124-0.6771

\begin{tabular}{lllllllll}
\hline
Correlations for all pairs of data series (method=spearman) \tabularnewline
  & blauw & geel & bruin & groen & rood & oranje \tabularnewline
blauw & 1 & -0.847 & -0.01 & -0.185 & 0.182 & -0.193 \tabularnewline
geel & -0.847 & 1 & -0.276 & 0.253 & 0.011 & -0.128 \tabularnewline
bruin & -0.01 & -0.276 & 1 & -0.052 & -0.217 & 0.124 \tabularnewline
groen & -0.185 & 0.253 & -0.052 & 1 & -0.295 & -0.124 \tabularnewline
rood & 0.182 & 0.011 & -0.217 & -0.295 & 1 & -0.677 \tabularnewline
oranje & -0.193 & -0.128 & 0.124 & -0.124 & -0.677 & 1 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302268&T=1

[TABLE]
[ROW][C]Correlations for all pairs of data series (method=spearman)[/C][/ROW]
[ROW][C] [/C][C]blauw[/C][C]geel[/C][C]bruin[/C][C]groen[/C][C]rood[/C][C]oranje[/C][/ROW]
[ROW][C]blauw[/C][C]1[/C][C]-0.847[/C][C]-0.01[/C][C]-0.185[/C][C]0.182[/C][C]-0.193[/C][/ROW]
[ROW][C]geel[/C][C]-0.847[/C][C]1[/C][C]-0.276[/C][C]0.253[/C][C]0.011[/C][C]-0.128[/C][/ROW]
[ROW][C]bruin[/C][C]-0.01[/C][C]-0.276[/C][C]1[/C][C]-0.052[/C][C]-0.217[/C][C]0.124[/C][/ROW]
[ROW][C]groen[/C][C]-0.185[/C][C]0.253[/C][C]-0.052[/C][C]1[/C][C]-0.295[/C][C]-0.124[/C][/ROW]
[ROW][C]rood[/C][C]0.182[/C][C]0.011[/C][C]-0.217[/C][C]-0.295[/C][C]1[/C][C]-0.677[/C][/ROW]
[ROW][C]oranje[/C][C]-0.193[/C][C]-0.128[/C][C]0.124[/C][C]-0.124[/C][C]-0.677[/C][C]1[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302268&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302268&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Correlations for all pairs of data series (method=spearman)
blauwgeelbruingroenroodoranje
blauw1-0.847-0.01-0.1850.182-0.193
geel-0.8471-0.2760.2530.011-0.128
bruin-0.01-0.2761-0.052-0.2170.124
groen-0.1850.253-0.0521-0.295-0.124
rood0.1820.011-0.217-0.2951-0.677
oranje-0.193-0.1280.124-0.124-0.6771







Correlations for all pairs of data series with p-values
pairPearson rSpearman rhoKendall tau
blauw;geel-0.8371-0.8466-0.6908
p-value(1e-04)(1e-04)(7e-04)
blauw;bruin0-0.0103-0.0331
p-value(1)(0.971)(0.8758)
blauw;groen-0.3202-0.1849-0.1785
p-value(0.2446)(0.5094)(0.4016)
blauw;rood0.25760.18170.1634
p-value(0.3539)(0.5169)(0.4377)
blauw;oranje-0.2354-0.1925-0.1466
p-value(0.3983)(0.4918)(0.4766)
geel;bruin-0.3187-0.2763-0.2227
p-value(0.247)(0.3188)(0.2955)
geel;groen0.31490.25340.2141
p-value(0.2529)(0.3621)(0.3173)
geel;rood-0.14640.0112-0.033
p-value(0.6026)(0.9685)(0.8762)
geel;oranje-0.1314-0.1282-0.0847
p-value(0.6405)(0.6489)(0.683)
bruin;groen-0.3163-0.0523-0.012
p-value(0.2507)(0.8531)(0.9568)
bruin;rood-0.2132-0.2172-0.1882
p-value(0.4456)(0.4367)(0.3919)
bruin;oranje0.28760.12430.0679
p-value(0.2985)(0.6589)(0.7522)
groen;rood-0.3373-0.2945-0.2858
p-value(0.2189)(0.2866)(0.1963)
groen;oranje-0.0559-0.1241-0.0687
p-value(0.8432)(0.6595)(0.7508)
rood;oranje-0.6167-0.6774-0.5703
p-value(0.0143)(0.0055)(0.0077)

