Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_exponentialsmoothing.wasp
Title produced by softwareExponential Smoothing
Date of computationWed, 21 Dec 2016 01:16:12 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/21/t1482279381uug7lcudrsn3qzv.htm/, Retrieved Fri, 01 Nov 2024 03:39:04 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=301837, Retrieved Fri, 01 Nov 2024 03:39:04 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact126
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Exponential Smoothing] [] [2016-12-21 00:16:12] [361c8dad91b3f1ef2e651cd04783c23b] [Current]
Feedback Forum

Post a new message
Dataseries X:
2755
2765
3000
2890
2940
3290
2815
3035
3070
3040
2685
2540
3090
2995
3440
3335
3205
3285
2790
3225
3360
3275
3505
3185
3470
3510
3840
3605
3655
3555
3140
3380
3255
3460
3245
3120
3265
3220
3140
3050
3300
2950
2630
2795
2840
2945
2790
2605
4590
4230
4245
4300
4475
3910
4100
3500
4390
3550
3865
3715
3310
3945
5050
4350
4060
4345
4360
4915
4650
4805
4775
4220
3975
3820
5515
4895
5535
4230
3695
5590
5000
4875
4360
4405
4500
4070
4800
4080
4850
4105
3805
5060
4060
4600
4635
3900
4120
3960
4400
3700
3970
4550
5140
5000
3650
4300
3650
3355
4000
3450
3295
3390
3415
3440
3680
3900
3965
4295
4210
4100
4690
3860
4250
4495
3800
3845




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301837&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=301837&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301837&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Estimated Parameters of Exponential Smoothing
ParameterValue
alpha0.426929412361067
beta0
gamma0.172349889595515

\begin{tabular}{lllllllll}
\hline
Estimated Parameters of Exponential Smoothing \tabularnewline
Parameter & Value \tabularnewline
alpha & 0.426929412361067 \tabularnewline
beta & 0 \tabularnewline
gamma & 0.172349889595515 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301837&T=1

[TABLE]
[ROW][C]Estimated Parameters of Exponential Smoothing[/C][/ROW]
[ROW][C]Parameter[/C][C]Value[/C][/ROW]
[ROW][C]alpha[/C][C]0.426929412361067[/C][/ROW]
[ROW][C]beta[/C][C]0[/C][/ROW]
[ROW][C]gamma[/C][C]0.172349889595515[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301837&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301837&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimated Parameters of Exponential Smoothing
ParameterValue
alpha0.426929412361067
beta0
gamma0.172349889595515







Interpolation Forecasts of Exponential Smoothing
tObservedFittedResiduals
1330902966.24044164259123.759558357413
1429952940.6419538987854.3580461012157
1534403405.9860523122434.0139476877571
1633353315.6892454584919.310754541511
1732053171.4282656787633.5717343212373
1832853224.8950675104560.1049324895484
1927903074.76892786537-284.768927865374
2032253180.5551933966144.4448066033888
2133603228.08663379276131.913366207245
2232753234.0122556375540.9877443624505
2335052862.71948037259642.280519627408
2431852974.78898404774210.211015952255
2534703766.52795560479-296.527955604789
2635103533.24657461541-23.2465746154085
2738404041.09569154644-201.095691546443
2836053828.89451882954-223.89451882954
2936553561.0041221084493.9958778915557
3035553645.38874577019-90.388745770194
3131403370.89555673098-230.895556730984
3233803560.39799105646-180.397991056461
3332553521.64225348541-266.642253485409
3434603345.69771654913114.302283450867
3532453044.4308139762200.569186023795
3631202929.54474107436190.455258925644
3732653646.59689986946-381.596899869458
3832203407.5233133288-187.523313328803
3931403801.07724727437-661.077247274373
4030503405.77590722695-355.77590722695
4133003132.95184436014167.048155639861
4229503229.76676999205-279.766769992054
4326302896.54796594637-266.547965946373
4427953036.54028468966-241.540284689656
4528402961.23260753618-121.232607536177
4629452891.3024298632753.6975701367314
4727902624.31587344981165.68412655019
4826052524.8073593766380.192640623367
4945903050.137458377051539.86254162295
5042303644.16931166599585.830688334006
5142454386.3216934616-141.321693461603
5243004214.3451646453885.6548353546195
5344754151.84979106387323.150208936135
5439104256.3620247808-346.3620247808
5541003817.19289630078282.807103699218
5635004293.49110922277-793.491109222766
5743904000.5136870504389.486312949604
5835504155.91793636635-605.91793636635
5938653517.8858842382347.114115761802
6037153417.95597098626297.04402901374
6133104376.30418979074-1066.30418979074
6239453756.83732312895188.162676871048
6350504245.65865403037804.341345969628
6443504492.5624136777-142.562413677696
6540604351.06676482425-291.066764824252
