Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_decomposeloess.wasp
Title produced by softwareDecomposition by Loess
Date of computationWed, 21 Dec 2016 07:44:08 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/21/t1482302658xb4qej06kxhmty4.htm/, Retrieved Fri, 01 Nov 2024 03:43:57 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=301852, Retrieved Fri, 01 Nov 2024 03:43:57 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact110
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Decomposition by Loess] [] [2016-12-21 06:44:08] [672675941468e072e71d9fb024f2b817] [Current]
Feedback Forum

Post a new message
Dataseries X:
1932.8
1861.4
2170.2
1999.6
2225.5
2195.7
2713.1
2412
2568.3
2623.7
3185.5
2722.6
3046.3
2854.2
3337.6
2920.3
3058.3
2933.7
3773.4
3193.5
3472.2
3345.5
4028.4
3463.1
3675.4
3500.8
4142.1
3598
3765.3
3557.7
4303.6
3620.1
3691.1
3678.1
4505.8
3695
3894.1
3718.9
4749.8
3855.9
4011.7
3907.6
4812.5
4071.3
4163.4
4077.6
5109.2
4207.6
4320.8
4396.9
5358.8




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301852&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=301852&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301852&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Seasonal Decomposition by Loess - Parameters
ComponentWindowDegreeJump
Seasonal511052
Trend711
Low-pass511

\begin{tabular}{lllllllll}
\hline
Seasonal Decomposition by Loess - Parameters \tabularnewline
Component & Window & Degree & Jump \tabularnewline
Seasonal & 511 & 0 & 52 \tabularnewline
Trend & 7 & 1 & 1 \tabularnewline
Low-pass & 5 & 1 & 1 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301852&T=1

[TABLE]
[ROW][C]Seasonal Decomposition by Loess - Parameters[/C][/ROW]
[ROW][C]Component[/C][C]Window[/C][C]Degree[/C][C]Jump[/C][/ROW]
[ROW][C]Seasonal[/C][C]511[/C][C]0[/C][C]52[/C][/ROW]
[ROW][C]Trend[/C][C]7[/C][C]1[/C][C]1[/C][/ROW]
[ROW][C]Low-pass[/C][C]5[/C][C]1[/C][C]1[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301852&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301852&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Seasonal Decomposition by Loess - Parameters
ComponentWindowDegreeJump
Seasonal511052
Trend711
Low-pass511







Seasonal Decomposition by Loess - Time Series Components
tObservedFittedSeasonalTrendRemainder
11932.82001.31534264748-69.5115805759681933.7962379284868.5153426474831
21861.41958.18022749508-214.9994697144051979.6192422193396.7802274950755
32170.21829.94999607408469.3477715664622041.10223235946-340.250003925924
41999.62083.404327844-184.835985662512100.631657818583.804327844005
52225.52288.76653976629-69.5115805759682231.7450408096863.2665397662868
62195.72272.17839197171-214.9994697144052334.2210777426976.4783919717111
72713.12535.2149595677469.3477715664622421.63726886584-177.8850404323
824122486.44384059182-184.835985662512522.3921450706974.4438405918168
92568.32558.89011904804-69.5115805759682647.22146152792-9.40988095195644
102623.72723.94610866385-214.9994697144052738.45336105055100.246108663851
113185.53072.88846465275469.3477715664622828.76376378079-112.611535347253
122722.62708.90972296186-184.835985662512921.12626270065-13.6902770381421
