Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimaforecasting.wasp
Title produced by softwareARIMA Forecasting
Date of computationWed, 21 Dec 2016 11:57:39 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/21/t1482317952x6fhtevq9b6kcvy.htm/, Retrieved Fri, 01 Nov 2024 03:36:33 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=302162, Retrieved Fri, 01 Nov 2024 03:36:33 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact104
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [ARIMA Forecasting] [ARMA ] [2016-12-21 10:57:39] [bde5266f17215258f6d7c4cd7e531432] [Current]
Feedback Forum

Post a new message
Dataseries X:
1.894
1.757
3.582
5.321
5.561
5.907
4.944
4.966
3.258
1.964
1.743
1.262
2.086
1.793
3.548
5.672
6.084
4.914
4.990
5.139
3.218
2.179
2.238
1.442
2.205
2.025
3.531
4.977
7.998
4.880
5.231
5.202
3.303
2.683
2.202
1.376
2.422
1.997
3.163
5.964
5.657
6.415
6.208
4.500
2.939
2.702
2.090
1.504
2.549
1.931
3.013
6.204
5.788
5.611
5.594
4.647
3.490
2.487
1.992
1.507
2.306
2.002
3.075
5.331
5.589
5.813
4.876
4.665
3.601
2.192
2.111
1.580
2.288
1.993
3.228
5.000
5.480
5.770
4.962
4.685
3.607
2.222
2.467
1.594
2.228
1.910
3.157
4.809
6.249
4.607
4.975
4.784
3.028
2.461
2.218
1.351
2.070
1.887
3.024
4.596
6.398
4.459
5.382
4.359
2.687
2.249
2.154
1.169
2.429
1.762
2.846
5.627
5.749
4.502
5.720
4.403
2.867
2.635
2.059
1.511
2.359
1.741
2.917
6.249
5.760
6.250
5.134
4.831
3.695
2.462
2.146
1.579




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302162&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=302162&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302162&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[132])
1201.511-------
1212.359-------
1221.741-------
1232.917-------
1246.249-------
1255.76-------
1266.25-------
1275.134-------
1284.831-------
1293.695-------
1302.462-------
1312.146-------
1321.579-------
133NA2.21431.88212.6269NA0.99870.24590.9987
134NA1.81331.55392.132NANA0.67180.9252
135NA3.04382.54083.6843NANA0.6511
136NA5.61254.4657.1749NANA0.21231
137NA6.02454.7677.7497NANA0.61811
138NA5.69834.52287.304NANA0.25031
139NA5.18014.13186.6021NANA0.52531
140NA4.71833.78585.9728NANA0.43011
141NA3.36112.75274.1566NANA0.20541
142NA2.39782.00062.9038NANA0.40170.9992
143NA2.15251.80612.5905NANA0.51160.9949
144NA1.44561.23661.7031NANA0.15490.1549
145NA2.27381.83982.851NANANA0.9909
146NA1.79931.47562.2217NANANA0.8467
147NA2.9842.37043.8212NANANA0.9995
148NA5.62544.24537.6505NANANA1
149NA5.94414.46458.1299NANANA1
150NA5.32824.03637.2133NANANA1
151NA5.32554.03237.2141NANANA0.9999
152NA4.62873.54336.1891NANANA0.9999
153NA3.2152.52754.1668NANANA0.9996
154NA2.46311.97133.1273NANANA0.9955
155NA2.12551.7172.6699NANANA0.9754
156NA1.46571.21021.7961NANANA0.2508

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast \tabularnewline
time & Y[t] & F[t] & 95% LB & 95% UB & p-value(H0: Y[t] = F[t]) & P(F[t]>Y[t-1]) & P(F[t]>Y[t-s]) & P(F[t]>Y[132]) \tabularnewline
120 & 1.511 & - & - & - & - & - & - & - \tabularnewline
121 & 2.359 & - & - & - & - & - & - & - \tabularnewline
122 & 1.741 & - & - & - & - & - & - & - \tabularnewline
123 & 2.917 & - & - & - & - & - & - & - \tabularnewline
124 & 6.249 & - & - & - & - & - & - & - \tabularnewline
125 & 5.76 & - & - & - & - & - & - & - \tabularnewline
126 & 6.25 & - & - & - & - & - & - & - \tabularnewline
127 & 5.134 & - & - & - & - & - & - & - \tabularnewline
128 & 4.831 & - & - & - & - & - & - & - \tabularnewline
129 & 3.695 & - & - & - & - & - & - & - \tabularnewline
130 & 2.462 & - & - & - & - & - & - & - \tabularnewline
131 & 2.146 & - & - & - & - & - & - & - \tabularnewline