6643454128.68153058953216.318469410471
6743603982.00909350627377.990906493727
6849154395.82634668968519.173653310319
6946504805.13774468295-155.137744682954
7048054608.65952837778196.340471622225
7147754337.62112830564437.37887169436
7242204209.5795464701210.4204535298795
7339755017.38058381948-1042.38058381948
7438204519.34320720182-699.343207201821
7555154725.79997056087789.200029439127
7648954854.54678877140.4532112290044
7755354763.52184207053771.478157929472
7842305029.46246850309-799.462468503094
7936954437.90232909734-742.902329097335
8055904381.183572825141208.81642717486
8150005022.94364249965-22.9436424996538
8248754910.07527833303-35.0752783330263
8343604548.54615207879-188.546152078789
8444054119.28122009035285.718779909645
8545004934.76517189289-434.765171892887
8640704722.31711305747-652.317113057466
8748005134.50393713692-334.503937136924
8840804718.37580624832-638.375806248316
8948504410.4035619829439.596438017104
9041054400.88074345975-295.880743459754
9138054043.88168495217-238.88168495217
9250604371.62587747687688.37412252313
9340604670.79249599349-610.792495993486
9446004320.82770540384279.172294596163
9546354113.22262101198521.777378988021
9639004041.43409214725-141.434092147247
9741204561.20146227027-441.20146227027
9839604325.65205634314-365.652056343141
9944004857.2615943209-457.261594320898
10037004374.55856808826-674.558568088256
10139704152.68130849665-182.681308496647
10245503839.62628473583710.373715264168
10351403923.171892835171216.82810716483
10450005025.88948723836-25.8894872383644
10536504879.41444390907-1229.41444390907
10643004352.47584889885-52.4758488988491
10736504034.61473441445-384.614734414454
10833553554.76489022752-199.764890227524
10940003951.9282045539648.0717954460356
11034503936.44628875027-486.446288750271
11132954341.61007496885-1046.61007496885
11233903633.63209391567-243.632093915668
11334153632.76148620448-217.761486204476
11434403409.9065552128730.0934447871314
11536803277.30183449055402.698165509446
11639003802.7892762432497.2107237567634
11739653642.95691022933322.043089770672
11842953884.70260489794410.297395102062
11942103751.42725909519458.572740904811
12041003639.86418322188460.13581677812
12146904397.68387189132292.316128108678
12238604415.69590129125-555.695901291246
12342504794.77586615336-544.775866153362
12444954338.09569315705156.904306842947
12538004531.45960798698-731.459607986983
12638454088.46947119538-243.469471195385

\begin{tabular}{lllllllll}
\hline
Interpolation Forecasts of Exponential Smoothing \tabularnewline
t & Observed & Fitted & Residuals \tabularnewline
13 & 3090 & 2966.24044164259 & 123.759558357413 \tabularnewline
14 & 2995 & 2940.64195389878 & 54.3580461012157 \tabularnewline
15 & 3440 & 3405.98605231224 & 34.0139476877571 \tabularnewline
16 & 3335 & 3315.68924545849 & 19.310754541511 \tabularnewline
17 & 3205 & 3171.42826567876 & 33.5717343212373 \tabularnewline
18 & 3285 & 3224.89506751045 & 60.1049324895484 \tabularnewline
19 & 2790 & 3074.76892786537 & -284.768927865374 \tabularnewline
20 & 3225 & 3180.55519339661 & 44.4448066033888 \tabularnewline
21 & 3360 & 3228.08663379276 & 131.913366207245 \tabularnewline
22 & 3275 & 3234.01225563755 & 40.9877443624505 \tabularnewline
23 & 3505 & 2862.71948037259 & 642.280519627408 \tabularnewline
24 & 3185 & 2974.78898404774 & 210.211015952255 \tabularnewline
25 & 3470 & 3766.52795560479 & -296.527955604789 \tabularnewline
26 & 3510 & 3533.24657461541 & -23.2465746154085 \tabularnewline
27 & 3840 & 4041.09569154644 & -201.095691546443 \tabularnewline
28 & 3605 & 3828.89451882954 & -223.89451882954 \tabularnewline
29 & 3655 & 3561.00412210844 & 93.9958778915557 \tabularnewline
30 & 3555 & 3645.38874577019 & -90.388745770194 \tabularnewline
31 & 3140 & 3370.89555673098 & -230.895556730984 \tabularnewline
32 & 3380 & 3560.39799105646 & -180.397991056461 \tabularnewline
33 & 3255 & 3521.64225348541 & -266.642253485409 \tabularnewline
34 & 3460 & 3345.69771654913 & 114.302283450867 \tabularnewline
35 & 3245 & 3044.4308139762 & 200.569186023795 \tabularnewline
36 & 3120 & 2929.54474107436 & 190.455258925644 \tabularnewline
37 & 3265 & 3646.59689986946 & -381.596899869458 \tabularnewline
38 & 3220 & 3407.5233133288 & -187.523313328803 \tabularnewline
39 & 3140 & 3801.07724727437 & -661.077247274373 \tabularnewline
40 & 3050 & 3405.77590722695 & -355.77590722695 \tabularnewline
41 & 3300 & 3132.95184436014 & 167.048155639861 \tabularnewline
42 & 2950 & 3229.76676999205 & -279.766769992054 \tabularnewline
43 & 2630 & 2896.54796594637 & -266.547965946373 \tabularnewline
