Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_decompose.wasp
Title produced by softwareClassical Decomposition
Date of computationTue, 20 Dec 2016 20:29:10 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/20/t1482262428u0vzmznsuxzqeon.htm/, Retrieved Fri, 01 Nov 2024 03:36:48 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=301787, Retrieved Fri, 01 Nov 2024 03:36:48 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact114
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Classical Decomposition] [classical decompo...] [2016-12-20 19:29:10] [06fd994a2f2098873ec640c3e39346e5] [Current]
Feedback Forum

Post a new message
Dataseries X:
4738.4
4687.2
5930.8
5532
5429.8
6107.4
5960.8
5541.8
5362.2
5237
4827
4781.6
4983.2
4718.4
5523.8
5286.6
5389
5810.4
5057.4
5604.4
5285
5215.2
4625.4
4270.4
4685.4
4233.8
5278.4
4978.8
5333.4
5451
5224
5790.2
5079.4
4705.8
4139.6
3720.8
4594
4638.8
4969.4
4764.4
5010.8
5267.8
5312.2
5723.2
4579.6
5015.2
4282.4
3834.2
4523.4
3884.2
3897.8
4845.6
4929
4955.4
5198.4
5122.2
4643.2
4789.8
3950.8
3824.4
4511.8
4262.4
4616.6
5139.6
4972.8
5222
5242
4979.8
4691.8
4821.6
4123.6
4027.4
4365.2
4333.6
4930
5053
5031.4
5342
5191.4
4852.2
4675.6
4689.2
3809.4
4054.2
4409.6
4210.2
4566.4
4907
5021.8
5215.2
4933.6
5197.8
4734.6
4681.8
4172
4037.8
4462.6
4282.6
4962.4
4969.2
5214.6
5416.8
4764.2
5326.2
4545.4
4797.2
4259
4117
4469.2
4203.2
5033.8
4883
5361.6
5044.6
5005.6
5382
4565.4
4825
4290.2
3933.6
4177.6
3949.4
4492.6
4894.2
5224.4
5071




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301787&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=301787&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301787&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
14738.4NANA-254.436NA
24687.2NANA-497.851NA
35930.8NANA63.3997NA
45532NANA185.507NA
55429.8NANA349.589NA
66107.4NANA518.311NA
75960.85708.995354.87354.125251.808
85541.85888.925366.37522.556-347.122
95362.25346.575350.71-4.1376515.6293
1052375389.65323.5266.0723-152.597
1148274751.355311.6-560.25475.6543
124781.64554.645297.52-742.88226.955
134983.24993.075247.51-254.436-9.87281
144718.44714.625212.48-497.8513.77627
155523.85275.275211.8763.3997248.534
165286.65393.255207.74185.507-106.649
1753895548.025198.43349.589-159.022
185810.45687.045168.73518.311123.356
195057.45489.155135.02354.125-431.75
205604.45624.985102.42522.556-20.5807
2152855067.875072.01-4.13765217.129
225215.25115.035048.9666.0723100.169
234625.44473.565033.82-560.254151.838
244270.44273.645016.52-742.88-3.24485
254685.44754.065008.49-254.436-68.6561
264233.84525.325023.18-497.851-291.524
275278.45085.755022.3563.3997192.65
284978.85178.074992.56185.507-199.265
295333.45300.684951.09349.58932.7198
3054515426.264907.95518.31124.7392
3152245235.374881.24354.125-11.3665
325790.25416.864894.31522.556373.336
335079.44894.174898.31-4.13765185.229
344705.84942.574876.566.0723-236.772
354139.64293.874854.12-560.254-154.271
363720.84090.174833.05-742.88-369.37
3745944574.664829.09-254.43619.3439
384638.84332.124829.98-497.851306.676
394969.44869.764806.3663.399799.642
404764.44983.934798.42185.507-219.532
415010.85166.864817.27349.589-156.055
425267.85346.254827.94518.311-78.4524
435312.25183.854829.72354.125128.35
445723.25317.94795.34522.556405.303
454579.64715.114719.25-4.13765-135.512
465015.24744.064677.9866.0723271.144
474282.44117.74677.96-560.254164.696
483834.23918.654661.53-742.88-84.4532