\begin{tabular}{lllllllll}
\hline
Correlations for all pairs of data series with p-values \tabularnewline
pair & Pearson r & Spearman rho & Kendall tau \tabularnewline
blauw;geel & -0.8371 & -0.8466 & -0.6908 \tabularnewline
p-value & (1e-04) & (1e-04) & (7e-04) \tabularnewline
blauw;bruin & 0 & -0.0103 & -0.0331 \tabularnewline
p-value & (1) & (0.971) & (0.8758) \tabularnewline
blauw;groen & -0.3202 & -0.1849 & -0.1785 \tabularnewline
p-value & (0.2446) & (0.5094) & (0.4016) \tabularnewline
blauw;rood & 0.2576 & 0.1817 & 0.1634 \tabularnewline
p-value & (0.3539) & (0.5169) & (0.4377) \tabularnewline
blauw;oranje & -0.2354 & -0.1925 & -0.1466 \tabularnewline
p-value & (0.3983) & (0.4918) & (0.4766) \tabularnewline
geel;bruin & -0.3187 & -0.2763 & -0.2227 \tabularnewline
p-value & (0.247) & (0.3188) & (0.2955) \tabularnewline
geel;groen & 0.3149 & 0.2534 & 0.2141 \tabularnewline
p-value & (0.2529) & (0.3621) & (0.3173) \tabularnewline
geel;rood & -0.1464 & 0.0112 & -0.033 \tabularnewline
p-value & (0.6026) & (0.9685) & (0.8762) \tabularnewline
geel;oranje & -0.1314 & -0.1282 & -0.0847 \tabularnewline
p-value & (0.6405) & (0.6489) & (0.683) \tabularnewline
bruin;groen & -0.3163 & -0.0523 & -0.012 \tabularnewline
p-value & (0.2507) & (0.8531) & (0.9568) \tabularnewline
bruin;rood & -0.2132 & -0.2172 & -0.1882 \tabularnewline
p-value & (0.4456) & (0.4367) & (0.3919) \tabularnewline
bruin;oranje & 0.2876 & 0.1243 & 0.0679 \tabularnewline
p-value & (0.2985) & (0.6589) & (0.7522) \tabularnewline
groen;rood & -0.3373 & -0.2945 & -0.2858 \tabularnewline
p-value & (0.2189) & (0.2866) & (0.1963) \tabularnewline
groen;oranje & -0.0559 & -0.1241 & -0.0687 \tabularnewline
p-value & (0.8432) & (0.6595) & (0.7508) \tabularnewline
rood;oranje & -0.6167 & -0.6774 & -0.5703 \tabularnewline
p-value & (0.0143) & (0.0055) & (0.0077) \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302268&T=2

