Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimaforecasting.wasp
Title produced by softwareARIMA Forecasting
Date of computationTue, 20 Dec 2016 23:00:06 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/20/t1482271411vn863el6mw2ikji.htm/, Retrieved Fri, 01 Nov 2024 03:31:12 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=301817, Retrieved Fri, 01 Nov 2024 03:31:12 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact100
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [ARIMA Forecasting] [arima frorecasting] [2016-12-20 22:00:06] [168e69cfb1c001c8b9ca70e943ef53ff] [Current]
Feedback Forum

Post a new message
Dataseries X:
1.894
1.757
3.582
5.321
5.561
5.907
4.944
4.966
3.258
1.964
1.743
1.262
2.086
1.793
3.548
5.672
6.084
4.914
4.990
5.139
3.218
2.179
2.238
1.442
2.205
2.025
3.531
4.977
7.998
4.880
5.231
5.202
3.303
2.683
2.202
1.376
2.422
1.997
3.163
5.964
5.657
6.415
6.208
4.500
2.939
2.702
2.090
1.504
2.549
1.931
3.013
6.204
5.788
5.611
5.594
4.647
3.490
2.487
1.992
1.507
2.306
2.002
3.075
5.331
5.589
5.813
4.876
4.665
3.601
2.192
2.111
1.580
2.288
1.993
3.228
5.000
5.480
5.770
4.962
4.685
3.607
2.222
2.467
1.594
2.228
1.910
3.157
4.809
6.249
4.607
4.975
4.784
3.028
2.461
2.218
1.351
2.070
1.887
3.024
4.596
6.398
4.459
5.382
4.359
2.687
2.249
2.154
1.169
2.429
1.762
2.846
5.627
5.749
4.502
5.720
4.403
2.867
2.635
2.059
1.511
2.359
1.741
2.917
6.249
5.760
6.250
5.134
4.831
3.695
2.462
2.146
1.579




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301817&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=301817&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301817&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[132])
1201.511-------
1212.359-------
1221.741-------
1232.917-------
1246.249-------
1255.76-------
1266.25-------
1275.134-------
1284.831-------
1293.695-------
1302.462-------
1312.146-------
1321.579-------
133NA2.43551.66043.2105NA0.98480.57670.9848
134NA1.98981.19172.7878NANA0.72940.8435
135NA3.26852.45364.0834NANA0.80111
136NA5.81695.00146.6325NANA0.14961
137NA6.0885.26836.9077NANA0.78361
138NA5.79244.97016.6146NANA0.13771
139NA5.37434.5496.1995NANA0.71591
140NA4.92334.09525.7514NANA0.58651
141NA3.52532.69434.3563NANA0.34451
142NA2.54771.71393.3815NANA0.57990.9886
143NA2.27111.43443.1078NANA0.61530.9475
144NA1.63510.7962.4742NANA0.55210.5521
145NA2.46781.5633.3727NANANA0.9729
146NA2.07821.17352.9829NANANA0.8603
147NA3.38112.46764.2947NANANA0.9999
148NA5.71954.80246.6365NANANA1
149NA6.19515.27297.1174NANANA1
150NA5.68774.76096.6144NANANA1
151NA5.45784.52646.3893NANANA1
152NA4.96694.03095.903NANANA1
153NA3.49832.55764.439NANANA1
154NA2.58961.64443.5348NANANA0.9819
155NA2.32371.37383.2735NANANA0.9378
156NA1.6690.71542.6226NANANA0.5734

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast \tabularnewline
time & Y[t] & F[t] & 95% LB & 95% UB & p-value(H0: Y[t] = F[t]) & P(F[t]>Y[t-1]) & P(F[t]>Y[t-s]) & P(F[t]>Y[132]) \tabularnewline
120 & 1.511 & - & - & - & - & - & - & - \tabularnewline
121 & 2.359 & - & - & - & - & - & - & - \tabularnewline
122 & 1.741 & - & - & - & - & - & - & - \tabularnewline
123 & 2.917 & - & - & - & - & - & - & - \tabularnewline
124 & 6.249 & - & - & - & - & - & - & - \tabularnewline
125 & 5.76 & - & - & - & - & - & - & - \tabularnewline
126 & 6.25 & - & - & - & - & - & - & - \tabularnewline
127 & 5.134 & - & - & - & - & - & - & - \tabularnewline
128 & 4.831 & - & - & - & - & - & - & - \tabularnewline
129 & 3.695 & - & - & - & - & - & - & - \tabularnewline
130 & 2.462 & - & - & - & - & - & - & - \tabularnewline
131 & 2.146 & - & - & - & - & - & - & - \tabularnewline