44 & 2795 & 3036.54028468966 & -241.540284689656 \tabularnewline
45 & 2840 & 2961.23260753618 & -121.232607536177 \tabularnewline
46 & 2945 & 2891.30242986327 & 53.6975701367314 \tabularnewline
47 & 2790 & 2624.31587344981 & 165.68412655019 \tabularnewline
48 & 2605 & 2524.80735937663 & 80.192640623367 \tabularnewline
49 & 4590 & 3050.13745837705 & 1539.86254162295 \tabularnewline
50 & 4230 & 3644.16931166599 & 585.830688334006 \tabularnewline
51 & 4245 & 4386.3216934616 & -141.321693461603 \tabularnewline
52 & 4300 & 4214.34516464538 & 85.6548353546195 \tabularnewline
53 & 4475 & 4151.84979106387 & 323.150208936135 \tabularnewline
54 & 3910 & 4256.3620247808 & -346.3620247808 \tabularnewline
55 & 4100 & 3817.19289630078 & 282.807103699218 \tabularnewline
56 & 3500 & 4293.49110922277 & -793.491109222766 \tabularnewline
57 & 4390 & 4000.5136870504 & 389.486312949604 \tabularnewline
58 & 3550 & 4155.91793636635 & -605.91793636635 \tabularnewline
59 & 3865 & 3517.8858842382 & 347.114115761802 \tabularnewline
60 & 3715 & 3417.95597098626 & 297.04402901374 \tabularnewline
61 & 3310 & 4376.30418979074 & -1066.30418979074 \tabularnewline
62 & 3945 & 3756.83732312895 & 188.162676871048 \tabularnewline
63 & 5050 & 4245.65865403037 & 804.341345969628 \tabularnewline
64 & 4350 & 4492.5624136777 & -142.562413677696 \tabularnewline
65 & 4060 & 4351.06676482425 & -291.066764824252 \tabularnewline
66 & 4345 & 4128.68153058953 & 216.318469410471 \tabularnewline
67 & 4360 & 3982.00909350627 & 377.990906493727 \tabularnewline
68 & 4915 & 4395.82634668968 & 519.173653310319 \tabularnewline
69 & 4650 & 4805.13774468295 & -155.137744682954 \tabularnewline
70 & 4805 & 4608.65952837778 & 196.340471622225 \tabularnewline
71 & 4775 & 4337.62112830564 & 437.37887169436 \tabularnewline
72 & 4220 & 4209.57954647012 & 10.4204535298795 \tabularnewline
73 & 3975 & 5017.38058381948 & -1042.38058381948 \tabularnewline
74 & 3820 & 4519.34320720182 & -699.343207201821 \tabularnewline
75 & 5515 & 4725.79997056087 & 789.200029439127 \tabularnewline
76 & 4895 & 4854.546788771 & 40.4532112290044 \tabularnewline
77 & 5535 & 4763.52184207053 & 771.478157929472 \tabularnewline
78 & 4230 & 5029.46246850309 & -799.462468503094 \tabularnewline
79 & 3695 & 4437.90232909734 & -742.902329097335 \tabularnewline
80 & 5590 & 4381.18357282514 & 1208.81642717486 \tabularnewline
81 & 5000 & 5022.94364249965 & -22.9436424996538 \tabularnewline
82 & 4875 & 4910.07527833303 & -35.0752783330263 \tabularnewline
83 & 4360 & 4548.54615207879 & -188.546152078789 \tabularnewline
84 & 4405 & 4119.28122009035 & 285.718779909645 \tabularnewline
85 & 4500 & 4934.76517189289 & -434.765171892887 \tabularnewline
86 & 4070 & 4722.31711305747 & -652.317113057466 \tabularnewline
87 & 4800 & 5134.50393713692 & -334.503937136924 \tabularnewline
88 & 4080 & 4718.37580624832 & -638.375806248316 \tabularnewline
89 & 4850 & 4410.4035619829 & 439.596438017104 \tabularnewline
90 & 4105 & 4400.88074345975 & -295.880743459754 \tabularnewline
91 & 3805 & 4043.88168495217 & -238.88168495217 \tabularnewline
92 & 5060 & 4371.62587747687 & 688.37412252313 \tabularnewline
93 & 4060 & 4670.79249599349 & -610.792495993486 \tabularnewline
94 & 4600 & 4320.82770540384 & 279.172294596163 \tabularnewline
95 & 4635 & 4113.22262101198 & 521.777378988021 \tabularnewline
96 & 3900 & 4041.43409214725 & -141.434092147247 \tabularnewline
97 & 4120 & 4561.20146227027 & -441.20146227027 \tabularnewline
98 & 3960 & 4325.65205634314 & -365.652056343141 \tabularnewline
99 & 4400 & 4857.2615943209 & -457.261594320898 \tabularnewline
100 & 3700 & 4374.55856808826 & -674.558568088256 \tabularnewline
101 & 3970 & 4152.68130849665 & -182.681308496647 \tabularnewline
102 & 4550 & 3839.62628473583 & 710.373715264168 \tabularnewline
103 & 5140 & 3923.17189283517 & 1216.82810716483 \tabularnewline
104 & 5000 & 5025.88948723836 & -25.8894872383644 \tabularnewline
105 & 3650 & 4879.41444390907 & -1229.41444390907 \tabularnewline
106 & 4300 & 4352.47584889885 & -52.4758488988491 \tabularnewline
107 & 3650 & 4034.61473441445 & -384.614734414454 \tabularnewline
108 & 3355 & 3554.76489022752 & -199.764890227524 \tabularnewline
109 & 4000 & 3951.92820455396 & 48.0717954460356 \tabularnewline
110 & 3450 & 3936.44628875027 & -486.446288750271 \tabularnewline
111 & 3295 & 4341.61007496885 & -1046.61007496885 \tabularnewline
112 & 3390 & 3633.63209391567 & -243.632093915668 \tabularnewline
113 & 3415 & 3632.76148620448 & -217.761486204476 \tabularnewline
114 & 3440 & 3409.90655521287 & 30.0934447871314 \tabularnewline