494523.44389.344643.77-254.436134.061
503884.24116.144613.99-497.851-231.94
513897.846554591.663.3997-757.2
524845.64770.374584.86185.50775.2346
5349294911.244561.65349.58917.7615
544955.45065.744547.42518.311-110.336
555198.44900.664546.53354.125297.742
565122.25084.364561.81522.55637.836
574643.24603.384607.52-4.1376539.821
584789.84715.794649.7266.072374.011
593950.84103.544663.79-560.254-152.737
603824.43933.844676.73-742.88-109.445
614511.84435.214689.65-254.43676.5855
624262.44187.684685.53-497.85174.7179
634616.64745.024681.6263.3997-128.425
645139.64870.484684.98185.507269.118
654972.85043.094693.5349.589-70.2885
6652225227.474709.16518.311-5.4691
6752425065.634711.51354.125176.367
684979.85230.924708.37522.556-251.122
694691.84720.254724.39-4.13765-28.454
704821.64799.914733.8466.072321.686
714123.64172.424732.68-560.254-48.8207
724027.43997.244740.12-742.8830.1635
734365.24488.574743.01-254.436-123.373
744333.64237.734735.58-497.85195.8679
7549304792.994729.5963.3997137.009
7650534908.914723.4185.507144.093
775031.45054.384704.79349.589-22.9802
7853425211.134692.82518.311130.873
795191.45049.914695.78354.125141.492
804852.25215.054692.49522.556-362.847
814675.64668.064672.2-4.137657.53765
824689.24717.044650.9766.0723-27.839
833809.44084.234644.48-560.254-274.829
844054.23895.924638.8-742.88158.28
854409.64368.344622.77-254.43641.2605
864210.24128.584626.43-497.85181.6179
874566.44706.694643.2963.3997-140.291
8849074830.954645.44185.50776.0513
895021.85009.834660.24349.58911.9698
905215.25192.984674.67518.31122.2226
914933.65030.324676.19354.125-96.7165
925197.85203.974681.42522.556-6.17235
934734.64696.84700.93-4.1376537.8043
944681.84786.14720.0366.0723-104.297
9541724170.44730.65-560.2541.60432
964037.84004.24747.08-742.8833.5968
974462.64493.994748.42-254.436-31.3895
984282.64248.874746.72-497.85133.7346
994962.44807.584744.1863.3997154.817
1004969.24926.624741.11185.50742.5846
1015214.65099.134749.54349.589115.47
1025416.85274.784756.47518.311142.023
1034764.25114.174760.04354.125-349.967
1045326.25279.564757.01522.55646.636
1054545.44752.544756.68-4.13765-207.137
1064797.24822.134756.0666.0723-24.9307
10742594198.344758.59-560.25460.6627
10841174006.334749.21-742.88110.672
1094469.24489.324743.76-254.436-20.1228
1104203.24258.294756.14-497.851-55.0904
1115033.84822.74759.363.3997211.1
11248834946.84761.29185.507-63.7987
1135361.65113.344763.75349.589248.261
1145044.65275.724757.41518.311-231.119
1155005.65091.744737.62354.125-86.1415
11653825237.454714.89522.556144.553
1174565.44677.634681.77-4.13765-112.229
11848254725.764659.6866.072399.2443
1194290.24094.184654.43-560.254196.021
1203933.63906.944649.82-742.8826.6635
1214177.6NANA-254.436NA
1223949.4NANA-497.851NA
1234492.6NANA63.3997NA
1244894.2NANA185.507NA
1255224.4NANA349.589NA
1265071NANA518.311NA

\begin{tabular}{lllllllll}
\hline
Classical Decomposition by Moving Averages \tabularnewline
t & Observations & Fit & Trend & Seasonal & Random \tabularnewline
1 & 4738.4 & NA & NA & -254.436 & NA \tabularnewline
2 & 4687.2 & NA & NA & -497.851 & NA \tabularnewline
3 & 5930.8 & NA & NA & 63.3997 & NA \tabularnewline
4 & 5532 & NA & NA & 185.507 & NA \tabularnewline
5 & 5429.8 & NA & NA & 349.589 & NA \tabularnewline
6 & 6107.4 & NA & NA & 518.311 & NA \tabularnewline
7 & 5960.8 & 5708.99 & 5354.87 & 354.125 & 251.808 \tabularnewline
8 & 5541.8 & 5888.92 & 5366.37 & 522.556 & -347.122 \tabularnewline