132 & 1.579 & - & - & - & - & - & - & - \tabularnewline
133 & NA & 2.4355 & 1.6604 & 3.2105 & NA & 0.9848 & 0.5767 & 0.9848 \tabularnewline
134 & NA & 1.9898 & 1.1917 & 2.7878 & NA & NA & 0.7294 & 0.8435 \tabularnewline
135 & NA & 3.2685 & 2.4536 & 4.0834 & NA & NA & 0.8011 & 1 \tabularnewline
136 & NA & 5.8169 & 5.0014 & 6.6325 & NA & NA & 0.1496 & 1 \tabularnewline
137 & NA & 6.088 & 5.2683 & 6.9077 & NA & NA & 0.7836 & 1 \tabularnewline
138 & NA & 5.7924 & 4.9701 & 6.6146 & NA & NA & 0.1377 & 1 \tabularnewline
139 & NA & 5.3743 & 4.549 & 6.1995 & NA & NA & 0.7159 & 1 \tabularnewline
140 & NA & 4.9233 & 4.0952 & 5.7514 & NA & NA & 0.5865 & 1 \tabularnewline
141 & NA & 3.5253 & 2.6943 & 4.3563 & NA & NA & 0.3445 & 1 \tabularnewline
142 & NA & 2.5477 & 1.7139 & 3.3815 & NA & NA & 0.5799 & 0.9886 \tabularnewline
143 & NA & 2.2711 & 1.4344 & 3.1078 & NA & NA & 0.6153 & 0.9475 \tabularnewline
144 & NA & 1.6351 & 0.796 & 2.4742 & NA & NA & 0.5521 & 0.5521 \tabularnewline
145 & NA & 2.4678 & 1.563 & 3.3727 & NA & NA & NA & 0.9729 \tabularnewline
146 & NA & 2.0782 & 1.1735 & 2.9829 & NA & NA & NA & 0.8603 \tabularnewline
147 & NA & 3.3811 & 2.4676 & 4.2947 & NA & NA & NA & 0.9999 \tabularnewline
148 & NA & 5.7195 & 4.8024 & 6.6365 & NA & NA & NA & 1 \tabularnewline
149 & NA & 6.1951 & 5.2729 & 7.1174 & NA & NA & NA & 1 \tabularnewline
150 & NA & 5.6877 & 4.7609 & 6.6144 & NA & NA & NA & 1 \tabularnewline
151 & NA & 5.4578 & 4.5264 & 6.3893 & NA & NA & NA & 1 \tabularnewline
152 & NA & 4.9669 & 4.0309 & 5.903 & NA & NA & NA & 1 \tabularnewline
153 & NA & 3.4983 & 2.5576 & 4.439 & NA & NA & NA & 1 \tabularnewline
154 & NA & 2.5896 & 1.6444 & 3.5348 & NA & NA & NA & 0.9819 \tabularnewline
155 & NA & 2.3237 & 1.3738 & 3.2735 & NA & NA & NA & 0.9378 \tabularnewline
156 & NA & 1.669 & 0.7154 & 2.6226 & NA & NA & NA & 0.5734 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301817&T=1

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast[/C][/ROW]
[ROW][C]time[/C][C]Y[t][/C][C]F[t][/C][C]95% LB[/C][C]95% UB[/C][C]p-value(H0: Y[t] = F[t])[/C][C]P(F[t]>Y[t-1])[/C][C]P(F[t]>Y[t-s])[/C][C]P(F[t]>Y[132])[/C][/ROW]
[ROW][C]120[/C][C]1.511[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]121[/C][C]2.359[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]122[/C][C]1.741[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]123[/C][C]2.917[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]124[/C][C]6.249[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]125[/C][C]5.76[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]126[/C][C]6.25[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]127[/C][C]5.134[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]128[/C][C]4.831[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]129[/C][C]3.695[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]130[/C][C]2.462[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]131[/C][C]2.146[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]132[/C][C]1.579[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]133[/C][C]NA[/C][C]2.4355[/C][C]1.6604[/C][C]3.2105[/C][C]NA[/C][C]0.9848[/C][C]0.5767[/C][C]0.9848[/C][/ROW]
[ROW][C]134[/C][C]NA[/C][C]1.9898[/C][C]1.1917[/C][C]2.7878[/C][C]NA[/C][C]NA[/C][C]0.7294[/C][C]0.8435[/C][/ROW]
[ROW][C]135[/C][C]NA[/C][C]3.2685[/C][C]2.4536[/C][C]4.0834[/C][C]NA[/C][C]NA[/C][C]0.8011[/C][C]1[/C][/ROW]
[ROW][C]136[/C][C]NA[/C][C]5.8169[/C][C]5.0014[/C][C]6.6325[/C][C]NA[/C][C]NA[/C][C]0.1496[/C][C]1[/C][/ROW]
[ROW][C]137[/C][C]NA[/C][C]6.088[/C][C]5.2683[/C][C]6.9077[/C][C]NA[/C][C]NA[/C][C]0.7836[/C][C]1[/C][/ROW]