133046.33176.43224470676-69.5115805759682985.67933586921130.132244706763
142854.22906.35876228905-214.9994697144053017.0407074253652.1587622890484
153337.63174.60673346135469.3477715664623031.24549497219-162.993266538649
162920.32974.45633994599-184.835985662513050.9796457165254.1563399459938
173058.33067.09484357599-69.5115805759683119.016736999988.7948435759904
182933.72880.60778193761-214.9994697144053201.79168777679-53.0922180623857
193773.43788.03936925608469.3477715664623289.4128591774614.6393692560828
203193.53175.40759567679-184.835985662513396.42838998572-18.092404323208
213472.23531.31395784206-69.5115805759683482.597622733959.1139578420643
223345.53360.16579171061-214.9994697144053545.833678003814.6657917106099
234028.43988.3792096954469.3477715664623599.07301873814-40.0207903046039
243463.13462.98334632393-184.835985662513648.05263933858-0.116653676067472
253675.43733.54272011771-69.5115805759683686.7688604582658.142720117708
263500.83504.45550104453-214.9994697144053712.143968669883.6555010445295
274142.14079.40475754358469.3477715664623735.44747088996-62.6952424564242
2835983620.6192052085-184.835985662513760.2167804540122.6192052084953
293765.33810.82080481542-69.5115805759683789.2907757605545.5208048154195
303557.73521.75452142246-214.9994697144053808.64494829195-35.9454785775415
314303.64334.2095302251469.3477715664623803.6426982084430.6095302250956
323620.13618.3518286402-184.835985662513806.68415702231-1.74817135980311
333691.13610.8004634778-69.5115805759683840.91111709817-80.2995365222009
343678.13685.46258152148-214.9994697144053885.736888192937.36258152147821
354505.84617.59473556456469.3477715664623924.65749286898111.794735564559
3636953626.63036399406-184.835985662513948.20562166845-68.3696360059384
373894.13884.20688537447-69.5115805759683973.5046952015-9.89311462553405
383718.93617.15097800257-214.9994697144054035.64849171184-101.749021997432
394749.84951.74706706918469.3477715664624078.50516136436201.947067069179
403855.93786.56122528552-184.835985662514110.07476037699-69.3387747144789
414011.73965.32237762546-69.5115805759684127.58920295051-46.3776223745435
423907.63856.49463975287-214.9994697144054173.70482996154-51.1053602471347
434812.54928.59474961606469.3477715664624227.05747881748116.094749616059
444071.34064.6569794336-184.835985662514262.77900622891-6.64302056639826
454163.44090.39559914806-69.5115805759684305.91598142791-73.0044008519399
464077.63997.53182065685-214.9994697144054372.66764905755-80.0681793431468
475109.25327.34850639237469.3477715664624421.70372204116218.148506392373
484207.64132.74134895815-184.835985662514467.29463670436-74.8586510418472
494320.84153.95233447264-69.5115805759684557.15924610333-166.847665527363
504396.94351.67475767637-214.9994697144054657.12471203803-45.2252423236287
515358.85478.40429765408469.3477715664624769.84793077945119.604297654085

\begin{tabular}{lllllllll}
\hline
Seasonal Decomposition by Loess - Time Series Components \tabularnewline
t & Observed & Fitted & Seasonal & Trend & Remainder \tabularnewline
1 & 1932.8 & 2001.31534264748 & -69.511580575968 & 1933.79623792848 & 68.5153426474831 \tabularnewline