9 & 5362.2 & 5346.57 & 5350.71 & -4.13765 & 15.6293 \tabularnewline
10 & 5237 & 5389.6 & 5323.52 & 66.0723 & -152.597 \tabularnewline
11 & 4827 & 4751.35 & 5311.6 & -560.254 & 75.6543 \tabularnewline
12 & 4781.6 & 4554.64 & 5297.52 & -742.88 & 226.955 \tabularnewline
13 & 4983.2 & 4993.07 & 5247.51 & -254.436 & -9.87281 \tabularnewline
14 & 4718.4 & 4714.62 & 5212.48 & -497.851 & 3.77627 \tabularnewline
15 & 5523.8 & 5275.27 & 5211.87 & 63.3997 & 248.534 \tabularnewline
16 & 5286.6 & 5393.25 & 5207.74 & 185.507 & -106.649 \tabularnewline
17 & 5389 & 5548.02 & 5198.43 & 349.589 & -159.022 \tabularnewline
18 & 5810.4 & 5687.04 & 5168.73 & 518.311 & 123.356 \tabularnewline
19 & 5057.4 & 5489.15 & 5135.02 & 354.125 & -431.75 \tabularnewline
20 & 5604.4 & 5624.98 & 5102.42 & 522.556 & -20.5807 \tabularnewline
21 & 5285 & 5067.87 & 5072.01 & -4.13765 & 217.129 \tabularnewline
22 & 5215.2 & 5115.03 & 5048.96 & 66.0723 & 100.169 \tabularnewline
23 & 4625.4 & 4473.56 & 5033.82 & -560.254 & 151.838 \tabularnewline
24 & 4270.4 & 4273.64 & 5016.52 & -742.88 & -3.24485 \tabularnewline
25 & 4685.4 & 4754.06 & 5008.49 & -254.436 & -68.6561 \tabularnewline
26 & 4233.8 & 4525.32 & 5023.18 & -497.851 & -291.524 \tabularnewline
27 & 5278.4 & 5085.75 & 5022.35 & 63.3997 & 192.65 \tabularnewline
28 & 4978.8 & 5178.07 & 4992.56 & 185.507 & -199.265 \tabularnewline
29 & 5333.4 & 5300.68 & 4951.09 & 349.589 & 32.7198 \tabularnewline
30 & 5451 & 5426.26 & 4907.95 & 518.311 & 24.7392 \tabularnewline
31 & 5224 & 5235.37 & 4881.24 & 354.125 & -11.3665 \tabularnewline
32 & 5790.2 & 5416.86 & 4894.31 & 522.556 & 373.336 \tabularnewline
33 & 5079.4 & 4894.17 & 4898.31 & -4.13765 & 185.229 \tabularnewline
34 & 4705.8 & 4942.57 & 4876.5 & 66.0723 & -236.772 \tabularnewline
35 & 4139.6 & 4293.87 & 4854.12 & -560.254 & -154.271 \tabularnewline
36 & 3720.8 & 4090.17 & 4833.05 & -742.88 & -369.37 \tabularnewline
37 & 4594 & 4574.66 & 4829.09 & -254.436 & 19.3439 \tabularnewline
38 & 4638.8 & 4332.12 & 4829.98 & -497.851 & 306.676 \tabularnewline
39 & 4969.4 & 4869.76 & 4806.36 & 63.3997 & 99.642 \tabularnewline
40 & 4764.4 & 4983.93 & 4798.42 & 185.507 & -219.532 \tabularnewline
41 & 5010.8 & 5166.86 & 4817.27 & 349.589 & -156.055 \tabularnewline
42 & 5267.8 & 5346.25 & 4827.94 & 518.311 & -78.4524 \tabularnewline
43 & 5312.2 & 5183.85 & 4829.72 & 354.125 & 128.35 \tabularnewline
44 & 5723.2 & 5317.9 & 4795.34 & 522.556 & 405.303 \tabularnewline
45 & 4579.6 & 4715.11 & 4719.25 & -4.13765 & -135.512 \tabularnewline
46 & 5015.2 & 4744.06 & 4677.98 & 66.0723 & 271.144 \tabularnewline
47 & 4282.4 & 4117.7 & 4677.96 & -560.254 & 164.696 \tabularnewline
48 & 3834.2 & 3918.65 & 4661.53 & -742.88 & -84.4532 \tabularnewline
49 & 4523.4 & 4389.34 & 4643.77 & -254.436 & 134.061 \tabularnewline
50 & 3884.2 & 4116.14 & 4613.99 & -497.851 & -231.94 \tabularnewline
51 & 3897.8 & 4655 & 4591.6 & 63.3997 & -757.2 \tabularnewline
52 & 4845.6 & 4770.37 & 4584.86 & 185.507 & 75.2346 \tabularnewline
53 & 4929 & 4911.24 & 4561.65 & 349.589 & 17.7615 \tabularnewline
54 & 4955.4 & 5065.74 & 4547.42 & 518.311 & -110.336 \tabularnewline
55 & 5198.4 & 4900.66 & 4546.53 & 354.125 & 297.742 \tabularnewline
56 & 5122.2 & 5084.36 & 4561.81 & 522.556 & 37.836 \tabularnewline
57 & 4643.2 & 4603.38 & 4607.52 & -4.13765 & 39.821 \tabularnewline
58 & 4789.8 & 4715.79 & 4649.72 & 66.0723 & 74.011 \tabularnewline