[ROW][C]138[/C][C]NA[/C][C]5.7924[/C][C]4.9701[/C][C]6.6146[/C][C]NA[/C][C]NA[/C][C]0.1377[/C][C]1[/C][/ROW]
[ROW][C]139[/C][C]NA[/C][C]5.3743[/C][C]4.549[/C][C]6.1995[/C][C]NA[/C][C]NA[/C][C]0.7159[/C][C]1[/C][/ROW]
[ROW][C]140[/C][C]NA[/C][C]4.9233[/C][C]4.0952[/C][C]5.7514[/C][C]NA[/C][C]NA[/C][C]0.5865[/C][C]1[/C][/ROW]
[ROW][C]141[/C][C]NA[/C][C]3.5253[/C][C]2.6943[/C][C]4.3563[/C][C]NA[/C][C]NA[/C][C]0.3445[/C][C]1[/C][/ROW]
[ROW][C]142[/C][C]NA[/C][C]2.5477[/C][C]1.7139[/C][C]3.3815[/C][C]NA[/C][C]NA[/C][C]0.5799[/C][C]0.9886[/C][/ROW]
[ROW][C]143[/C][C]NA[/C][C]2.2711[/C][C]1.4344[/C][C]3.1078[/C][C]NA[/C][C]NA[/C][C]0.6153[/C][C]0.9475[/C][/ROW]
[ROW][C]144[/C][C]NA[/C][C]1.6351[/C][C]0.796[/C][C]2.4742[/C][C]NA[/C][C]NA[/C][C]0.5521[/C][C]0.5521[/C][/ROW]
[ROW][C]145[/C][C]NA[/C][C]2.4678[/C][C]1.563[/C][C]3.3727[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.9729[/C][/ROW]
[ROW][C]146[/C][C]NA[/C][C]2.0782[/C][C]1.1735[/C][C]2.9829[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.8603[/C][/ROW]
[ROW][C]147[/C][C]NA[/C][C]3.3811[/C][C]2.4676[/C][C]4.2947[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.9999[/C][/ROW]
[ROW][C]148[/C][C]NA[/C][C]5.7195[/C][C]4.8024[/C][C]6.6365[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]1[/C][/ROW]
[ROW][C]149[/C][C]NA[/C][C]6.1951[/C][C]5.2729[/C][C]7.1174[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]1[/C][/ROW]
[ROW][C]150[/C][C]NA[/C][C]5.6877[/C][C]4.7609[/C][C]6.6144[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]1[/C][/ROW]
[ROW][C]151[/C][C]NA[/C][C]5.4578[/C][C]4.5264[/C][C]6.3893[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]1[/C][/ROW]
[ROW][C]152[/C][C]NA[/C][C]4.9669[/C][C]4.0309[/C][C]5.903[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]1[/C][/ROW]
[ROW][C]153[/C][C]NA[/C][C]3.4983[/C][C]2.5576[/C][C]4.439[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]1[/C][/ROW]
[ROW][C]154[/C][C]NA[/C][C]2.5896[/C][C]1.6444[/C][C]3.5348[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.9819[/C][/ROW]
[ROW][C]155[/C][C]NA[/C][C]2.3237[/C][C]1.3738[/C][C]3.2735[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.9378[/C][/ROW]
[ROW][C]156[/C][C]NA[/C][C]1.669[/C][C]0.7154[/C][C]2.6226[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.5734[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301817&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301817&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[132])
1201.511-------
1212.359-------
1221.741-------
1232.917-------
1246.249-------
1255.76-------
1266.25-------
1275.134-------
1284.831-------
1293.695-------
1302.462-------
1312.146-------
1321.579-------
133NA2.43551.66043.2105NA0.98480.57670.9848
134NA1.98981.19172.7878NANA0.72940.8435
135NA3.26852.45364.0834NANA0.80111
136NA5.81695.00146.6325NANA0.14961
137NA6.0885.26836.9077NANA0.78361
138NA5.79244.97016.6146NANA0.13771
139NA5.37434.5496.1995NANA0.71591
140NA4.92334.09525.7514NANA0.58651
141NA3.52532.69434.3563NANA0.34451
142NA2.54771.71393.3815NANA0.57990.9886
143NA2.27111.43443.1078NANA0.61530.9475
144NA1.63510.7962.4742NANA0.55210.5521
145NA2.46781.5633.3727NANANA0.9729
146NA2.07821.17352.9829NANANA0.8603
147NA3.38112.46764.2947NANANA0.9999
148NA5.71954.80246.6365NANANA1
149NA6.19515.27297.1174NANANA1
150NA5.68774.76096.6144NANANA1
151NA5.45784.52646.3893NANANA1
152NA4.96694.03095.903NANANA1
153NA3.49832.55764.439NANANA1
154NA2.58961.64443.5348NANANA0.9819
155NA2.32371.37383.2735NANANA0.9378
156NA1.6690.71542.6226NANANA0.5734







Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPEsMAPESq.EMSERMSEScaledEMASE