132 & 1.579 & - & - & - & - & - & - & - \tabularnewline
133 & NA & 2.2143 & 1.8821 & 2.6269 & NA & 0.9987 & 0.2459 & 0.9987 \tabularnewline
134 & NA & 1.8133 & 1.5539 & 2.132 & NA & NA & 0.6718 & 0.9252 \tabularnewline
135 & NA & 3.0438 & 2.5408 & 3.6843 & NA & NA & 0.651 & 1 \tabularnewline
136 & NA & 5.6125 & 4.465 & 7.1749 & NA & NA & 0.2123 & 1 \tabularnewline
137 & NA & 6.0245 & 4.767 & 7.7497 & NA & NA & 0.6181 & 1 \tabularnewline
138 & NA & 5.6983 & 4.5228 & 7.304 & NA & NA & 0.2503 & 1 \tabularnewline
139 & NA & 5.1801 & 4.1318 & 6.6021 & NA & NA & 0.5253 & 1 \tabularnewline
140 & NA & 4.7183 & 3.7858 & 5.9728 & NA & NA & 0.4301 & 1 \tabularnewline
141 & NA & 3.3611 & 2.7527 & 4.1566 & NA & NA & 0.2054 & 1 \tabularnewline
142 & NA & 2.3978 & 2.0006 & 2.9038 & NA & NA & 0.4017 & 0.9992 \tabularnewline
143 & NA & 2.1525 & 1.8061 & 2.5905 & NA & NA & 0.5116 & 0.9949 \tabularnewline
144 & NA & 1.4456 & 1.2366 & 1.7031 & NA & NA & 0.1549 & 0.1549 \tabularnewline
145 & NA & 2.2738 & 1.8398 & 2.851 & NA & NA & NA & 0.9909 \tabularnewline
146 & NA & 1.7993 & 1.4756 & 2.2217 & NA & NA & NA & 0.8467 \tabularnewline
147 & NA & 2.984 & 2.3704 & 3.8212 & NA & NA & NA & 0.9995 \tabularnewline
148 & NA & 5.6254 & 4.2453 & 7.6505 & NA & NA & NA & 1 \tabularnewline
149 & NA & 5.9441 & 4.4645 & 8.1299 & NA & NA & NA & 1 \tabularnewline
150 & NA & 5.3282 & 4.0363 & 7.2133 & NA & NA & NA & 1 \tabularnewline
151 & NA & 5.3255 & 4.0323 & 7.2141 & NA & NA & NA & 0.9999 \tabularnewline
152 & NA & 4.6287 & 3.5433 & 6.1891 & NA & NA & NA & 0.9999 \tabularnewline
153 & NA & 3.215 & 2.5275 & 4.1668 & NA & NA & NA & 0.9996 \tabularnewline
154 & NA & 2.4631 & 1.9713 & 3.1273 & NA & NA & NA & 0.9955 \tabularnewline
155 & NA & 2.1255 & 1.717 & 2.6699 & NA & NA & NA & 0.9754 \tabularnewline
156 & NA & 1.4657 & 1.2102 & 1.7961 & NA & NA & NA & 0.2508 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302162&T=1

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast[/C][/ROW]
[ROW][C]time[/C][C]Y[t][/C][C]F[t][/C][C]95% LB[/C][C]95% UB[/C][C]p-value(H0: Y[t] = F[t])[/C][C]P(F[t]>Y[t-1])[/C][C]P(F[t]>Y[t-s])[/C][C]P(F[t]>Y[132])[/C][/ROW]
[ROW][C]120[/C][C]1.511[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]121[/C][C]2.359[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]122[/C][C]1.741[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]123[/C][C]2.917[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]124[/C][C]6.249[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]125[/C][C]5.76[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]126[/C][C]6.25[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]127[/C][C]5.134[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]128[/C][C]4.831[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]129[/C][C]3.695[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]130[/C][C]2.462[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]131[/C][C]2.146[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]132[/C][C]1.579[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]133[/C][C]NA[/C][C]2.2143[/C][C]1.8821[/C][C]2.6269[/C][C]NA[/C][C]0.9987[/C][C]0.2459[/C][C]0.9987[/C][/ROW]
[ROW][C]134[/C][C]NA[/C][C]1.8133[/C][C]1.5539[/C][C]2.132[/C][C]NA[/C][C]NA[/C][C]0.6718[/C][C]0.9252[/C][/ROW]
[ROW][C]135[/C][C]NA[/C][C]3.0438[/C][C]2.5408[/C][C]3.6843[/C][C]NA[/C][C]NA[/C][C]0.651[/C][C]1[/C][/ROW]
[ROW][C]136[/C][C]NA[/C][C]5.6125[/C][C]4.465[/C][C]7.1749[/C][C]NA[/C][C]NA[/C][C]0.2123[/C][C]1[/C][/ROW]
[ROW][C]137[/C][C]NA[/C][C]6.0245[/C][C]4.767[/C][C]7.7497[/C][C]NA[/C][C]NA[/C][C]0.6181[/C][C]1[/C][/ROW]