59 & 3950.8 & 4103.54 & 4663.79 & -560.254 & -152.737 \tabularnewline
60 & 3824.4 & 3933.84 & 4676.73 & -742.88 & -109.445 \tabularnewline
61 & 4511.8 & 4435.21 & 4689.65 & -254.436 & 76.5855 \tabularnewline
62 & 4262.4 & 4187.68 & 4685.53 & -497.851 & 74.7179 \tabularnewline
63 & 4616.6 & 4745.02 & 4681.62 & 63.3997 & -128.425 \tabularnewline
64 & 5139.6 & 4870.48 & 4684.98 & 185.507 & 269.118 \tabularnewline
65 & 4972.8 & 5043.09 & 4693.5 & 349.589 & -70.2885 \tabularnewline
66 & 5222 & 5227.47 & 4709.16 & 518.311 & -5.4691 \tabularnewline
67 & 5242 & 5065.63 & 4711.51 & 354.125 & 176.367 \tabularnewline
68 & 4979.8 & 5230.92 & 4708.37 & 522.556 & -251.122 \tabularnewline
69 & 4691.8 & 4720.25 & 4724.39 & -4.13765 & -28.454 \tabularnewline
70 & 4821.6 & 4799.91 & 4733.84 & 66.0723 & 21.686 \tabularnewline
71 & 4123.6 & 4172.42 & 4732.68 & -560.254 & -48.8207 \tabularnewline
72 & 4027.4 & 3997.24 & 4740.12 & -742.88 & 30.1635 \tabularnewline
73 & 4365.2 & 4488.57 & 4743.01 & -254.436 & -123.373 \tabularnewline
74 & 4333.6 & 4237.73 & 4735.58 & -497.851 & 95.8679 \tabularnewline
75 & 4930 & 4792.99 & 4729.59 & 63.3997 & 137.009 \tabularnewline
76 & 5053 & 4908.91 & 4723.4 & 185.507 & 144.093 \tabularnewline
77 & 5031.4 & 5054.38 & 4704.79 & 349.589 & -22.9802 \tabularnewline
78 & 5342 & 5211.13 & 4692.82 & 518.311 & 130.873 \tabularnewline
79 & 5191.4 & 5049.91 & 4695.78 & 354.125 & 141.492 \tabularnewline
80 & 4852.2 & 5215.05 & 4692.49 & 522.556 & -362.847 \tabularnewline
81 & 4675.6 & 4668.06 & 4672.2 & -4.13765 & 7.53765 \tabularnewline
82 & 4689.2 & 4717.04 & 4650.97 & 66.0723 & -27.839 \tabularnewline
83 & 3809.4 & 4084.23 & 4644.48 & -560.254 & -274.829 \tabularnewline
84 & 4054.2 & 3895.92 & 4638.8 & -742.88 & 158.28 \tabularnewline
85 & 4409.6 & 4368.34 & 4622.77 & -254.436 & 41.2605 \tabularnewline
86 & 4210.2 & 4128.58 & 4626.43 & -497.851 & 81.6179 \tabularnewline
87 & 4566.4 & 4706.69 & 4643.29 & 63.3997 & -140.291 \tabularnewline
88 & 4907 & 4830.95 & 4645.44 & 185.507 & 76.0513 \tabularnewline
89 & 5021.8 & 5009.83 & 4660.24 & 349.589 & 11.9698 \tabularnewline
90 & 5215.2 & 5192.98 & 4674.67 & 518.311 & 22.2226 \tabularnewline
91 & 4933.6 & 5030.32 & 4676.19 & 354.125 & -96.7165 \tabularnewline
92 & 5197.8 & 5203.97 & 4681.42 & 522.556 & -6.17235 \tabularnewline
93 & 4734.6 & 4696.8 & 4700.93 & -4.13765 & 37.8043 \tabularnewline
94 & 4681.8 & 4786.1 & 4720.03 & 66.0723 & -104.297 \tabularnewline
95 & 4172 & 4170.4 & 4730.65 & -560.254 & 1.60432 \tabularnewline
96 & 4037.8 & 4004.2 & 4747.08 & -742.88 & 33.5968 \tabularnewline
97 & 4462.6 & 4493.99 & 4748.42 & -254.436 & -31.3895 \tabularnewline
98 & 4282.6 & 4248.87 & 4746.72 & -497.851 & 33.7346 \tabularnewline
99 & 4962.4 & 4807.58 & 4744.18 & 63.3997 & 154.817 \tabularnewline
100 & 4969.2 & 4926.62 & 4741.11 & 185.507 & 42.5846 \tabularnewline
101 & 5214.6 & 5099.13 & 4749.54 & 349.589 & 115.47 \tabularnewline
102 & 5416.8 & 5274.78 & 4756.47 & 518.311 & 142.023 \tabularnewline
103 & 4764.2 & 5114.17 & 4760.04 & 354.125 & -349.967 \tabularnewline
104 & 5326.2 & 5279.56 & 4757.01 & 522.556 & 46.636 \tabularnewline
105 & 4545.4 & 4752.54 & 4756.68 & -4.13765 & -207.137 \tabularnewline
106 & 4797.2 & 4822.13 & 4756.06 & 66.0723 & -24.9307 \tabularnewline
107 & 4259 & 4198.34 & 4758.59 & -560.254 & 60.6627 \tabularnewline
108 & 4117 & 4006.33 & 4749.21 & -742.88 & 110.672 \tabularnewline