2 & 1861.4 & 1958.18022749508 & -214.999469714405 & 1979.61924221933 & 96.7802274950755 \tabularnewline
3 & 2170.2 & 1829.94999607408 & 469.347771566462 & 2041.10223235946 & -340.250003925924 \tabularnewline
4 & 1999.6 & 2083.404327844 & -184.83598566251 & 2100.6316578185 & 83.804327844005 \tabularnewline
5 & 2225.5 & 2288.76653976629 & -69.511580575968 & 2231.74504080968 & 63.2665397662868 \tabularnewline
6 & 2195.7 & 2272.17839197171 & -214.999469714405 & 2334.22107774269 & 76.4783919717111 \tabularnewline
7 & 2713.1 & 2535.2149595677 & 469.347771566462 & 2421.63726886584 & -177.8850404323 \tabularnewline
8 & 2412 & 2486.44384059182 & -184.83598566251 & 2522.39214507069 & 74.4438405918168 \tabularnewline
9 & 2568.3 & 2558.89011904804 & -69.511580575968 & 2647.22146152792 & -9.40988095195644 \tabularnewline
10 & 2623.7 & 2723.94610866385 & -214.999469714405 & 2738.45336105055 & 100.246108663851 \tabularnewline
11 & 3185.5 & 3072.88846465275 & 469.347771566462 & 2828.76376378079 & -112.611535347253 \tabularnewline
12 & 2722.6 & 2708.90972296186 & -184.83598566251 & 2921.12626270065 & -13.6902770381421 \tabularnewline
13 & 3046.3 & 3176.43224470676 & -69.511580575968 & 2985.67933586921 & 130.132244706763 \tabularnewline
14 & 2854.2 & 2906.35876228905 & -214.999469714405 & 3017.04070742536 & 52.1587622890484 \tabularnewline
15 & 3337.6 & 3174.60673346135 & 469.347771566462 & 3031.24549497219 & -162.993266538649 \tabularnewline
16 & 2920.3 & 2974.45633994599 & -184.83598566251 & 3050.97964571652 & 54.1563399459938 \tabularnewline
17 & 3058.3 & 3067.09484357599 & -69.511580575968 & 3119.01673699998 & 8.7948435759904 \tabularnewline
18 & 2933.7 & 2880.60778193761 & -214.999469714405 & 3201.79168777679 & -53.0922180623857 \tabularnewline
19 & 3773.4 & 3788.03936925608 & 469.347771566462 & 3289.41285917746 & 14.6393692560828 \tabularnewline
20 & 3193.5 & 3175.40759567679 & -184.83598566251 & 3396.42838998572 & -18.092404323208 \tabularnewline
21 & 3472.2 & 3531.31395784206 & -69.511580575968 & 3482.5976227339 & 59.1139578420643 \tabularnewline
22 & 3345.5 & 3360.16579171061 & -214.999469714405 & 3545.8336780038 & 14.6657917106099 \tabularnewline
23 & 4028.4 & 3988.3792096954 & 469.347771566462 & 3599.07301873814 & -40.0207903046039 \tabularnewline
24 & 3463.1 & 3462.98334632393 & -184.83598566251 & 3648.05263933858 & -0.116653676067472 \tabularnewline
25 & 3675.4 & 3733.54272011771 & -69.511580575968 & 3686.76886045826 & 58.142720117708 \tabularnewline
26 & 3500.8 & 3504.45550104453 & -214.999469714405 & 3712.14396866988 & 3.6555010445295 \tabularnewline
27 & 4142.1 & 4079.40475754358 & 469.347771566462 & 3735.44747088996 & -62.6952424564242 \tabularnewline
28 & 3598 & 3620.6192052085 & -184.83598566251 & 3760.21678045401 & 22.6192052084953 \tabularnewline
29 & 3765.3 & 3810.82080481542 & -69.511580575968 & 3789.29077576055 & 45.5208048154195 \tabularnewline
30 & 3557.7 & 3521.75452142246 & -214.999469714405 & 3808.64494829195 & -35.9454785775415 \tabularnewline
31 & 4303.6 & 4334.2095302251 & 469.347771566462 & 3803.64269820844 & 30.6095302250956 \tabularnewline
32 & 3620.1 & 3618.3518286402 & -184.83598566251 & 3806.68415702231 & -1.74817135980311 \tabularnewline