[TABLE]
[ROW][C]Correlations for all pairs of data series with p-values[/C][/ROW]
[ROW][C]pair[/C][C]Pearson r[/C][C]Spearman rho[/C][C]Kendall tau[/C][/ROW]
[ROW][C]blauw;geel[/C][C]-0.8371[/C][C]-0.8466[/C][C]-0.6908[/C][/ROW]
[ROW][C]p-value[/C][C](1e-04)[/C][C](1e-04)[/C][C](7e-04)[/C][/ROW]
[ROW][C]blauw;bruin[/C][C]0[/C][C]-0.0103[/C][C]-0.0331[/C][/ROW]
[ROW][C]p-value[/C][C](1)[/C][C](0.971)[/C][C](0.8758)[/C][/ROW]
[ROW][C]blauw;groen[/C][C]-0.3202[/C][C]-0.1849[/C][C]-0.1785[/C][/ROW]
[ROW][C]p-value[/C][C](0.2446)[/C][C](0.5094)[/C][C](0.4016)[/C][/ROW]
[ROW][C]blauw;rood[/C][C]0.2576[/C][C]0.1817[/C][C]0.1634[/C][/ROW]
[ROW][C]p-value[/C][C](0.3539)[/C][C](0.5169)[/C][C](0.4377)[/C][/ROW]
[ROW][C]blauw;oranje[/C][C]-0.2354[/C][C]-0.1925[/C][C]-0.1466[/C][/ROW]
[ROW][C]p-value[/C][C](0.3983)[/C][C](0.4918)[/C][C](0.4766)[/C][/ROW]
[ROW][C]geel;bruin[/C][C]-0.3187[/C][C]-0.2763[/C][C]-0.2227[/C][/ROW]
[ROW][C]p-value[/C][C](0.247)[/C][C](0.3188)[/C][C](0.2955)[/C][/ROW]
[ROW][C]geel;groen[/C][C]0.3149[/C][C]0.2534[/C][C]0.2141[/C][/ROW]
[ROW][C]p-value[/C][C](0.2529)[/C][C](0.3621)[/C][C](0.3173)[/C][/ROW]
[ROW][C]geel;rood[/C][C]-0.1464[/C][C]0.0112[/C][C]-0.033[/C][/ROW]
[ROW][C]p-value[/C][C](0.6026)[/C][C](0.9685)[/C][C](0.8762)[/C][/ROW]
[ROW][C]geel;oranje[/C][C]-0.1314[/C][C]-0.1282[/C][C]-0.0847[/C][/ROW]
[ROW][C]p-value[/C][C](0.6405)[/C][C](0.6489)[/C][C](0.683)[/C][/ROW]
[ROW][C]bruin;groen[/C][C]-0.3163[/C][C]-0.0523[/C][C]-0.012[/C][/ROW]
[ROW][C]p-value[/C][C](0.2507)[/C][C](0.8531)[/C][C](0.9568)[/C][/ROW]
[ROW][C]bruin;rood[/C][C]-0.2132[/C][C]-0.2172[/C][C]-0.1882[/C][/ROW]
[ROW][C]p-value[/C][C](0.4456)[/C][C](0.4367)[/C][C](0.3919)[/C][/ROW]
[ROW][C]bruin;oranje[/C][C]0.2876[/C][C]0.1243[/C][C]0.0679[/C][/ROW]
[ROW][C]p-value[/C][C](0.2985)[/C][C](0.6589)[/C][C](0.7522)[/C][/ROW]
[ROW][C]groen;rood[/C][C]-0.3373[/C][C]-0.2945[/C][C]-0.2858[/C][/ROW]
[ROW][C]p-value[/C][C](0.2189)[/C][C](0.2866)[/C][C](0.1963)[/C][/ROW]
[ROW][C]groen;oranje[/C][C]-0.0559[/C][C]-0.1241[/C][C]-0.0687[/C][/ROW]
[ROW][C]p-value[/C][C](0.8432)[/C][C](0.6595)[/C][C](0.7508)[/C][/ROW]
[ROW][C]rood;oranje[/C][C]-0.6167[/C][C]-0.6774[/C][C]-0.5703[/C][/ROW]
[ROW][C]p-value[/C][C](0.0143)[/C][C](0.0055)[/C][C](0.0077)[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302268&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302268&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Correlations for all pairs of data series with p-values
pairPearson rSpearman rhoKendall tau
blauw;geel-0.8371-0.8466-0.6908
p-value(1e-04)(1e-04)(7e-04)
blauw;bruin0-0.0103-0.0331
p-value(1)(0.971)(0.8758)
blauw;groen-0.3202-0.1849-0.1785
p-value(0.2446)(0.5094)(0.4016)
blauw;rood0.25760.18170.1634
p-value(0.3539)(0.5169)(0.4377)
blauw;oranje-0.2354-0.1925-0.1466
p-value(0.3983)(0.4918)(0.4766)
geel;bruin-0.3187-0.2763-0.2227
p-value(0.247)(0.3188)(0.2955)
geel;groen0.31490.25340.2141
p-value(0.2529)(0.3621)(0.3173)
geel;rood-0.14640.0112-0.033
p-value(0.6026)(0.9685)(0.8762)
geel;oranje-0.1314-0.1282-0.0847
p-value(0.6405)(0.6489)(0.683)
bruin;groen-0.3163-0.0523-0.012
p-value(0.2507)(0.8531)(0.9568)
bruin;rood-0.2132-0.2172-0.1882
p-value(0.4456)(0.4367)(0.3919)
bruin;oranje0.28760.12430.0679
p-value(0.2985)(0.6589)(0.7522)
groen;rood-0.3373-0.2945-0.2858
p-value(0.2189)(0.2866)(0.1963)
groen;oranje-0.0559-0.1241-0.0687
p-value(0.8432)(0.6595)(0.7508)
rood;oranje-0.6167-0.6774-0.5703
p-value(0.0143)(0.0055)(0.0077)