109 & 4469.2 & 4489.32 & 4743.76 & -254.436 & -20.1228 \tabularnewline
110 & 4203.2 & 4258.29 & 4756.14 & -497.851 & -55.0904 \tabularnewline
111 & 5033.8 & 4822.7 & 4759.3 & 63.3997 & 211.1 \tabularnewline
112 & 4883 & 4946.8 & 4761.29 & 185.507 & -63.7987 \tabularnewline
113 & 5361.6 & 5113.34 & 4763.75 & 349.589 & 248.261 \tabularnewline
114 & 5044.6 & 5275.72 & 4757.41 & 518.311 & -231.119 \tabularnewline
115 & 5005.6 & 5091.74 & 4737.62 & 354.125 & -86.1415 \tabularnewline
116 & 5382 & 5237.45 & 4714.89 & 522.556 & 144.553 \tabularnewline
117 & 4565.4 & 4677.63 & 4681.77 & -4.13765 & -112.229 \tabularnewline
118 & 4825 & 4725.76 & 4659.68 & 66.0723 & 99.2443 \tabularnewline
119 & 4290.2 & 4094.18 & 4654.43 & -560.254 & 196.021 \tabularnewline
120 & 3933.6 & 3906.94 & 4649.82 & -742.88 & 26.6635 \tabularnewline
121 & 4177.6 & NA & NA & -254.436 & NA \tabularnewline
122 & 3949.4 & NA & NA & -497.851 & NA \tabularnewline
123 & 4492.6 & NA & NA & 63.3997 & NA \tabularnewline
124 & 4894.2 & NA & NA & 185.507 & NA \tabularnewline
125 & 5224.4 & NA & NA & 349.589 & NA \tabularnewline
126 & 5071 & NA & NA & 518.311 & NA \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301787&T=1

[TABLE]
[ROW][C]Classical Decomposition by Moving Averages[/C][/ROW]
[ROW][C]t[/C][C]Observations[/C][C]Fit[/C][C]Trend[/C][C]Seasonal[/C][C]Random[/C][/ROW]
[ROW][C]1[/C][C]4738.4[/C][C]NA[/C][C]NA[/C][C]-254.436[/C][C]NA[/C][/ROW]
[ROW][C]2[/C][C]4687.2[/C][C]NA[/C][C]NA[/C][C]-497.851[/C][C]NA[/C][/ROW]
[ROW][C]3[/C][C]5930.8[/C][C]NA[/C][C]NA[/C][C]63.3997[/C][C]NA[/C][/ROW]
[ROW][C]4[/C][C]5532[/C][C]NA[/C][C]NA[/C][C]185.507[/C][C]NA[/C][/ROW]
[ROW][C]5[/C][C]5429.8[/C][C]NA[/C][C]NA[/C][C]349.589[/C][C]NA[/C][/ROW]
[ROW][C]6[/C][C]6107.4[/C][C]NA[/C][C]NA[/C][C]518.311[/C][C]NA[/C][/ROW]
[ROW][C]7[/C][C]5960.8[/C][C]5708.99[/C][C]5354.87[/C][C]354.125[/C][C]251.808[/C][/ROW]
[ROW][C]8[/C][C]5541.8[/C][C]5888.92[/C][C]5366.37[/C][C]522.556[/C][C]-347.122[/C][/ROW]
[ROW][C]9[/C][C]5362.2[/C][C]5346.57[/C][C]5350.71[/C][C]-4.13765[/C][C]15.6293[/C][/ROW]
[ROW][C]10[/C][C]5237[/C][C]5389.6[/C][C]5323.52[/C][C]66.0723[/C][C]-152.597[/C][/ROW]
[ROW][C]11[/C][C]4827[/C][C]4751.35[/C][C]5311.6[/C][C]-560.254[/C][C]75.6543[/C][/ROW]
[ROW][C]12[/C][C]4781.6[/C][C]4554.64[/C][C]5297.52[/C][C]-742.88[/C][C]226.955[/C][/ROW]
[ROW][C]13[/C][C]4983.2[/C][C]4993.07[/C][C]5247.51[/C][C]-254.436[/C][C]-9.87281[/C][/ROW]
[ROW][C]14[/C][C]4718.4[/C][C]4714.62[/C][C]5212.48[/C][C]-497.851[/C][C]3.77627[/C][/ROW]
[ROW][C]15[/C][C]5523.8[/C][C]5275.27[/C][C]5211.87[/C][C]63.3997[/C][C]248.534[/C][/ROW]
[ROW][C]16[/C][C]5286.6[/C][C]5393.25[/C][C]5207.74[/C][C]185.507[/C][C]-106.649[/C][/ROW]
[ROW][C]17[/C][C]5389[/C][C]5548.02[/C][C]5198.43[/C][C]349.589[/C][C]-159.022[/C][/ROW]
[ROW][C]18[/C][C]5810.4[/C][C]5687.04[/C][C]5168.73[/C][C]518.311[/C][C]123.356[/C][/ROW]
[ROW][C]19[/C][C]5057.4[/C][C]5489.15[/C][C]5135.02[/C][C]354.125[/C][C]-431.75[/C][/ROW]
[ROW][C]20[/C][C]5604.4[/C][C]5624.98[/C][C]5102.42[/C][C]522.556[/C][C]-20.5807[/C][/ROW]
[ROW][C]21[/C][C]5285[/C][C]5067.87[/C][C]5072.01[/C][C]-4.13765[/C][C]217.129[/C][/ROW]
[ROW][C]22[/C][C]5215.2[/C][C]5115.03[/C][C]5048.96[/C][C]66.0723[/C][C]100.169[/C][/ROW]
[ROW][C]23[/C][C]4625.4[/C][C]4473.56[/C][C]5033.82[/C][C]-560.254[/C][C]151.838[/C][/ROW]
[ROW][C]24[/C][C]4270.4[/C][C]4273.64[/C][C]5016.52[/C][C]-742.88[/C][C]-3.24485[/C][/ROW]