33 & 3691.1 & 3610.8004634778 & -69.511580575968 & 3840.91111709817 & -80.2995365222009 \tabularnewline
34 & 3678.1 & 3685.46258152148 & -214.999469714405 & 3885.73688819293 & 7.36258152147821 \tabularnewline
35 & 4505.8 & 4617.59473556456 & 469.347771566462 & 3924.65749286898 & 111.794735564559 \tabularnewline
36 & 3695 & 3626.63036399406 & -184.83598566251 & 3948.20562166845 & -68.3696360059384 \tabularnewline
37 & 3894.1 & 3884.20688537447 & -69.511580575968 & 3973.5046952015 & -9.89311462553405 \tabularnewline
38 & 3718.9 & 3617.15097800257 & -214.999469714405 & 4035.64849171184 & -101.749021997432 \tabularnewline
39 & 4749.8 & 4951.74706706918 & 469.347771566462 & 4078.50516136436 & 201.947067069179 \tabularnewline
40 & 3855.9 & 3786.56122528552 & -184.83598566251 & 4110.07476037699 & -69.3387747144789 \tabularnewline
41 & 4011.7 & 3965.32237762546 & -69.511580575968 & 4127.58920295051 & -46.3776223745435 \tabularnewline
42 & 3907.6 & 3856.49463975287 & -214.999469714405 & 4173.70482996154 & -51.1053602471347 \tabularnewline
43 & 4812.5 & 4928.59474961606 & 469.347771566462 & 4227.05747881748 & 116.094749616059 \tabularnewline
44 & 4071.3 & 4064.6569794336 & -184.83598566251 & 4262.77900622891 & -6.64302056639826 \tabularnewline
45 & 4163.4 & 4090.39559914806 & -69.511580575968 & 4305.91598142791 & -73.0044008519399 \tabularnewline
46 & 4077.6 & 3997.53182065685 & -214.999469714405 & 4372.66764905755 & -80.0681793431468 \tabularnewline
47 & 5109.2 & 5327.34850639237 & 469.347771566462 & 4421.70372204116 & 218.148506392373 \tabularnewline
48 & 4207.6 & 4132.74134895815 & -184.83598566251 & 4467.29463670436 & -74.8586510418472 \tabularnewline
49 & 4320.8 & 4153.95233447264 & -69.511580575968 & 4557.15924610333 & -166.847665527363 \tabularnewline
50 & 4396.9 & 4351.67475767637 & -214.999469714405 & 4657.12471203803 & -45.2252423236287 \tabularnewline
51 & 5358.8 & 5478.40429765408 & 469.347771566462 & 4769.84793077945 & 119.604297654085 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301852&T=2

[TABLE]
[ROW][C]Seasonal Decomposition by Loess - Time Series Components[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Fitted[/C][C]Seasonal[/C][C]Trend[/C][C]Remainder[/C][/ROW]
[ROW][C]1[/C][C]1932.8[/C][C]2001.31534264748[/C][C]-69.511580575968[/C][C]1933.79623792848[/C][C]68.5153426474831[/C][/ROW]
[ROW][C]2[/C][C]1861.4[/C][C]1958.18022749508[/C][C]-214.999469714405[/C][C]1979.61924221933[/C][C]96.7802274950755[/C][/ROW]
[ROW][C]3[/C][C]2170.2[/C][C]1829.94999607408[/C][C]469.347771566462[/C][C]2041.10223235946[/C][C]-340.250003925924[/C][/ROW]
[ROW][C]4[/C][C]1999.6[/C][C]2083.404327844[/C][C]-184.83598566251[/C][C]2100.6316578185[/C][C]83.804327844005[/C][/ROW]
[ROW][C]5[/C][C]2225.5[/C][C]2288.76653976629[/C][C]-69.511580575968[/C][C]2231.74504080968[/C][C]63.2665397662868[/C][/ROW]
[ROW][C]6[/C][C]2195.7[/C][C]2272.17839197171[/C][C]-214.999469714405[/C][C]2334.22107774269[/C][C]76.4783919717111[/C][/ROW]
[ROW][C]7[/C][C]2713.1[/C][C]2535.2149595677[/C][C]469.347771566462[/C][C]2421.63726886584[/C][C]-177.8850404323[/C][/ROW]
[ROW][C]8[/C][C]2412[/C][C]2486.44384059182[/C][C]-184.83598566251[/C][C]2522.39214507069[/C][C]74.4438405918168[/C][/ROW]