115 & 3680 & 3277.30183449055 & 402.698165509446 \tabularnewline
116 & 3900 & 3802.78927624324 & 97.2107237567634 \tabularnewline
117 & 3965 & 3642.95691022933 & 322.043089770672 \tabularnewline
118 & 4295 & 3884.70260489794 & 410.297395102062 \tabularnewline
119 & 4210 & 3751.42725909519 & 458.572740904811 \tabularnewline
120 & 4100 & 3639.86418322188 & 460.13581677812 \tabularnewline
121 & 4690 & 4397.68387189132 & 292.316128108678 \tabularnewline
122 & 3860 & 4415.69590129125 & -555.695901291246 \tabularnewline
123 & 4250 & 4794.77586615336 & -544.775866153362 \tabularnewline
124 & 4495 & 4338.09569315705 & 156.904306842947 \tabularnewline
125 & 3800 & 4531.45960798698 & -731.459607986983 \tabularnewline
126 & 3845 & 4088.46947119538 & -243.469471195385 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301837&T=2

[TABLE]
[ROW][C]Interpolation Forecasts of Exponential Smoothing[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Fitted[/C][C]Residuals[/C][/ROW]
[ROW][C]13[/C][C]3090[/C][C]2966.24044164259[/C][C]123.759558357413[/C][/ROW]
[ROW][C]14[/C][C]2995[/C][C]2940.64195389878[/C][C]54.3580461012157[/C][/ROW]
[ROW][C]15[/C][C]3440[/C][C]3405.98605231224[/C][C]34.0139476877571[/C][/ROW]
[ROW][C]16[/C][C]3335[/C][C]3315.68924545849[/C][C]19.310754541511[/C][/ROW]
[ROW][C]17[/C][C]3205[/C][C]3171.42826567876[/C][C]33.5717343212373[/C][/ROW]
[ROW][C]18[/C][C]3285[/C][C]3224.89506751045[/C][C]60.1049324895484[/C][/ROW]
[ROW][C]19[/C][C]2790[/C][C]3074.76892786537[/C][C]-284.768927865374[/C][/ROW]
[ROW][C]20[/C][C]3225[/C][C]3180.55519339661[/C][C]44.4448066033888[/C][/ROW]
[ROW][C]21[/C][C]3360[/C][C]3228.08663379276[/C][C]131.913366207245[/C][/ROW]
[ROW][C]22[/C][C]3275[/C][C]3234.01225563755[/C][C]40.9877443624505[/C][/ROW]
[ROW][C]23[/C][C]3505[/C][C]2862.71948037259[/C][C]642.280519627408[/C][/ROW]
[ROW][C]24[/C][C]3185[/C][C]2974.78898404774[/C][C]210.211015952255[/C][/ROW]
[ROW][C]25[/C][C]3470[/C][C]3766.52795560479[/C][C]-296.527955604789[/C][/ROW]
[ROW][C]26[/C][C]3510[/C][C]3533.24657461541[/C][C]-23.2465746154085[/C][/ROW]
[ROW][C]27[/C][C]3840[/C][C]4041.09569154644[/C][C]-201.095691546443[/C][/ROW]
[ROW][C]28[/C][C]3605[/C][C]3828.89451882954[/C][C]-223.89451882954[/C][/ROW]
[ROW][C]29[/C][C]3655[/C][C]3561.00412210844[/C][C]93.9958778915557[/C][/ROW]
[ROW][C]30[/C][C]3555[/C][C]3645.38874577019[/C][C]-90.388745770194[/C][/ROW]
[ROW][C]31[/C][C]3140[/C][C]3370.89555673098[/C][C]-230.895556730984[/C][/ROW]
[ROW][C]32[/C][C]3380[/C][C]3560.39799105646[/C][C]-180.397991056461[/C][/ROW]
[ROW][C]33[/C][C]3255[/C][C]3521.64225348541[/C][C]-266.642253485409[/C][/ROW]
[ROW][C]34[/C][C]3460[/C][C]3345.69771654913[/C][C]114.302283450867[/C][/ROW]
[ROW][C]35[/C][C]3245[/C][C]3044.4308139762[/C][C]200.569186023795[/C][/ROW]
[ROW][C]36[/C][C]3120[/C][C]2929.54474107436[/C][C]190.455258925644[/C][/ROW]
[ROW][C]37[/C][C]3265[/C][C]3646.59689986946[/C][C]-381.596899869458[/C][/ROW]
[ROW][C]38[/C][C]3220[/C][C]3407.5233133288[/C][C]-187.523313328803[/C][/ROW]
[ROW][C]39[/C][C]3140[/C][C]3801.07724727437[/C][C]-661.077247274373[/C][/ROW]
[ROW][C]40[/C][C]3050[/C][C]3405.77590722695[/C][C]-355.77590722695[/C][/ROW]
[ROW][C]41[/C][C]3300[/C][C]3132.95184436014[/C][C]167.048155639861[/C][/ROW]
[ROW][C]42[/C][C]2950[/C][C]3229.76676999205[/C][C]-279.766769992054[/C][/ROW]
[ROW][C]43[/C][C]2630[/C][C]2896.54796594637[/C][C]-266.547965946373[/C][/ROW]
[ROW][C]44[/C][C]2795[/C][C]3036.54028468966[/C][C]-241.540284689656[/C][/ROW]
[ROW][C]45[/C][C]2840[/C][C]2961.23260753618[/C][C]-121.232607536177[/C][/ROW]
[ROW][C]46[/C][C]2945[/C][C]2891.30242986327[/C][C]53.6975701367314[/C][/ROW]
[ROW][C]47[/C][C]2790[/C][C]2624.31587344981[/C][C]165.68412655019[/C][/ROW]
[ROW][C]48[/C][C]2605[/C][C]2524.80735937663[/C][C]80.192640623367[/C][/ROW]
[ROW][C]49[/C][C]4590[/C][C]3050.13745837705[/C][C]1539.86254162295[/C][/ROW]
[ROW][C]50[/C][C]4230[/C][C]3644.16931166599[/C][C]585.830688334006[/C][/ROW]
[ROW][C]51[/C][C]4245[/C][C]4386.3216934616[/C][C]-141.321693461603[/C][/ROW]
[ROW][C]52[/C][C]4300[/C][C]4214.34516464538[/C][C]85.6548353546195[/C][/ROW]
[ROW][C]53[/C][C]4475[/C][C]4151.84979106387[/C][C]323.150208936135[/C][/ROW]
[ROW][C]54[/C][C]3910[/C][C]4256.3620247808[/C][C]-346.3620247808[/C][/ROW]
[ROW][C]55[/C][C]4100[/C][C]3817.19289630078[/C][C]282.807103699218[/C][/ROW]
[ROW][C]56[/C][C]3500[/C][C]4293.49110922277[/C][C]-793.491109222766[/C][/ROW]
[ROW][C]57[/C][C]4390[/C][C]4000.5136870504[/C][C]389.486312949604[/C][/ROW]
[ROW][C]58[/C][C]3550[/C][C]4155.91793636635[/C][C]-605.91793636635[/C][/ROW]
[ROW][C]59[/C][C]3865[/C][C]3517.8858842382[/C][C]347.114115761802[/C][/ROW]