1330.1624NANANANA00NANA
1340.2046NANANANANANANANA
1350.1272NANANANANANANANA
1360.0715NANANANANANANANA
1370.0687NANANANANANANANA
1380.0724NANANANANANANANA
1390.0783NANANANANANANANA
1400.0858NANANANANANANANA
1410.1203NANANANANANANANA
1420.167NANANANANANANANA
1430.188NANANANANANANANA
1440.2618NANANANANANANANA
1450.1871NANANANANANANANA
1460.2221NANANANANANANANA
1470.1379NANANANANANANANA
1480.0818NANANANANANANANA
1490.076NANANANANANANANA
1500.0831NANANANANANANANA
1510.0871NANANANANANANANA
1520.0961NANANANANANANANA
1530.1372NANANANANANANANA
1540.1862NANANANANANANANA
1550.2086NANANANANANANANA
1560.2915NANANANANANANANA

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast Performance \tabularnewline
time & % S.E. & PE & MAPE & sMAPE & Sq.E & MSE & RMSE & ScaledE & MASE \tabularnewline
133 & 0.1624 & NA & NA & NA & NA & 0 & 0 & NA & NA \tabularnewline
134 & 0.2046 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
135 & 0.1272 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
136 & 0.0715 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
137 & 0.0687 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
138 & 0.0724 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
139 & 0.0783 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
140 & 0.0858 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
141 & 0.1203 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
142 & 0.167 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
143 & 0.188 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
144 & 0.2618 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
145 & 0.1871 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
146 & 0.2221 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
147 & 0.1379 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
148 & 0.0818 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
149 & 0.076 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
150 & 0.0831 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
151 & 0.0871 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
152 & 0.0961 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
153 & 0.1372 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
154 & 0.1862 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
155 & 0.2086 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
156 & 0.2915 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301817&T=2

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast Performance[/C][/ROW]
[ROW][C]time[/C][C]% S.E.[/C][C]PE[/C][C]MAPE[/C][C]sMAPE[/C][C]Sq.E[/C][C]MSE[/C][C]RMSE[/C][C]ScaledE[/C][C]MASE[/C][/ROW]
[ROW][C]133[/C][C]0.1624[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0[/C][C]0[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]134[/C][C]0.2046[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]135[/C][C]0.1272[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]136[/C][C]0.0715[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]137[/C][C]0.0687[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]138[/C][C]0.0724[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]139[/C][C]0.0783[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]140[/C][C]0.0858[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]141[/C][C]0.1203[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]142[/C][C]0.167[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]143[/C][C]0.188[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]144[/C][C]0.2618[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]145[/C][C]0.1871[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