[ROW][C]9[/C][C]2568.3[/C][C]2558.89011904804[/C][C]-69.511580575968[/C][C]2647.22146152792[/C][C]-9.40988095195644[/C][/ROW]
[ROW][C]10[/C][C]2623.7[/C][C]2723.94610866385[/C][C]-214.999469714405[/C][C]2738.45336105055[/C][C]100.246108663851[/C][/ROW]
[ROW][C]11[/C][C]3185.5[/C][C]3072.88846465275[/C][C]469.347771566462[/C][C]2828.76376378079[/C][C]-112.611535347253[/C][/ROW]
[ROW][C]12[/C][C]2722.6[/C][C]2708.90972296186[/C][C]-184.83598566251[/C][C]2921.12626270065[/C][C]-13.6902770381421[/C][/ROW]
[ROW][C]13[/C][C]3046.3[/C][C]3176.43224470676[/C][C]-69.511580575968[/C][C]2985.67933586921[/C][C]130.132244706763[/C][/ROW]
[ROW][C]14[/C][C]2854.2[/C][C]2906.35876228905[/C][C]-214.999469714405[/C][C]3017.04070742536[/C][C]52.1587622890484[/C][/ROW]
[ROW][C]15[/C][C]3337.6[/C][C]3174.60673346135[/C][C]469.347771566462[/C][C]3031.24549497219[/C][C]-162.993266538649[/C][/ROW]
[ROW][C]16[/C][C]2920.3[/C][C]2974.45633994599[/C][C]-184.83598566251[/C][C]3050.97964571652[/C][C]54.1563399459938[/C][/ROW]
[ROW][C]17[/C][C]3058.3[/C][C]3067.09484357599[/C][C]-69.511580575968[/C][C]3119.01673699998[/C][C]8.7948435759904[/C][/ROW]
[ROW][C]18[/C][C]2933.7[/C][C]2880.60778193761[/C][C]-214.999469714405[/C][C]3201.79168777679[/C][C]-53.0922180623857[/C][/ROW]
[ROW][C]19[/C][C]3773.4[/C][C]3788.03936925608[/C][C]469.347771566462[/C][C]3289.41285917746[/C][C]14.6393692560828[/C][/ROW]
[ROW][C]20[/C][C]3193.5[/C][C]3175.40759567679[/C][C]-184.83598566251[/C][C]3396.42838998572[/C][C]-18.092404323208[/C][/ROW]
[ROW][C]21[/C][C]3472.2[/C][C]3531.31395784206[/C][C]-69.511580575968[/C][C]3482.5976227339[/C][C]59.1139578420643[/C][/ROW]
[ROW][C]22[/C][C]3345.5[/C][C]3360.16579171061[/C][C]-214.999469714405[/C][C]3545.8336780038[/C][C]14.6657917106099[/C][/ROW]
[ROW][C]23[/C][C]4028.4[/C][C]3988.3792096954[/C][C]469.347771566462[/C][C]3599.07301873814[/C][C]-40.0207903046039[/C][/ROW]
[ROW][C]24[/C][C]3463.1[/C][C]3462.98334632393[/C][C]-184.83598566251[/C][C]3648.05263933858[/C][C]-0.116653676067472[/C][/ROW]
[ROW][C]25[/C][C]3675.4[/C][C]3733.54272011771[/C][C]-69.511580575968[/C][C]3686.76886045826[/C][C]58.142720117708[/C][/ROW]
[ROW][C]26[/C][C]3500.8[/C][C]3504.45550104453[/C][C]-214.999469714405[/C][C]3712.14396866988[/C][C]3.6555010445295[/C][/ROW]
[ROW][C]27[/C][C]4142.1[/C][C]4079.40475754358[/C][C]469.347771566462[/C][C]3735.44747088996[/C][C]-62.6952424564242[/C][/ROW]
[ROW][C]28[/C][C]3598[/C][C]3620.6192052085[/C][C]-184.83598566251[/C][C]3760.21678045401[/C][C]22.6192052084953[/C][/ROW]
[ROW][C]29[/C][C]3765.3[/C][C]3810.82080481542[/C][C]-69.511580575968[/C][C]3789.29077576055[/C][C]45.5208048154195[/C][/ROW]
[ROW][C]30[/C][C]3557.7[/C][C]3521.75452142246[/C][C]-214.999469714405[/C][C]3808.64494829195[/C][C]-35.9454785775415[/C][/ROW]
[ROW][C]31[/C][C]4303.6[/C][C]4334.2095302251[/C][C]469.347771566462[/C][C]3803.64269820844[/C][C]30.6095302250956[/C][/ROW]
[ROW][C]32[/C][C]3620.1[/C][C]3618.3518286402[/C][C]-184.83598566251[/C][C]3806.68415702231[/C][C]-1.74817135980311[/C][/ROW]
[ROW][C]33[/C][C]3691.1[/C][C]3610.8004634778[/C][C]-69.511580575968[/C][C]3840.91111709817[/C][C]-80.2995365222009[/C][/ROW]