[ROW][C]25[/C][C]4685.4[/C][C]4754.06[/C][C]5008.49[/C][C]-254.436[/C][C]-68.6561[/C][/ROW]
[ROW][C]26[/C][C]4233.8[/C][C]4525.32[/C][C]5023.18[/C][C]-497.851[/C][C]-291.524[/C][/ROW]
[ROW][C]27[/C][C]5278.4[/C][C]5085.75[/C][C]5022.35[/C][C]63.3997[/C][C]192.65[/C][/ROW]
[ROW][C]28[/C][C]4978.8[/C][C]5178.07[/C][C]4992.56[/C][C]185.507[/C][C]-199.265[/C][/ROW]
[ROW][C]29[/C][C]5333.4[/C][C]5300.68[/C][C]4951.09[/C][C]349.589[/C][C]32.7198[/C][/ROW]
[ROW][C]30[/C][C]5451[/C][C]5426.26[/C][C]4907.95[/C][C]518.311[/C][C]24.7392[/C][/ROW]
[ROW][C]31[/C][C]5224[/C][C]5235.37[/C][C]4881.24[/C][C]354.125[/C][C]-11.3665[/C][/ROW]
[ROW][C]32[/C][C]5790.2[/C][C]5416.86[/C][C]4894.31[/C][C]522.556[/C][C]373.336[/C][/ROW]
[ROW][C]33[/C][C]5079.4[/C][C]4894.17[/C][C]4898.31[/C][C]-4.13765[/C][C]185.229[/C][/ROW]
[ROW][C]34[/C][C]4705.8[/C][C]4942.57[/C][C]4876.5[/C][C]66.0723[/C][C]-236.772[/C][/ROW]
[ROW][C]35[/C][C]4139.6[/C][C]4293.87[/C][C]4854.12[/C][C]-560.254[/C][C]-154.271[/C][/ROW]
[ROW][C]36[/C][C]3720.8[/C][C]4090.17[/C][C]4833.05[/C][C]-742.88[/C][C]-369.37[/C][/ROW]
[ROW][C]37[/C][C]4594[/C][C]4574.66[/C][C]4829.09[/C][C]-254.436[/C][C]19.3439[/C][/ROW]
[ROW][C]38[/C][C]4638.8[/C][C]4332.12[/C][C]4829.98[/C][C]-497.851[/C][C]306.676[/C][/ROW]
[ROW][C]39[/C][C]4969.4[/C][C]4869.76[/C][C]4806.36[/C][C]63.3997[/C][C]99.642[/C][/ROW]
[ROW][C]40[/C][C]4764.4[/C][C]4983.93[/C][C]4798.42[/C][C]185.507[/C][C]-219.532[/C][/ROW]
[ROW][C]41[/C][C]5010.8[/C][C]5166.86[/C][C]4817.27[/C][C]349.589[/C][C]-156.055[/C][/ROW]
[ROW][C]42[/C][C]5267.8[/C][C]5346.25[/C][C]4827.94[/C][C]518.311[/C][C]-78.4524[/C][/ROW]
[ROW][C]43[/C][C]5312.2[/C][C]5183.85[/C][C]4829.72[/C][C]354.125[/C][C]128.35[/C][/ROW]
[ROW][C]44[/C][C]5723.2[/C][C]5317.9[/C][C]4795.34[/C][C]522.556[/C][C]405.303[/C][/ROW]
[ROW][C]45[/C][C]4579.6[/C][C]4715.11[/C][C]4719.25[/C][C]-4.13765[/C][C]-135.512[/C][/ROW]
[ROW][C]46[/C][C]5015.2[/C][C]4744.06[/C][C]4677.98[/C][C]66.0723[/C][C]271.144[/C][/ROW]
[ROW][C]47[/C][C]4282.4[/C][C]4117.7[/C][C]4677.96[/C][C]-560.254[/C][C]164.696[/C][/ROW]
[ROW][C]48[/C][C]3834.2[/C][C]3918.65[/C][C]4661.53[/C][C]-742.88[/C][C]-84.4532[/C][/ROW]
[ROW][C]49[/C][C]4523.4[/C][C]4389.34[/C][C]4643.77[/C][C]-254.436[/C][C]134.061[/C][/ROW]
[ROW][C]50[/C][C]3884.2[/C][C]4116.14[/C][C]4613.99[/C][C]-497.851[/C][C]-231.94[/C][/ROW]
[ROW][C]51[/C][C]3897.8[/C][C]4655[/C][C]4591.6[/C][C]63.3997[/C][C]-757.2[/C][/ROW]
[ROW][C]52[/C][C]4845.6[/C][C]4770.37[/C][C]4584.86[/C][C]185.507[/C][C]75.2346[/C][/ROW]
[ROW][C]53[/C][C]4929[/C][C]4911.24[/C][C]4561.65[/C][C]349.589[/C][C]17.7615[/C][/ROW]
[ROW][C]54[/C][C]4955.4[/C][C]5065.74[/C][C]4547.42[/C][C]518.311[/C][C]-110.336[/C][/ROW]
[ROW][C]55[/C][C]5198.4[/C][C]4900.66[/C][C]4546.53[/C][C]354.125[/C][C]297.742[/C][/ROW]
[ROW][C]56[/C][C]5122.2[/C][C]5084.36[/C][C]4561.81[/C][C]522.556[/C][C]37.836[/C][/ROW]
[ROW][C]57[/C][C]4643.2[/C][C]4603.38[/C][C]4607.52[/C][C]-4.13765[/C][C]39.821[/C][/ROW]
[ROW][C]58[/C][C]4789.8[/C][C]4715.79[/C][C]4649.72[/C][C]66.0723[/C][C]74.011[/C][/ROW]
[ROW][C]59[/C][C]3950.8[/C][C]4103.54[/C][C]4663.79[/C][C]-560.254[/C][C]-152.737[/C][/ROW]
[ROW][C]60[/C][C]3824.4[/C][C]3933.84[/C][C]4676.73[/C][C]-742.88[/C][C]-109.445[/C][/ROW]
[ROW][C]61[/C][C]4511.8[/C][C]4435.21[/C][C]4689.65[/C][C]-254.436[/C][C]76.5855[/C][/ROW]
[ROW][C]62[/C][C]4262.4[/C][C]4187.68[/C][C]4685.53[/C][C]-497.851[/C][C]74.7179[/C][/ROW]