[ROW][C]138[/C][C]NA[/C][C]5.6983[/C][C]4.5228[/C][C]7.304[/C][C]NA[/C][C]NA[/C][C]0.2503[/C][C]1[/C][/ROW]
[ROW][C]139[/C][C]NA[/C][C]5.1801[/C][C]4.1318[/C][C]6.6021[/C][C]NA[/C][C]NA[/C][C]0.5253[/C][C]1[/C][/ROW]
[ROW][C]140[/C][C]NA[/C][C]4.7183[/C][C]3.7858[/C][C]5.9728[/C][C]NA[/C][C]NA[/C][C]0.4301[/C][C]1[/C][/ROW]
[ROW][C]141[/C][C]NA[/C][C]3.3611[/C][C]2.7527[/C][C]4.1566[/C][C]NA[/C][C]NA[/C][C]0.2054[/C][C]1[/C][/ROW]
[ROW][C]142[/C][C]NA[/C][C]2.3978[/C][C]2.0006[/C][C]2.9038[/C][C]NA[/C][C]NA[/C][C]0.4017[/C][C]0.9992[/C][/ROW]
[ROW][C]143[/C][C]NA[/C][C]2.1525[/C][C]1.8061[/C][C]2.5905[/C][C]NA[/C][C]NA[/C][C]0.5116[/C][C]0.9949[/C][/ROW]
[ROW][C]144[/C][C]NA[/C][C]1.4456[/C][C]1.2366[/C][C]1.7031[/C][C]NA[/C][C]NA[/C][C]0.1549[/C][C]0.1549[/C][/ROW]
[ROW][C]145[/C][C]NA[/C][C]2.2738[/C][C]1.8398[/C][C]2.851[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.9909[/C][/ROW]
[ROW][C]146[/C][C]NA[/C][C]1.7993[/C][C]1.4756[/C][C]2.2217[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.8467[/C][/ROW]
[ROW][C]147[/C][C]NA[/C][C]2.984[/C][C]2.3704[/C][C]3.8212[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.9995[/C][/ROW]
[ROW][C]148[/C][C]NA[/C][C]5.6254[/C][C]4.2453[/C][C]7.6505[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]1[/C][/ROW]
[ROW][C]149[/C][C]NA[/C][C]5.9441[/C][C]4.4645[/C][C]8.1299[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]1[/C][/ROW]
[ROW][C]150[/C][C]NA[/C][C]5.3282[/C][C]4.0363[/C][C]7.2133[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]1[/C][/ROW]
[ROW][C]151[/C][C]NA[/C][C]5.3255[/C][C]4.0323[/C][C]7.2141[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.9999[/C][/ROW]
[ROW][C]152[/C][C]NA[/C][C]4.6287[/C][C]3.5433[/C][C]6.1891[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.9999[/C][/ROW]
[ROW][C]153[/C][C]NA[/C][C]3.215[/C][C]2.5275[/C][C]4.1668[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.9996[/C][/ROW]
[ROW][C]154[/C][C]NA[/C][C]2.4631[/C][C]1.9713[/C][C]3.1273[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.9955[/C][/ROW]
[ROW][C]155[/C][C]NA[/C][C]2.1255[/C][C]1.717[/C][C]2.6699[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.9754[/C][/ROW]
[ROW][C]156[/C][C]NA[/C][C]1.4657[/C][C]1.2102[/C][C]1.7961[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.2508[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302162&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302162&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[132])
1201.511-------
1212.359-------
1221.741-------
1232.917-------
1246.249-------
1255.76-------
1266.25-------
1275.134-------
1284.831-------
1293.695-------
1302.462-------
1312.146-------
1321.579-------
133NA2.21431.88212.6269NA0.99870.24590.9987
134NA1.81331.55392.132NANA0.67180.9252
135NA3.04382.54083.6843NANA0.6511
136NA5.61254.4657.1749NANA0.21231
137NA6.02454.7677.7497NANA0.61811
138NA5.69834.52287.304NANA0.25031
139NA5.18014.13186.6021NANA0.52531
140NA4.71833.78585.9728NANA0.43011
141NA3.36112.75274.1566NANA0.20541
142NA2.39782.00062.9038NANA0.40170.9992
143NA2.15251.80612.5905NANA0.51160.9949
144NA1.44561.23661.7031NANA0.15490.1549
145NA2.27381.83982.851NANANA0.9909
146NA1.79931.47562.2217NANANA0.8467
147NA2.9842.37043.8212NANANA0.9995
148NA5.62544.24537.6505NANANA1
149NA5.94414.46458.1299NANANA1
150NA5.32824.03637.2133NANANA1
151NA5.32554.03237.2141NANANA0.9999
152NA4.62873.54336.1891NANANA0.9999
153NA3.2152.52754.1668NANANA0.9996
154NA2.46311.97133.1273NANANA0.9955
155NA2.12551.7172.6699NANANA0.9754
156NA1.46571.21021.7961NANANA0.2508







Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPEsMAPESq.EMSERMSEScaledEMASE
1330.0951NANANANA00NANA
1340.0897NANANANANANANANA