[ROW][C]34[/C][C]3678.1[/C][C]3685.46258152148[/C][C]-214.999469714405[/C][C]3885.73688819293[/C][C]7.36258152147821[/C][/ROW]
[ROW][C]35[/C][C]4505.8[/C][C]4617.59473556456[/C][C]469.347771566462[/C][C]3924.65749286898[/C][C]111.794735564559[/C][/ROW]
[ROW][C]36[/C][C]3695[/C][C]3626.63036399406[/C][C]-184.83598566251[/C][C]3948.20562166845[/C][C]-68.3696360059384[/C][/ROW]
[ROW][C]37[/C][C]3894.1[/C][C]3884.20688537447[/C][C]-69.511580575968[/C][C]3973.5046952015[/C][C]-9.89311462553405[/C][/ROW]
[ROW][C]38[/C][C]3718.9[/C][C]3617.15097800257[/C][C]-214.999469714405[/C][C]4035.64849171184[/C][C]-101.749021997432[/C][/ROW]
[ROW][C]39[/C][C]4749.8[/C][C]4951.74706706918[/C][C]469.347771566462[/C][C]4078.50516136436[/C][C]201.947067069179[/C][/ROW]
[ROW][C]40[/C][C]3855.9[/C][C]3786.56122528552[/C][C]-184.83598566251[/C][C]4110.07476037699[/C][C]-69.3387747144789[/C][/ROW]
[ROW][C]41[/C][C]4011.7[/C][C]3965.32237762546[/C][C]-69.511580575968[/C][C]4127.58920295051[/C][C]-46.3776223745435[/C][/ROW]
[ROW][C]42[/C][C]3907.6[/C][C]3856.49463975287[/C][C]-214.999469714405[/C][C]4173.70482996154[/C][C]-51.1053602471347[/C][/ROW]
[ROW][C]43[/C][C]4812.5[/C][C]4928.59474961606[/C][C]469.347771566462[/C][C]4227.05747881748[/C][C]116.094749616059[/C][/ROW]
[ROW][C]44[/C][C]4071.3[/C][C]4064.6569794336[/C][C]-184.83598566251[/C][C]4262.77900622891[/C][C]-6.64302056639826[/C][/ROW]
[ROW][C]45[/C][C]4163.4[/C][C]4090.39559914806[/C][C]-69.511580575968[/C][C]4305.91598142791[/C][C]-73.0044008519399[/C][/ROW]
[ROW][C]46[/C][C]4077.6[/C][C]3997.53182065685[/C][C]-214.999469714405[/C][C]4372.66764905755[/C][C]-80.0681793431468[/C][/ROW]
[ROW][C]47[/C][C]5109.2[/C][C]5327.34850639237[/C][C]469.347771566462[/C][C]4421.70372204116[/C][C]218.148506392373[/C][/ROW]
[ROW][C]48[/C][C]4207.6[/C][C]4132.74134895815[/C][C]-184.83598566251[/C][C]4467.29463670436[/C][C]-74.8586510418472[/C][/ROW]
[ROW][C]49[/C][C]4320.8[/C][C]4153.95233447264[/C][C]-69.511580575968[/C][C]4557.15924610333[/C][C]-166.847665527363[/C][/ROW]
[ROW][C]50[/C][C]4396.9[/C][C]4351.67475767637[/C][C]-214.999469714405[/C][C]4657.12471203803[/C][C]-45.2252423236287[/C][/ROW]
[ROW][C]51[/C][C]5358.8[/C][C]5478.40429765408[/C][C]469.347771566462[/C][C]4769.84793077945[/C][C]119.604297654085[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301852&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301852&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Seasonal Decomposition by Loess - Time Series Components
tObservedFittedSeasonalTrendRemainder
11932.82001.31534264748-69.5115805759681933.7962379284868.5153426474831
21861.41958.18022749508-214.9994697144051979.6192422193396.7802274950755
32170.21829.94999607408469.3477715664622041.10223235946-340.250003925924
41999.62083.404327844-184.835985662512100.631657818583.804327844005
52225.52288.76653976629-69.5115805759682231.7450408096863.2665397662868
62195.72272.17839197171-214.9994697144052334.2210777426976.4783919717111
72713.12535.2149595677469.3477715664622421.63726886584-177.8850404323
824122486.44384059182-184.835985662512522.3921450706974.4438405918168