[ROW][C]60[/C][C]3715[/C][C]3417.95597098626[/C][C]297.04402901374[/C][/ROW]
[ROW][C]61[/C][C]3310[/C][C]4376.30418979074[/C][C]-1066.30418979074[/C][/ROW]
[ROW][C]62[/C][C]3945[/C][C]3756.83732312895[/C][C]188.162676871048[/C][/ROW]
[ROW][C]63[/C][C]5050[/C][C]4245.65865403037[/C][C]804.341345969628[/C][/ROW]
[ROW][C]64[/C][C]4350[/C][C]4492.5624136777[/C][C]-142.562413677696[/C][/ROW]
[ROW][C]65[/C][C]4060[/C][C]4351.06676482425[/C][C]-291.066764824252[/C][/ROW]
[ROW][C]66[/C][C]4345[/C][C]4128.68153058953[/C][C]216.318469410471[/C][/ROW]
[ROW][C]67[/C][C]4360[/C][C]3982.00909350627[/C][C]377.990906493727[/C][/ROW]
[ROW][C]68[/C][C]4915[/C][C]4395.82634668968[/C][C]519.173653310319[/C][/ROW]
[ROW][C]69[/C][C]4650[/C][C]4805.13774468295[/C][C]-155.137744682954[/C][/ROW]
[ROW][C]70[/C][C]4805[/C][C]4608.65952837778[/C][C]196.340471622225[/C][/ROW]
[ROW][C]71[/C][C]4775[/C][C]4337.62112830564[/C][C]437.37887169436[/C][/ROW]
[ROW][C]72[/C][C]4220[/C][C]4209.57954647012[/C][C]10.4204535298795[/C][/ROW]
[ROW][C]73[/C][C]3975[/C][C]5017.38058381948[/C][C]-1042.38058381948[/C][/ROW]
[ROW][C]74[/C][C]3820[/C][C]4519.34320720182[/C][C]-699.343207201821[/C][/ROW]
[ROW][C]75[/C][C]5515[/C][C]4725.79997056087[/C][C]789.200029439127[/C][/ROW]
[ROW][C]76[/C][C]4895[/C][C]4854.546788771[/C][C]40.4532112290044[/C][/ROW]
[ROW][C]77[/C][C]5535[/C][C]4763.52184207053[/C][C]771.478157929472[/C][/ROW]
[ROW][C]78[/C][C]4230[/C][C]5029.46246850309[/C][C]-799.462468503094[/C][/ROW]
[ROW][C]79[/C][C]3695[/C][C]4437.90232909734[/C][C]-742.902329097335[/C][/ROW]
[ROW][C]80[/C][C]5590[/C][C]4381.18357282514[/C][C]1208.81642717486[/C][/ROW]
[ROW][C]81[/C][C]5000[/C][C]5022.94364249965[/C][C]-22.9436424996538[/C][/ROW]
[ROW][C]82[/C][C]4875[/C][C]4910.07527833303[/C][C]-35.0752783330263[/C][/ROW]
[ROW][C]83[/C][C]4360[/C][C]4548.54615207879[/C][C]-188.546152078789[/C][/ROW]
[ROW][C]84[/C][C]4405[/C][C]4119.28122009035[/C][C]285.718779909645[/C][/ROW]
[ROW][C]85[/C][C]4500[/C][C]4934.76517189289[/C][C]-434.765171892887[/C][/ROW]
[ROW][C]86[/C][C]4070[/C][C]4722.31711305747[/C][C]-652.317113057466[/C][/ROW]
[ROW][C]87[/C][C]4800[/C][C]5134.50393713692[/C][C]-334.503937136924[/C][/ROW]
[ROW][C]88[/C][C]4080[/C][C]4718.37580624832[/C][C]-638.375806248316[/C][/ROW]
[ROW][C]89[/C][C]4850[/C][C]4410.4035619829[/C][C]439.596438017104[/C][/ROW]
[ROW][C]90[/C][C]4105[/C][C]4400.88074345975[/C][C]-295.880743459754[/C][/ROW]
[ROW][C]91[/C][C]3805[/C][C]4043.88168495217[/C][C]-238.88168495217[/C][/ROW]
[ROW][C]92[/C][C]5060[/C][C]4371.62587747687[/C][C]688.37412252313[/C][/ROW]
[ROW][C]93[/C][C]4060[/C][C]4670.79249599349[/C][C]-610.792495993486[/C][/ROW]
[ROW][C]94[/C][C]4600[/C][C]4320.82770540384[/C][C]279.172294596163[/C][/ROW]
[ROW][C]95[/C][C]4635[/C][C]4113.22262101198[/C][C]521.777378988021[/C][/ROW]
[ROW][C]96[/C][C]3900[/C][C]4041.43409214725[/C][C]-141.434092147247[/C][/ROW]
[ROW][C]97[/C][C]4120[/C][C]4561.20146227027[/C][C]-441.20146227027[/C][/ROW]
[ROW][C]98[/C][C]3960[/C][C]4325.65205634314[/C][C]-365.652056343141[/C][/ROW]
[ROW][C]99[/C][C]4400[/C][C]4857.2615943209[/C][C]-457.261594320898[/C][/ROW]
[ROW][C]100[/C][C]3700[/C][C]4374.55856808826[/C][C]-674.558568088256[/C][/ROW]
[ROW][C]101[/C][C]3970[/C][C]4152.68130849665[/C][C]-182.681308496647[/C][/ROW]
[ROW][C]102[/C][C]4550[/C][C]3839.62628473583[/C][C]710.373715264168[/C][/ROW]
[ROW][C]103[/C][C]5140[/C][C]3923.17189283517[/C][C]1216.82810716483[/C][/ROW]
[ROW][C]104[/C][C]5000[/C][C]5025.88948723836[/C][C]-25.8894872383644[/C][/ROW]
[ROW][C]105[/C][C]3650[/C][C]4879.41444390907[/C][C]-1229.41444390907[/C][/ROW]
[ROW][C]106[/C][C]4300[/C][C]4352.47584889885[/C][C]-52.4758488988491[/C][/ROW]
[ROW][C]107[/C][C]3650[/C][C]4034.61473441445[/C][C]-384.614734414454[/C][/ROW]
[ROW][C]108[/C][C]3355[/C][C]3554.76489022752[/C][C]-199.764890227524[/C][/ROW]
[ROW][C]109[/C][C]4000[/C][C]3951.92820455396[/C][C]48.0717954460356[/C][/ROW]
[ROW][C]110[/C][C]3450[/C][C]3936.44628875027[/C][C]-486.446288750271[/C][/ROW]
[ROW][C]111[/C][C]3295[/C][C]4341.61007496885[/C][C]-1046.61007496885[/C][/ROW]
[ROW][C]112[/C][C]3390[/C][C]3633.63209391567[/C][C]-243.632093915668[/C][/ROW]
[ROW][C]113[/C][C]3415[/C][C]3632.76148620448[/C][C]-217.761486204476[/C][/ROW]
[ROW][C]114[/C][C]3440[/C][C]3409.90655521287[/C][C]30.0934447871314[/C][/ROW]
[ROW][C]115[/C][C]3680[/C][C]3277.30183449055[/C][C]402.698165509446[/C][/ROW]
[ROW][C]116[/C][C]3900[/C][C]3802.78927624324[/C][C]97.2107237567634[/C][/ROW]
[ROW][C]117[/C][C]3965[/C][C]3642.95691022933[/C][C]322.043089770672[/C][/ROW]