[ROW][C]63[/C][C]4616.6[/C][C]4745.02[/C][C]4681.62[/C][C]63.3997[/C][C]-128.425[/C][/ROW]
[ROW][C]64[/C][C]5139.6[/C][C]4870.48[/C][C]4684.98[/C][C]185.507[/C][C]269.118[/C][/ROW]
[ROW][C]65[/C][C]4972.8[/C][C]5043.09[/C][C]4693.5[/C][C]349.589[/C][C]-70.2885[/C][/ROW]
[ROW][C]66[/C][C]5222[/C][C]5227.47[/C][C]4709.16[/C][C]518.311[/C][C]-5.4691[/C][/ROW]
[ROW][C]67[/C][C]5242[/C][C]5065.63[/C][C]4711.51[/C][C]354.125[/C][C]176.367[/C][/ROW]
[ROW][C]68[/C][C]4979.8[/C][C]5230.92[/C][C]4708.37[/C][C]522.556[/C][C]-251.122[/C][/ROW]
[ROW][C]69[/C][C]4691.8[/C][C]4720.25[/C][C]4724.39[/C][C]-4.13765[/C][C]-28.454[/C][/ROW]
[ROW][C]70[/C][C]4821.6[/C][C]4799.91[/C][C]4733.84[/C][C]66.0723[/C][C]21.686[/C][/ROW]
[ROW][C]71[/C][C]4123.6[/C][C]4172.42[/C][C]4732.68[/C][C]-560.254[/C][C]-48.8207[/C][/ROW]
[ROW][C]72[/C][C]4027.4[/C][C]3997.24[/C][C]4740.12[/C][C]-742.88[/C][C]30.1635[/C][/ROW]
[ROW][C]73[/C][C]4365.2[/C][C]4488.57[/C][C]4743.01[/C][C]-254.436[/C][C]-123.373[/C][/ROW]
[ROW][C]74[/C][C]4333.6[/C][C]4237.73[/C][C]4735.58[/C][C]-497.851[/C][C]95.8679[/C][/ROW]
[ROW][C]75[/C][C]4930[/C][C]4792.99[/C][C]4729.59[/C][C]63.3997[/C][C]137.009[/C][/ROW]
[ROW][C]76[/C][C]5053[/C][C]4908.91[/C][C]4723.4[/C][C]185.507[/C][C]144.093[/C][/ROW]
[ROW][C]77[/C][C]5031.4[/C][C]5054.38[/C][C]4704.79[/C][C]349.589[/C][C]-22.9802[/C][/ROW]
[ROW][C]78[/C][C]5342[/C][C]5211.13[/C][C]4692.82[/C][C]518.311[/C][C]130.873[/C][/ROW]
[ROW][C]79[/C][C]5191.4[/C][C]5049.91[/C][C]4695.78[/C][C]354.125[/C][C]141.492[/C][/ROW]
[ROW][C]80[/C][C]4852.2[/C][C]5215.05[/C][C]4692.49[/C][C]522.556[/C][C]-362.847[/C][/ROW]
[ROW][C]81[/C][C]4675.6[/C][C]4668.06[/C][C]4672.2[/C][C]-4.13765[/C][C]7.53765[/C][/ROW]
[ROW][C]82[/C][C]4689.2[/C][C]4717.04[/C][C]4650.97[/C][C]66.0723[/C][C]-27.839[/C][/ROW]
[ROW][C]83[/C][C]3809.4[/C][C]4084.23[/C][C]4644.48[/C][C]-560.254[/C][C]-274.829[/C][/ROW]
[ROW][C]84[/C][C]4054.2[/C][C]3895.92[/C][C]4638.8[/C][C]-742.88[/C][C]158.28[/C][/ROW]
[ROW][C]85[/C][C]4409.6[/C][C]4368.34[/C][C]4622.77[/C][C]-254.436[/C][C]41.2605[/C][/ROW]
[ROW][C]86[/C][C]4210.2[/C][C]4128.58[/C][C]4626.43[/C][C]-497.851[/C][C]81.6179[/C][/ROW]
[ROW][C]87[/C][C]4566.4[/C][C]4706.69[/C][C]4643.29[/C][C]63.3997[/C][C]-140.291[/C][/ROW]
[ROW][C]88[/C][C]4907[/C][C]4830.95[/C][C]4645.44[/C][C]185.507[/C][C]76.0513[/C][/ROW]
[ROW][C]89[/C][C]5021.8[/C][C]5009.83[/C][C]4660.24[/C][C]349.589[/C][C]11.9698[/C][/ROW]
[ROW][C]90[/C][C]5215.2[/C][C]5192.98[/C][C]4674.67[/C][C]518.311[/C][C]22.2226[/C][/ROW]
[ROW][C]91[/C][C]4933.6[/C][C]5030.32[/C][C]4676.19[/C][C]354.125[/C][C]-96.7165[/C][/ROW]
[ROW][C]92[/C][C]5197.8[/C][C]5203.97[/C][C]4681.42[/C][C]522.556[/C][C]-6.17235[/C][/ROW]
[ROW][C]93[/C][C]4734.6[/C][C]4696.8[/C][C]4700.93[/C][C]-4.13765[/C][C]37.8043[/C][/ROW]
[ROW][C]94[/C][C]4681.8[/C][C]4786.1[/C][C]4720.03[/C][C]66.0723[/C][C]-104.297[/C][/ROW]
[ROW][C]95[/C][C]4172[/C][C]4170.4[/C][C]4730.65[/C][C]-560.254[/C][C]1.60432[/C][/ROW]
[ROW][C]96[/C][C]4037.8[/C][C]4004.2[/C][C]4747.08[/C][C]-742.88[/C][C]33.5968[/C][/ROW]
[ROW][C]97[/C][C]4462.6[/C][C]4493.99[/C][C]4748.42[/C][C]-254.436[/C][C]-31.3895[/C][/ROW]
[ROW][C]98[/C][C]4282.6[/C][C]4248.87[/C][C]4746.72[/C][C]-497.851[/C][C]33.7346[/C][/ROW]
[ROW][C]99[/C][C]4962.4[/C][C]4807.58[/C][C]4744.18[/C][C]63.3997[/C][C]154.817[/C][/ROW]
[ROW][C]100[/C][C]4969.2[/C][C]4926.62[/C][C]4741.11[/C][C]185.507[/C][C]42.5846[/C][/ROW]