92568.32558.89011904804-69.5115805759682647.22146152792-9.40988095195644
102623.72723.94610866385-214.9994697144052738.45336105055100.246108663851
113185.53072.88846465275469.3477715664622828.76376378079-112.611535347253
122722.62708.90972296186-184.835985662512921.12626270065-13.6902770381421
133046.33176.43224470676-69.5115805759682985.67933586921130.132244706763
142854.22906.35876228905-214.9994697144053017.0407074253652.1587622890484
153337.63174.60673346135469.3477715664623031.24549497219-162.993266538649
162920.32974.45633994599-184.835985662513050.9796457165254.1563399459938
173058.33067.09484357599-69.5115805759683119.016736999988.7948435759904
182933.72880.60778193761-214.9994697144053201.79168777679-53.0922180623857
193773.43788.03936925608469.3477715664623289.4128591774614.6393692560828
203193.53175.40759567679-184.835985662513396.42838998572-18.092404323208
213472.23531.31395784206-69.5115805759683482.597622733959.1139578420643
223345.53360.16579171061-214.9994697144053545.833678003814.6657917106099
234028.43988.3792096954469.3477715664623599.07301873814-40.0207903046039
243463.13462.98334632393-184.835985662513648.05263933858-0.116653676067472
253675.43733.54272011771-69.5115805759683686.7688604582658.142720117708
263500.83504.45550104453-214.9994697144053712.143968669883.6555010445295
274142.14079.40475754358469.3477715664623735.44747088996-62.6952424564242
2835983620.6192052085-184.835985662513760.2167804540122.6192052084953
293765.33810.82080481542-69.5115805759683789.2907757605545.5208048154195
303557.73521.75452142246-214.9994697144053808.64494829195-35.9454785775415
314303.64334.2095302251469.3477715664623803.6426982084430.6095302250956
323620.13618.3518286402-184.835985662513806.68415702231-1.74817135980311
333691.13610.8004634778-69.5115805759683840.91111709817-80.2995365222009
343678.13685.46258152148-214.9994697144053885.736888192937.36258152147821
354505.84617.59473556456469.3477715664623924.65749286898111.794735564559
3636953626.63036399406-184.835985662513948.20562166845-68.3696360059384
373894.13884.20688537447-69.5115805759683973.5046952015-9.89311462553405
383718.93617.15097800257-214.9994697144054035.64849171184-101.749021997432
394749.84951.74706706918469.3477715664624078.50516136436201.947067069179
403855.93786.56122528552-184.835985662514110.07476037699-69.3387747144789
414011.73965.32237762546-69.5115805759684127.58920295051-46.3776223745435
423907.63856.49463975287-214.9994697144054173.70482996154-51.1053602471347
434812.54928.59474961606469.3477715664624227.05747881748116.094749616059
444071.34064.6569794336-184.835985662514262.77900622891-6.64302056639826
454163.44090.39559914806-69.5115805759684305.91598142791-73.0044008519399
464077.63997.53182065685-214.9994697144054372.66764905755-80.0681793431468
475109.25327.34850639237469.3477715664624421.70372204116218.148506392373
484207.64132.74134895815-184.835985662514467.29463670436-74.8586510418472
494320.84153.95233447264-69.5115805759684557.15924610333-166.847665527363
504396.94351.67475767637-214.9994697144054657.12471203803-45.2252423236287
515358.85478.40429765408469.3477715664624769.84793077945119.604297654085



Parameters (Session):