[ROW][C]118[/C][C]4295[/C][C]3884.70260489794[/C][C]410.297395102062[/C][/ROW]
[ROW][C]119[/C][C]4210[/C][C]3751.42725909519[/C][C]458.572740904811[/C][/ROW]
[ROW][C]120[/C][C]4100[/C][C]3639.86418322188[/C][C]460.13581677812[/C][/ROW]
[ROW][C]121[/C][C]4690[/C][C]4397.68387189132[/C][C]292.316128108678[/C][/ROW]
[ROW][C]122[/C][C]3860[/C][C]4415.69590129125[/C][C]-555.695901291246[/C][/ROW]
[ROW][C]123[/C][C]4250[/C][C]4794.77586615336[/C][C]-544.775866153362[/C][/ROW]
[ROW][C]124[/C][C]4495[/C][C]4338.09569315705[/C][C]156.904306842947[/C][/ROW]
[ROW][C]125[/C][C]3800[/C][C]4531.45960798698[/C][C]-731.459607986983[/C][/ROW]
[ROW][C]126[/C][C]3845[/C][C]4088.46947119538[/C][C]-243.469471195385[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301837&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301837&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Interpolation Forecasts of Exponential Smoothing
tObservedFittedResiduals
1330902966.24044164259123.759558357413
1429952940.6419538987854.3580461012157
1534403405.9860523122434.0139476877571
1633353315.6892454584919.310754541511
1732053171.4282656787633.5717343212373
1832853224.8950675104560.1049324895484
1927903074.76892786537-284.768927865374
2032253180.5551933966144.4448066033888
2133603228.08663379276131.913366207245
2232753234.0122556375540.9877443624505
2335052862.71948037259642.280519627408
2431852974.78898404774210.211015952255
2534703766.52795560479-296.527955604789
2635103533.24657461541-23.2465746154085
2738404041.09569154644-201.095691546443
2836053828.89451882954-223.89451882954
2936553561.0041221084493.9958778915557
3035553645.38874577019-90.388745770194
3131403370.89555673098-230.895556730984
3233803560.39799105646-180.397991056461
3332553521.64225348541-266.642253485409
3434603345.69771654913114.302283450867
3532453044.4308139762200.569186023795
3631202929.54474107436190.455258925644
3732653646.59689986946-381.596899869458
3832203407.5233133288-187.523313328803
3931403801.07724727437-661.077247274373
4030503405.77590722695-355.77590722695
4133003132.95184436014167.048155639861
4229503229.76676999205-279.766769992054
4326302896.54796594637-266.547965946373
4427953036.54028468966-241.540284689656
4528402961.23260753618-121.232607536177
4629452891.3024298632753.6975701367314
4727902624.31587344981165.68412655019
4826052524.8073593766380.192640623367
4945903050.137458377051539.86254162295
5042303644.16931166599585.830688334006
5142454386.3216934616-141.321693461603
5243004214.3451646453885.6548353546195
5344754151.84979106387323.150208936135
5439104256.3620247808-346.3620247808
5541003817.19289630078282.807103699218
5635004293.49110922277-793.491109222766
5743904000.5136870504389.486312949604
5835504155.91793636635-605.91793636635
5938653517.8858842382347.114115761802
6037153417.95597098626297.04402901374
6133104376.30418979074-1066.30418979074
6239453756.83732312895188.162676871048
6350504245.65865403037804.341345969628
6443504492.5624136777-142.562413677696
6540604351.06676482425-291.066764824252
6643454128.68153058953216.318469410471
6743603982.00909350627377.990906493727
6849154395.82634668968519.173653310319
6946504805.13774468295-155.137744682954
7048054608.65952837778196.340471622225
7147754337.62112830564437.37887169436
7242204209.5795464701210.4204535298795
7339755017.38058381948-1042.38058381948
7438204519.34320720182-699.343207201821
7555154725.79997056087789.200029439127
7648954854.54678877140.4532112290044
7755354763.52184207053771.478157929472
7842305029.46246850309-799.462468503094
7936954437.90232909734-742.902329097335
8055904381.183572825141208.81642717486
8150005022.94364249965-22.9436424996538
8248754910.07527833303-35.0752783330263
8343604548.54615207879-188.546152078789
8444054119.28122009035285.718779909645
8545004934.76517189289-434.765171892887
8640704722.31711305747-652.317113057466
8748005134.50393713692-334.503937136924
8840804718.37580624832-638.375806248316
8948504410.4035619829439.596438017104
9041054400.88074345975-295.880743459754
9138054043.88168495217-238.88168495217
9250604371.62587747687688.37412252313
9340604670.79249599349-610.792495993486
9446004320.82770540384279.172294596163
9546354113.22262101198521.777378988021
9639004041.43409214725-141.434092147247
9741204561.20146227027-441.20146227027
9839604325.65205634314-365.652056343141
9944004857.2615943209-457.261594320898
10037004374.55856808826-674.558568088256
10139704152.68130849665-182.681308496647
10245503839.62628473583710.373715264168
10351403923.171892835171216.82810716483
10450005025.88948723836-25.8894872383644