1350.1074NANANANANANANANA
1360.142NANANANANANANANA
1370.1461NANANANANANANANA
1380.1438NANANANANANANANA
1390.1401NANANANANANANANA
1400.1357NANANANANANANANA
1410.1208NANANANANANANANA
1420.1077NANANANANANANANA
1430.1038NANANANANANANANA
1440.0909NANANANANANANANA
1450.1295NANANANANANANANA
1460.1198NANANANANANANANA
1470.1431NANANANANANANANA
1480.1837NANANANANANANANA
1490.1876NANANANANANANANA
1500.1805NANANANANANANANA
1510.1809NANANANANANANANA
1520.172NANANANANANANANA
1530.151NANANANANANANANA
1540.1376NANANANANANANANA
1550.1307NANANANANANANANA
1560.115NANANANANANANANA

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast Performance \tabularnewline
time & % S.E. & PE & MAPE & sMAPE & Sq.E & MSE & RMSE & ScaledE & MASE \tabularnewline
133 & 0.0951 & NA & NA & NA & NA & 0 & 0 & NA & NA \tabularnewline
134 & 0.0897 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
135 & 0.1074 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
136 & 0.142 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
137 & 0.1461 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
138 & 0.1438 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
139 & 0.1401 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
140 & 0.1357 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
141 & 0.1208 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
142 & 0.1077 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
143 & 0.1038 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
144 & 0.0909 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
145 & 0.1295 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
146 & 0.1198 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
147 & 0.1431 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
148 & 0.1837 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
149 & 0.1876 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
150 & 0.1805 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
151 & 0.1809 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
152 & 0.172 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
153 & 0.151 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
154 & 0.1376 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
155 & 0.1307 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
156 & 0.115 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302162&T=2

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast Performance[/C][/ROW]
[ROW][C]time[/C][C]% S.E.[/C][C]PE[/C][C]MAPE[/C][C]sMAPE[/C][C]Sq.E[/C][C]MSE[/C][C]RMSE[/C][C]ScaledE[/C][C]MASE[/C][/ROW]
[ROW][C]133[/C][C]0.0951[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0[/C][C]0[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]134[/C][C]0.0897[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]135[/C][C]0.1074[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]136[/C][C]0.142[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]137[/C][C]0.1461[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]138[/C][C]0.1438[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]139[/C][C]0.1401[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]140[/C][C]0.1357[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]141[/C][C]0.1208[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]142[/C][C]0.1077[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]143[/C][C]0.1038[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]144[/C][C]0.0909[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]145[/C][C]0.1295[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]146[/C][C]0.1198[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]147[/C