Meta Analysis of Correlation Tests
Number of significant by total number of Correlations
Type I errorPearson rSpearman rhoKendall tau
0.010.070.130.13
0.020.130.130.13
0.030.130.130.13
0.040.130.130.13
0.050.130.130.13
0.060.130.130.13
0.070.130.130.13
0.080.130.130.13
0.090.130.130.13
0.10.130.130.13

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Correlation Tests \tabularnewline
Number of significant by total number of Correlations \tabularnewline
Type I error & Pearson r & Spearman rho & Kendall tau \tabularnewline
0.01 & 0.07 & 0.13 & 0.13 \tabularnewline
0.02 & 0.13 & 0.13 & 0.13 \tabularnewline
0.03 & 0.13 & 0.13 & 0.13 \tabularnewline
0.04 & 0.13 & 0.13 & 0.13 \tabularnewline
0.05 & 0.13 & 0.13 & 0.13 \tabularnewline
0.06 & 0.13 & 0.13 & 0.13 \tabularnewline
0.07 & 0.13 & 0.13 & 0.13 \tabularnewline
0.08 & 0.13 & 0.13 & 0.13 \tabularnewline
0.09 & 0.13 & 0.13 & 0.13 \tabularnewline
0.1 & 0.13 & 0.13 & 0.13 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302268&T=3

[TABLE]
[ROW][C]Meta Analysis of Correlation Tests[/C][/ROW]
[ROW][C]Number of significant by total number of Correlations[/C][/ROW]
[ROW][C]Type I error[/C][C]Pearson r[/C][C]Spearman rho[/C][C]Kendall tau[/C][/ROW]
[ROW][C]0.01[/C][C]0.07[/C][C]0.13[/C][C]0.13[/C][/ROW]
[ROW][C]0.02[/C][C]0.13[/C][C]0.13[/C][C]0.13[/C][/ROW]
[ROW][C]0.03[/C][C]0.13[/C][C]0.13[/C][C]0.13[/C][/ROW]
[ROW][C]0.04[/C][C]0.13[/C][C]0.13[/C][C]0.13[/C][/ROW]
[ROW][C]0.05[/C][C]0.13[/C][C]0.13[/C][C]0.13[/C][/ROW]
[ROW][C]0.06[/C][C]0.13[/C][C]0.13[/C][C]0.13[/C][/ROW]
[ROW][C]0.07[/C][C]0.13[/C][C]0.13[/C][C]0.13[/C][/ROW]
[ROW][C]0.08[/C][C]0.13[/C][C]0.13[/C][C]0.13[/C][/ROW]
[ROW][C]0.09[/C][C]0.13[/C][C]0.13[/C][C]0.13[/C][/ROW]
[ROW][C]0.1[/C][C]0.13[/C][C]0.13[/C][C]0.13[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302268&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302268&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Correlation Tests
Number of significant by total number of Correlations
Type I errorPearson rSpearman rhoKendall tau
0.010.070.130.13
0.020.130.130.13
0.030.130.130.13
0.040.130.130.13
0.050.130.130.13
0.060.130.130.13
0.070.130.130.13
0.080.130.130.13
0.090.130.130.13
0.10.130.130.13