10536504879.41444390907-1229.41444390907
10643004352.47584889885-52.4758488988491
10736504034.61473441445-384.614734414454
10833553554.76489022752-199.764890227524
10940003951.9282045539648.0717954460356
11034503936.44628875027-486.446288750271
11132954341.61007496885-1046.61007496885
11233903633.63209391567-243.632093915668
11334153632.76148620448-217.761486204476
11434403409.9065552128730.0934447871314
11536803277.30183449055402.698165509446
11639003802.7892762432497.2107237567634
11739653642.95691022933322.043089770672
11842953884.70260489794410.297395102062
11942103751.42725909519458.572740904811
12041003639.86418322188460.13581677812
12146904397.68387189132292.316128108678
12238604415.69590129125-555.695901291246
12342504794.77586615336-544.775866153362
12444954338.09569315705156.904306842947
12538004531.45960798698-731.459607986983
12638454088.46947119538-243.469471195385







Extrapolation Forecasts of Exponential Smoothing
tForecast95% Lower Bound95% Upper Bound
1273852.46682463783362.649128391884342.28452088371
1284207.089048794423553.929075499214860.24902208963
1294008.327553202583266.903055640244749.75205076493
1304124.150027093353269.658128764794978.6419254219
1313816.3395980582927.870710293734704.80848582227
1323521.295496652192606.895856246754435.69513705763
1334016.72419667132916.09210624775117.3562870949
1343848.155274692762722.953105531384973.35744385413
1354423.283641130923085.857035921675760.71024634018
1364271.592695428872924.155387319385619.03000353836
1374304.498157381042896.407497611595712.5888171505
1384217.388123783822873.172141995295561.60410557236
1394101.026745135142682.292926406735519.76056386355
1404477.077450735972894.778447285296059.37645418664
1414264.192173939272707.446388389325820.93795948922
1424386.014999485062746.215790192526025.81420877761
1434057.38455384152488.453829209145626.31527847386
1443742.540574063282239.964631342275245.11651678428

\begin{tabular}{lllllllll}
\hline
Extrapolation Forecasts of Exponential Smoothing \tabularnewline
t & Forecast & 95% Lower Bound & 95% Upper Bound \tabularnewline
127 & 3852.4668246378 & 3362.64912839188 & 4342.28452088371 \tabularnewline
128 & 4207.08904879442 & 3553.92907549921 & 4860.24902208963 \tabularnewline
129 & 4008.32755320258 & 3266.90305564024 & 4749.75205076493 \tabularnewline
130 & 4124.15002709335 & 3269.65812876479 & 4978.6419254219 \tabularnewline
131 & 3816.339598058 & 2927.87071029373 & 4704.80848582227 \tabularnewline
132 & 3521.29549665219 & 2606.89585624675 & 4435.69513705763 \tabularnewline
133 & 4016.7241966713 & 2916.0921062477 & 5117.3562870949 \tabularnewline
134 & 3848.15527469276 & 2722.95310553138 & 4973.35744385413 \tabularnewline
135 & 4423.28364113092 & 3085.85703592167 & 5760.71024634018 \tabularnewline
136 & 4271.59269542887 & 2924.15538731938 & 5619.03000353836 \tabularnewline
137 & 4304.49815738104 & 2896.40749761159 & 5712.5888171505 \tabularnewline
138 & 4217.38812378382 & 2873.17214199529 & 5561.60410557236 \tabularnewline
139 & 4101.02674513514 & 2682.29292640673 & 5519.76056386355 \tabularnewline
140 & 4477.07745073597 & 2894.77844728529 & 6059.37645418664 \tabularnewline
141 & 4264.19217393927 & 2707.44638838932 & 5820.93795948922 \tabularnewline
142 & 4386.01499948506 & 2746.21579019252 & 6025.81420877761 \tabularnewline
143 & 4057.3845538415 & 2488.45382920914 & 5626.31527847386 \tabularnewline
144 & 3742.54057406328 & 2239.96463134227 & 5245.11651678428 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301837&T=3

[TABLE]
[ROW][C]Extrapolation Forecasts of Exponential Smoothing[/C][/ROW]
[ROW][C]t[/C][C]Forecast[/C][C]95% Lower Bound[/C][C]95% Upper Bound[/C][/ROW]
[ROW][C]127[/C][C]3852.4668246378[/C][C]3362.64912839188[/C][C]4342.28452088371[/C][/ROW]
[ROW][C]128[/C][C]4207.08904879442[/C][C]3553.92907549921[/C][C]4860.24902208963[/C][/ROW]
[ROW][C]129[/C][C]4008.32755320258[/C][C]3266.90305564024[/C][C]4749.75205076493[/C][/ROW]
[ROW][C]130[/C][C]4124.15002709335[/C][C]3269.65812876479[/C][C]4978.6419254219[/C][/ROW]
[ROW][C]131[/C][C]3816.339598058[/C][C]2927.87071029373[/C][C]4704.80848582227[/C][/ROW]
[ROW][C]132[/C][C]3521.29549665219[/C][C]2606.89585624675[/C][C]4435.69513705763[/C][/ROW]
[ROW][C]133[/C][C]4016.7241966713[/C][C]2916.0921062477[/C][C]5117.3562870949[/C][/ROW]
[ROW][C]134[/C][C]3848.15527469276[/C][C]2722.95310553138[/C][C]4973.35744385413[/C][/ROW]
[ROW][C]135[/C][C]4423.28364113092[/C][C]3085.85703592167[/C][C]5760.71024634018[/C][/ROW]
[ROW][C]136[/C][C]4271.59269542887[/C][C]2924.15538731938[/C][C]5619.03000353836[/C][/ROW]
[ROW][C]137[/C][C]4304.49815738104[/C][C]2896.40749761159[/C][C]5712.5888171505[/C][/ROW]