]146[/C][C]0.2221[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]147[/C][C]0.1379[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]148[/C][C]0.0818[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]149[/C][C]0.076[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]150[/C][C]0.0831[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]151[/C][C]0.0871[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]152[/C][C]0.0961[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]153[/C][C]0.1372[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]154[/C][C]0.1862[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]155[/C][C]0.2086[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]156[/C][C]0.2915[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301817&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301817&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPEsMAPESq.EMSERMSEScaledEMASE
1330.1624NANANANA00NANA
1340.2046NANANANANANANANA
1350.1272NANANANANANANANA
1360.0715NANANANANANANANA
1370.0687NANANANANANANANA
1380.0724NANANANANANANANA
1390.0783NANANANANANANANA
1400.0858NANANANANANANANA
1410.1203NANANANANANANANA
1420.167NANANANANANANANA
1430.188NANANANANANANANA
1440.2618NANANANANANANANA
1450.1871NANANANANANANANA
1460.2221NANANANANANANANA
1470.1379NANANANANANANANA
1480.0818NANANANANANANANA
1490.076NANANANANANANANA
1500.0831NANANANANANANANA
1510.0871NANANANANANANANA
1520.0961NANANANANANANANA
1530.1372NANANANANANANANA
1540.1862NANANANANANANANA
1550.2086NANANANANANANANA
1560.2915NANANANANANANANA



Parameters (Session):
par3 = 0,93 ; par4 = two.sided ; par5 = unpaired ;
Parameters (R input):
par1 = 0 ; par2 = 1 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = 1 ; par7 = 1 ; par8 = 1 ; par9 = 1 ; par10 = FALSE ;
R code (references can be found in the software module):
par1 <- as.numeric(par1) #cut off periods
par2 <- as.numeric(par2) #lambda
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #p
par7 <- as.numeric(par7) #q
par8 <- as.numeric(par8) #P
par9 <- as.numeric(par9) #Q
if (par10 == 'TRUE') par10 <- TRUE
if (par10 == 'FALSE') par10 <- FALSE
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
lx <- length(x)
first <- lx - 2*par1
nx <- lx - par1
nx1 <- nx + 1
fx <- lx - nx
if (fx < 1) {
fx <- par5*2
nx1 <- lx + fx - 1
first <- lx - 2*fx
}
first <- 1
if (fx < 3) fx <- round(lx/10,0)
(arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML'))
(forecast <- predict(arima.out,fx))
(lb <- forecast$pred - 1.96 * forecast$se)
(ub <- forecast$pred + 1.96 * forecast$se)
if (par2 == 0) {
x <- exp(x)
forecast$pred <- exp(forecast$pred)
lb <- exp(lb)
ub <- exp(ub)
}
if (par2 != 0) {
x <- x^(1/par2)
forecast$pred <- forecast$pred^(1/par2)
lb <- lb^(1/par2)
ub <- ub^(1/par2)
}
if (par2 < 0) {
olb <- lb
lb <- ub
ub <- olb
}
(actandfor <- c(x[1:nx], forecast$pred))
(perc.se <- (ub-forecast$pred)/1.96/forecast$pred)
bitmap(file='test1.png')
opar <- par(mar=c(4,4,2,2),las=1)
ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub))
plot(x,ylim=ylim,type='n',xlim=c(first,lx))
usr <- par('usr')
rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon')
rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender')
abline(h= (-3:3)*2 , col ='gray', lty =3)
polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA)
lines(nx1:lx, lb , lty=2)
lines(nx1:lx, ub , lty=2)
lines(x, lwd=2)
lines(nx1:lx, forecast$pred , lwd=2 , col ='white')
box()
par(opar)
dev.off()
prob.dec <- array(NA, dim=fx)
prob.sdec <- array(NA, dim=fx)
prob.ldec <- array(NA, dim=fx)
prob.pval <- array(NA, dim=fx)
perf.pe <- array(0, dim=fx)
perf.spe <- array(0, dim=fx)