][C]0.1431[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]148[/C][C]0.1837[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]149[/C][C]0.1876[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]150[/C][C]0.1805[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]151[/C][C]0.1809[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]152[/C][C]0.172[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]153[/C][C]0.151[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]154[/C][C]0.1376[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]155[/C][C]0.1307[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]156[/C][C]0.115[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302162&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302162&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPEsMAPESq.EMSERMSEScaledEMASE
1330.0951NANANANA00NANA
1340.0897NANANANANANANANA
1350.1074NANANANANANANANA
1360.142NANANANANANANANA
1370.1461NANANANANANANANA
1380.1438NANANANANANANANA
1390.1401NANANANANANANANA
1400.1357NANANANANANANANA
1410.1208NANANANANANANANA
1420.1077NANANANANANANANA
1430.1038NANANANANANANANA
1440.0909NANANANANANANANA
1450.1295NANANANANANANANA
1460.1198NANANANANANANANA
1470.1431NANANANANANANANA
1480.1837NANANANANANANANA
1490.1876NANANANANANANANA
1500.1805NANANANANANANANA
1510.1809NANANANANANANANA
1520.172NANANANANANANANA
1530.151NANANANANANANANA
1540.1376NANANANANANANANA
1550.1307NANANANANANANANA
1560.115NANANANANANANANA



Parameters (Session):
par1 = 2 ; par2 = 3 ; par3 = Exact Pearson Chi-Squared by Simulation ;
Parameters (R input):
par1 = 0 ; par2 = -0.3 ; par3 = 0 ; par4 = 1 ; par5 = 12 ; par6 = 3 ; par7 = 0 ; par8 = 2 ; par9 = 0 ; par10 = FALSE ;
R code (references can be found in the software module):
par10 <- 'FALSE'
par9 <- '1'
par8 <- '2'
par7 <- '1'
par6 <- '3'
par5 <- '12'
par4 <- '1'
par3 <- '0'
par2 <- '-0.3'
par1 <- '0'
par1 <- as.numeric(par1) #cut off periods
par2 <- as.numeric(par2) #lambda
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #p
par7 <- as.numeric(par7) #q
par8 <- as.numeric(par8) #P
par9 <- as.numeric(par9) #Q
if (par10 == 'TRUE') par10 <- TRUE
if (par10 == 'FALSE') par10 <- FALSE
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
lx <- length(x)
first <- lx - 2*par1
nx <- lx - par1
nx1 <- nx + 1
fx <- lx - nx
if (fx < 1) {
fx <- par5*2
nx1 <- lx + fx - 1
first <- lx - 2*fx
}
first <- 1
if (fx < 3) fx <- round(lx/10,0)
(arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML'))
(forecast <- predict(arima.out,fx))
(lb <- forecast$pred - 1.96 * forecast$se)
(ub <- forecast$pred + 1.96 * forecast$se)
if (par2 == 0) {
x <- exp(x)
forecast$pred <- exp(forecast$pred)
lb <- exp(lb)
ub <- exp(ub)
}
if (par2 != 0) {
x <- x^(1/par2)
forecast$pred <- forecast$pred^(1/par2)
lb <- lb^(1/par2)
ub <- ub^(1/par2)
}
if (par2 < 0) {
olb <- lb
lb <- ub
ub <- olb
}
(actandfor <- c(x[1:nx], forecast$pred))
(perc.se <- (ub-forecast$pred)/1.96/forecast$pred)
bitmap(file='test1.png')
opar <- par(mar=c(4,4,2,2),las=1)
ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub))
plot(x,ylim=ylim,type='n',xlim=c(first,lx))
usr <- par('usr')
rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon')
rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender')
abline(h= (-3:3)*2 , col ='gray', lty =3)
polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA)
lines(nx1:lx, lb , lty=2)
lines(nx1:lx, ub , lty=2)
lines(x, lwd=2)
lines(nx1:lx, forecast$pred , lwd=2 , col ='white')
box()
par(opar)
dev.off()
prob.dec <- array(NA, dim=fx)
prob.sdec <- array(NA, dim=fx)
prob.ldec <- array(NA, dim=fx)
prob.pval <- array(NA, dim=fx)
perf.pe <- array(0, dim=fx)