[ROW][C]138[/C][C]4217.38812378382[/C][C]2873.17214199529[/C][C]5561.60410557236[/C][/ROW]
[ROW][C]139[/C][C]4101.02674513514[/C][C]2682.29292640673[/C][C]5519.76056386355[/C][/ROW]
[ROW][C]140[/C][C]4477.07745073597[/C][C]2894.77844728529[/C][C]6059.37645418664[/C][/ROW]
[ROW][C]141[/C][C]4264.19217393927[/C][C]2707.44638838932[/C][C]5820.93795948922[/C][/ROW]
[ROW][C]142[/C][C]4386.01499948506[/C][C]2746.21579019252[/C][C]6025.81420877761[/C][/ROW]
[ROW][C]143[/C][C]4057.3845538415[/C][C]2488.45382920914[/C][C]5626.31527847386[/C][/ROW]
[ROW][C]144[/C][C]3742.54057406328[/C][C]2239.96463134227[/C][C]5245.11651678428[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301837&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301837&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Extrapolation Forecasts of Exponential Smoothing
tForecast95% Lower Bound95% Upper Bound
1273852.46682463783362.649128391884342.28452088371
1284207.089048794423553.929075499214860.24902208963
1294008.327553202583266.903055640244749.75205076493
1304124.150027093353269.658128764794978.6419254219
1313816.3395980582927.870710293734704.80848582227
1323521.295496652192606.895856246754435.69513705763
1334016.72419667132916.09210624775117.3562870949
1343848.155274692762722.953105531384973.35744385413
1354423.283641130923085.857035921675760.71024634018
1364271.592695428872924.155387319385619.03000353836
1374304.498157381042896.407497611595712.5888171505
1384217.388123783822873.172141995295561.60410557236
1394101.026745135142682.292926406735519.76056386355
1404477.077450735972894.778447285296059.37645418664
1414264.192173939272707.446388389325820.93795948922
1424386.014999485062746.215790192526025.81420877761
1434057.38455384152488.453829209145626.31527847386
1443742.540574063282239.964631342275245.11651678428



Parameters (Session):
par1 = Default ; par2 = 1 ; par3 = 2 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ;
Parameters (R input):
par1 = 12 ; par2 = Triple ; par3 = multiplicative ; par4 = 18 ;
R code (references can be found in the software module):
par4 <- '18'
par3 <- 'multiplicative'
par2 <- 'Triple'
par1 <- '12'
par1 <- as.numeric(par1)
par4 <- as.numeric(par4)
if (par2 == 'Single') K <- 1
if (par2 == 'Double') K <- 2
if (par2 == 'Triple') K <- par1
nx <- length(x)
nxmK <- nx - K
x <- ts(x, frequency = par1)
if (par2 == 'Single') fit <- HoltWinters(x, gamma=F, beta=F)
if (par2 == 'Double') fit <- HoltWinters(x, gamma=F)
if (par2 == 'Triple') fit <- HoltWinters(x, seasonal=par3)
fit
myresid <- x - fit$fitted[,'xhat']
bitmap(file='test1.png')
op <- par(mfrow=c(2,1))
plot(fit,ylab='Observed (black) / Fitted (red)',main='Interpolation Fit of Exponential Smoothing')
plot(myresid,ylab='Residuals',main='Interpolation Prediction Errors')
par(op)
dev.off()
bitmap(file='test2.png')
p <- predict(fit, par4, prediction.interval=TRUE)
np <- length(p[,1])
plot(fit,p,ylab='Observed (black) / Fitted (red)',main='Extrapolation Fit of Exponential Smoothing')
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(myresid),lag.max = nx/2,main='Residual ACF')
spectrum(myresid,main='Residals Periodogram')
cpgram(myresid,main='Residal Cumulative Periodogram')
qqnorm(myresid,main='Residual Normal QQ Plot')
qqline(myresid)
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimated Parameters of Exponential Smoothing',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'Value',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,fit$alpha)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,fit$beta)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'gamma',header=TRUE)
a<-table.element(a,fit$gamma)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Interpolation Forecasts of Exponential Smoothing',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Fitted',header=TRUE)
a<-table.element(a,'Residuals',header=TRUE)
a<-table.row.end(a)
for (i in 1:nxmK) {
a<-table.row.start(a)
a<-table.element(a,i+K,header=TRUE)
a<-table.element(a,x[i+K])
a<-table.element(a,fit$fitted[i,'xhat'])
a<-table.element(a,myresid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Extrapolation Forecasts of Exponential Smoothing',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Forecast',header=TRUE)
a<-table.element(a,'95% Lower Bound',header=TRUE)
a<-table.element(a,'95% Upper Bound',header=TRUE)
a<-table.row.end(a)
for (i in 1:np) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,p[i,'fit'])
a<-table.element(a,p[i,'lwr'])
a<-table.element(a,p[i,'upr'])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')