par1 = 4 ; par2 = periodic ; par3 = 0 ; par5 = 1 ; par7 = 1 ; par8 = FALSE ;
Parameters (R input):
par1 = 4 ; par2 = periodic ; par3 = 0 ; par4 = ; par5 = 1 ; par6 = ; par7 = 1 ; par8 = FALSE ;
R code (references can be found in the software module):
par1 <- as.numeric(par1) #seasonal period
if (par2 != 'periodic') par2 <- as.numeric(par2) #s.window
par3 <- as.numeric(par3) #s.degree
if (par4 == '') par4 <- NULL else par4 <- as.numeric(par4)#t.window
par5 <- as.numeric(par5)#t.degree
if (par6 != '') par6 <- as.numeric(par6)#l.window
par7 <- as.numeric(par7)#l.degree
if (par8 == 'FALSE') par8 <- FALSE else par9 <- TRUE #robust
nx <- length(x)
x <- ts(x,frequency=par1)
if (par6 != '') {
m <- stl(x,s.window=par2, s.degree=par3, t.window=par4, t.degre=par5, l.window=par6, l.degree=par7, robust=par8)
} else {
m <- stl(x,s.window=par2, s.degree=par3, t.window=par4, t.degre=par5, l.degree=par7, robust=par8)
}
m$time.series
m$win
m$deg
m$jump
m$inner
m$outer
bitmap(file='test1.png')
plot(m,main=main)
dev.off()
mylagmax <- nx/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(as.numeric(m$time.series[,'trend']),na.action=na.pass,lag.max = mylagmax,main='Trend')
acf(as.numeric(m$time.series[,'seasonal']),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(as.numeric(m$time.series[,'remainder']),na.action=na.pass,lag.max = mylagmax,main='Remainder')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'trend']),'trend']),main='Trend')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'seasonal']),'seasonal']),main='Seasonal')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'remainder']),'remainder']),main='Remainder')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'trend']),'trend']),main='Trend')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'seasonal']),'seasonal']),main='Seasonal')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'remainder']),'remainder']),main='Remainder')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Seasonal Decomposition by Loess - Parameters',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Component',header=TRUE)
a<-table.element(a,'Window',header=TRUE)
a<-table.element(a,'Degree',header=TRUE)
a<-table.element(a,'Jump',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,m$win['s'])
a<-table.element(a,m$deg['s'])
a<-table.element(a,m$jump['s'])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,m$win['t'])
a<-table.element(a,m$deg['t'])
a<-table.element(a,m$jump['t'])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Low-pass',header=TRUE)
a<-table.element(a,m$win['l'])
a<-table.element(a,m$deg['l'])
a<-table.element(a,m$jump['l'])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Seasonal Decomposition by Loess - Time Series Components',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Fitted',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,'Remainder',header=TRUE)
a<-table.row.end(a)
for (i in 1:nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]+m$time.series[i,'remainder'])
a<-table.element(a,m$time.series[i,'seasonal'])
a<-table.element(a,m$time.series[i,'trend'])
a<-table.element(a,m$time.series[i,'remainder'])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')