Parameters (Session):
par1 = pearson ;
Parameters (R input):
par1 = spearman ;
R code (references can be found in the software module):
panel.tau <- function(x, y, digits=2, prefix='', cex.cor)
{
usr <- par('usr'); on.exit(par(usr))
par(usr = c(0, 1, 0, 1))
rr <- cor.test(x, y, method=par1)
r <- round(rr$p.value,2)
txt <- format(c(r, 0.123456789), digits=digits)[1]
txt <- paste(prefix, txt, sep='')
if(missing(cex.cor)) cex <- 0.5/strwidth(txt)
text(0.5, 0.5, txt, cex = cex)
}
panel.hist <- function(x, ...)
{
usr <- par('usr'); on.exit(par(usr))
par(usr = c(usr[1:2], 0, 1.5) )
h <- hist(x, plot = FALSE)
breaks <- h$breaks; nB <- length(breaks)
y <- h$counts; y <- y/max(y)
rect(breaks[-nB], 0, breaks[-1], y, col='grey', ...)
}
x <- na.omit(x)
y <- t(na.omit(t(y)))
bitmap(file='test1.png')
pairs(t(y),diag.panel=panel.hist, upper.panel=panel.smooth, lower.panel=panel.tau, main=main)
dev.off()
load(file='createtable')
n <- length(y[,1])
print(n)
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,paste('Correlations for all pairs of data series (method=',par1,')',sep=''),n+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,' ',header=TRUE)
for (i in 1:n) {
a<-table.element(a,dimnames(t(x))[[2]][i],header=TRUE)
}
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,dimnames(t(x))[[2]][i],header=TRUE)
for (j in 1:n) {
r <- cor.test(y[i,],y[j,],method=par1)
a<-table.element(a,round(r$estimate,3))
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
ncorrs <- (n*n -n)/2
mycorrs <- array(0, dim=c(10,3))
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Correlations for all pairs of data series with p-values',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'pair',1,TRUE)
a<-table.element(a,'Pearson r',1,TRUE)
a<-table.element(a,'Spearman rho',1,TRUE)
a<-table.element(a,'Kendall tau',1,TRUE)
a<-table.row.end(a)
cor.test(y[1,],y[2,],method=par1)
for (i in 1:(n-1))
{
for (j in (i+1):n)
{
a<-table.row.start(a)
dum <- paste(dimnames(t(x))[[2]][i],';',dimnames(t(x))[[2]][j],sep='')
a<-table.element(a,dum,header=TRUE)
rp <- cor.test(y[i,],y[j,],method='pearson')
a<-table.element(a,round(rp$estimate,4))
rs <- cor.test(y[i,],y[j,],method='spearman')
a<-table.element(a,round(rs$estimate,4))
rk <- cor.test(y[i,],y[j,],method='kendall')
a<-table.element(a,round(rk$estimate,4))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=T)
a<-table.element(a,paste('(',round(rp$p.value,4),')',sep=''))
a<-table.element(a,paste('(',round(rs$p.value,4),')',sep=''))
a<-table.element(a,paste('(',round(rk$p.value,4),')',sep=''))
a<-table.row.end(a)
for (iii in 1:10) {
iiid100 <- iii / 100
if (rp$p.value < iiid100) mycorrs[iii, 1] = mycorrs[iii, 1] + 1
if (rs$p.value < iiid100) mycorrs[iii, 2] = mycorrs[iii, 2] + 1
if (rk$p.value < iiid100) mycorrs[iii, 3] = mycorrs[iii, 3] + 1
}
}
}
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Correlation Tests',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Number of significant by total number of Correlations',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Type I error',1,TRUE)
a<-table.element(a,'Pearson r',1,TRUE)
a<-table.element(a,'Spearman rho',1,TRUE)
a<-table.element(a,'Kendall tau',1,TRUE)
a<-table.row.end(a)
for (iii in 1:10) {
iiid100 <- iii / 100
a<-table.row.start(a)
a<-table.element(a,round(iiid100,2),header=T)
a<-table.element(a,round(mycorrs[iii,1]/ncorrs,2))
a<-table.element(a,round(mycorrs[iii,2]/ncorrs,2))
a<-table.element(a,round(mycorrs[iii,3]/ncorrs,2))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')