perf.scalederr <- array(0, dim=fx)
perf.mase <- array(0, dim=fx)
perf.mase1 <- array(0, dim=fx)
perf.mape <- array(0, dim=fx)
perf.smape <- array(0, dim=fx)
perf.mape1 <- array(0, dim=fx)
perf.smape1 <- array(0,dim=fx)
perf.se <- array(0, dim=fx)
perf.mse <- array(0, dim=fx)
perf.mse1 <- array(0, dim=fx)
perf.rmse <- array(0, dim=fx)
perf.scaleddenom <- 0
for (i in 2:fx) {
perf.scaleddenom = perf.scaleddenom + abs(x[nx+i] - x[nx+i-1])
}
perf.scaleddenom = perf.scaleddenom / (fx-1)
for (i in 1:fx) {
locSD <- (ub[i] - forecast$pred[i]) / 1.96
perf.scalederr[i] = (x[nx+i] - forecast$pred[i]) / perf.scaleddenom
perf.pe[i] = (x[nx+i] - forecast$pred[i]) / x[nx+i]
perf.spe[i] = 2*(x[nx+i] - forecast$pred[i]) / (x[nx+i] + forecast$pred[i])
perf.se[i] = (x[nx+i] - forecast$pred[i])^2
prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD)
prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD)
prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD)
prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD)
}
perf.mape[1] = abs(perf.pe[1])
perf.smape[1] = abs(perf.spe[1])
perf.mape1[1] = perf.mape[1]
perf.smape1[1] = perf.smape[1]
perf.mse[1] = perf.se[1]
perf.mase[1] = abs(perf.scalederr[1])
perf.mase1[1] = perf.mase[1]
for (i in 2:fx) {
perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i])
perf.mape1[i] = perf.mape[i] / i
perf.smape[i] = perf.smape[i-1] + abs(perf.spe[i])
perf.smape1[i] = perf.smape[i] / i
perf.mse[i] = perf.mse[i-1] + perf.se[i]
perf.mse1[i] = perf.mse[i] / i
perf.mase[i] = perf.mase[i-1] + abs(perf.scalederr[i])
perf.mase1[i] = perf.mase[i] / i
}
perf.rmse = sqrt(perf.mse1)
bitmap(file='test2.png')
plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub)))
dum <- forecast$pred
dum[1:par1] <- x[(nx+1):lx]
lines(dum, lty=1)
lines(ub,lty=3)
lines(lb,lty=3)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'Y[t]',1,header=TRUE)
a<-table.element(a,'F[t]',1,header=TRUE)
a<-table.element(a,'95% LB',1,header=TRUE)
a<-table.element(a,'95% UB',1,header=TRUE)
a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE)
mylab <- paste('P(F[t]>Y[',nx,sep='')
mylab <- paste(mylab,'])',sep='')
a<-table.element(a,mylab,1,header=TRUE)
a<-table.row.end(a)
for (i in (nx-par5):nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.row.end(a)
}
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(x[nx+i],4))
a<-table.element(a,round(forecast$pred[i],4))
a<-table.element(a,round(lb[i],4))
a<-table.element(a,round(ub[i],4))
a<-table.element(a,round((1-prob.pval[i]),4))
a<-table.element(a,round((1-prob.dec[i]),4))
a<-table.element(a,round((1-prob.sdec[i]),4))
a<-table.element(a,round((1-prob.ldec[i]),4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',10,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'% S.E.',1,header=TRUE)
a<-table.element(a,'PE',1,header=TRUE)
a<-table.element(a,'MAPE',1,header=TRUE)
a<-table.element(a,'sMAPE',1,header=TRUE)
a<-table.element(a,'Sq.E',1,header=TRUE)
a<-table.element(a,'MSE',1,header=TRUE)
a<-table.element(a,'RMSE',1,header=TRUE)
a<-table.element(a,'ScaledE',1,header=TRUE)
a<-table.element(a,'MASE',1,header=TRUE)
a<-table.row.end(a)
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(perc.se[i],4))
a<-table.element(a,round(perf.pe[i],4))
a<-table.element(a,round(perf.mape1[i],4))
a<-table.element(a,round(perf.smape1[i],4))
a<-table.element(a,round(perf.se[i],4))
a<-table.element(a,round(perf.mse1[i],4))
a<-table.element(a,round(perf.rmse[i],4))
a<-table.element(a,round(perf.scalederr[i],4))
a<-table.element(a,round(perf.mase1[i],4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')