perf.spe <- array(0, dim=fx)
perf.scalederr <- array(0, dim=fx)
perf.mase <- array(0, dim=fx)
perf.mase1 <- array(0, dim=fx)
perf.mape <- array(0, dim=fx)
perf.smape <- array(0, dim=fx)
perf.mape1 <- array(0, dim=fx)
perf.smape1 <- array(0,dim=fx)
perf.se <- array(0, dim=fx)
perf.mse <- array(0, dim=fx)
perf.mse1 <- array(0, dim=fx)
perf.rmse <- array(0, dim=fx)
perf.scaleddenom <- 0
for (i in 2:fx) {
perf.scaleddenom = perf.scaleddenom + abs(x[nx+i] - x[nx+i-1])
}
perf.scaleddenom = perf.scaleddenom / (fx-1)
for (i in 1:fx) {
locSD <- (ub[i] - forecast$pred[i]) / 1.96
perf.scalederr[i] = (x[nx+i] - forecast$pred[i]) / perf.scaleddenom
perf.pe[i] = (x[nx+i] - forecast$pred[i]) / x[nx+i]
perf.spe[i] = 2*(x[nx+i] - forecast$pred[i]) / (x[nx+i] + forecast$pred[i])
perf.se[i] = (x[nx+i] - forecast$pred[i])^2
prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD)
prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD)
prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD)
prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD)
}
perf.mape[1] = abs(perf.pe[1])
perf.smape[1] = abs(perf.spe[1])
perf.mape1[1] = perf.mape[1]
perf.smape1[1] = perf.smape[1]
perf.mse[1] = perf.se[1]
perf.mase[1] = abs(perf.scalederr[1])
perf.mase1[1] = perf.mase[1]
for (i in 2:fx) {
perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i])
perf.mape1[i] = perf.mape[i] / i
perf.smape[i] = perf.smape[i-1] + abs(perf.spe[i])
perf.smape1[i] = perf.smape[i] / i
perf.mse[i] = perf.mse[i-1] + perf.se[i]
perf.mse1[i] = perf.mse[i] / i
perf.mase[i] = perf.mase[i-1] + abs(perf.scalederr[i])
perf.mase1[i] = perf.mase[i] / i
}
perf.rmse = sqrt(perf.mse1)
bitmap(file='test2.png')
plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub)))
dum <- forecast$pred
dum[1:par1] <- x[(nx+1):lx]
lines(dum, lty=1)
lines(ub,lty=3)
lines(lb,lty=3)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'Y[t]',1,header=TRUE)
a<-table.element(a,'F[t]',1,header=TRUE)
a<-table.element(a,'95% LB',1,header=TRUE)
a<-table.element(a,'95% UB',1,header=TRUE)
a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE)
mylab <- paste('P(F[t]>Y[',nx,sep='')
mylab <- paste(mylab,'])',sep='')
a<-table.element(a,mylab,1,header=TRUE)
a<-table.row.end(a)
for (i in (nx-par5):nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.row.end(a)
}
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(x[nx+i],4))
a<-table.element(a,round(forecast$pred[i],4))
a<-table.element(a,round(lb[i],4))
a<-table.element(a,round(ub[i],4))
a<-table.element(a,round((1-prob.pval[i]),4))
a<-table.element(a,round((1-prob.dec[i]),4))
a<-table.element(a,round((1-prob.sdec[i]),4))
a<-table.element(a,round((1-prob.ldec[i]),4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',10,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'% S.E.',1,header=TRUE)
a<-table.element(a,'PE',1,header=TRUE)
a<-table.element(a,'MAPE',1,header=TRUE)
a<-table.element(a,'sMAPE',1,header=TRUE)
a<-table.element(a,'Sq.E',1,header=TRUE)
a<-table.element(a,'MSE',1,header=TRUE)
a<-table.element(a,'RMSE',1,header=TRUE)
a<-table.element(a,'ScaledE',1,header=TRUE)
a<-table.element(a,'MASE',1,header=TRUE)
a<-table.row.end(a)
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(perc.se[i],4))
a<-table.element(a,round(perf.pe[i],4))
a<-table.element(a,round(perf.mape1[i],4))
a<-table.element(a,round(perf.smape1[i],4))
a<-table.element(a,round(perf.se[i],4))
a<-table.element(a,round(perf.mse1[i],4))
a<-table.element(a,round(perf.rmse[i],4))
a<-table.element(a,round(perf.scalederr[i],4))
a<-table.element(a,round(perf.mase1[i],4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')