[ROW][C]101[/C][C]5214.6[/C][C]5099.13[/C][C]4749.54[/C][C]349.589[/C][C]115.47[/C][/ROW]
[ROW][C]102[/C][C]5416.8[/C][C]5274.78[/C][C]4756.47[/C][C]518.311[/C][C]142.023[/C][/ROW]
[ROW][C]103[/C][C]4764.2[/C][C]5114.17[/C][C]4760.04[/C][C]354.125[/C][C]-349.967[/C][/ROW]
[ROW][C]104[/C][C]5326.2[/C][C]5279.56[/C][C]4757.01[/C][C]522.556[/C][C]46.636[/C][/ROW]
[ROW][C]105[/C][C]4545.4[/C][C]4752.54[/C][C]4756.68[/C][C]-4.13765[/C][C]-207.137[/C][/ROW]
[ROW][C]106[/C][C]4797.2[/C][C]4822.13[/C][C]4756.06[/C][C]66.0723[/C][C]-24.9307[/C][/ROW]
[ROW][C]107[/C][C]4259[/C][C]4198.34[/C][C]4758.59[/C][C]-560.254[/C][C]60.6627[/C][/ROW]
[ROW][C]108[/C][C]4117[/C][C]4006.33[/C][C]4749.21[/C][C]-742.88[/C][C]110.672[/C][/ROW]
[ROW][C]109[/C][C]4469.2[/C][C]4489.32[/C][C]4743.76[/C][C]-254.436[/C][C]-20.1228[/C][/ROW]
[ROW][C]110[/C][C]4203.2[/C][C]4258.29[/C][C]4756.14[/C][C]-497.851[/C][C]-55.0904[/C][/ROW]
[ROW][C]111[/C][C]5033.8[/C][C]4822.7[/C][C]4759.3[/C][C]63.3997[/C][C]211.1[/C][/ROW]
[ROW][C]112[/C][C]4883[/C][C]4946.8[/C][C]4761.29[/C][C]185.507[/C][C]-63.7987[/C][/ROW]
[ROW][C]113[/C][C]5361.6[/C][C]5113.34[/C][C]4763.75[/C][C]349.589[/C][C]248.261[/C][/ROW]
[ROW][C]114[/C][C]5044.6[/C][C]5275.72[/C][C]4757.41[/C][C]518.311[/C][C]-231.119[/C][/ROW]
[ROW][C]115[/C][C]5005.6[/C][C]5091.74[/C][C]4737.62[/C][C]354.125[/C][C]-86.1415[/C][/ROW]
[ROW][C]116[/C][C]5382[/C][C]5237.45[/C][C]4714.89[/C][C]522.556[/C][C]144.553[/C][/ROW]
[ROW][C]117[/C][C]4565.4[/C][C]4677.63[/C][C]4681.77[/C][C]-4.13765[/C][C]-112.229[/C][/ROW]
[ROW][C]118[/C][C]4825[/C][C]4725.76[/C][C]4659.68[/C][C]66.0723[/C][C]99.2443[/C][/ROW]
[ROW][C]119[/C][C]4290.2[/C][C]4094.18[/C][C]4654.43[/C][C]-560.254[/C][C]196.021[/C][/ROW]
[ROW][C]120[/C][C]3933.6[/C][C]3906.94[/C][C]4649.82[/C][C]-742.88[/C][C]26.6635[/C][/ROW]
[ROW][C]121[/C][C]4177.6[/C][C]NA[/C][C]NA[/C][C]-254.436[/C][C]NA[/C][/ROW]
[ROW][C]122[/C][C]3949.4[/C][C]NA[/C][C]NA[/C][C]-497.851[/C][C]NA[/C][/ROW]
[ROW][C]123[/C][C]4492.6[/C][C]NA[/C][C]NA[/C][C]63.3997[/C][C]NA[/C][/ROW]
[ROW][C]124[/C][C]4894.2[/C][C]NA[/C][C]NA[/C][C]185.507[/C][C]NA[/C][/ROW]
[ROW][C]125[/C][C]5224.4[/C][C]NA[/C][C]NA[/C][C]349.589[/C][C]NA[/C][/ROW]
[ROW][C]126[/C][C]5071[/C][C]NA[/C][C]NA[/C][C]518.311[/C][C]NA[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301787&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301787&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
14738.4NANA-254.436NA
24687.2NANA-497.851NA
35930.8NANA63.3997NA
45532NANA185.507NA
55429.8NANA349.589NA
66107.4NANA518.311NA
75960.85708.995354.87354.125251.808
85541.85888.925366.37522.556-347.122
95362.25346.575350.71-4.1376515.6293
1052375389.65323.5266.0723-152.597
1148274751.355311.6-560.25475.6543
124781.64554.645297.52-742.88226.955
134983.24993.075247.51-254.436-9.87281
144718.44714.625212.48-497.8513.77627
155523.85275.275211.8763.3997248.534
165286.65393.255207.74185.507-106.649
1753895548.025198.43349.589-159.022
185810.45687.045168.73518.311123.356
195057.45489.155135.02354.125-431.75
205604.45624.985102.42522.556-20.5807
2152855067.875072.01-4.13765217.129
225215.25115.035048.9666.0723100.169
234625.44473.565033.82-560.254151.838
244270.44273.645016.52-742.88-3.24485
254685.44754.065008.49-254.436-68.6561
264233.84525.325023.18-497.851-291.524
275278.45085.755022.3563.3997192.65
284978.85178.074992.56185.507-199.265
295333.45300.684951.09349.58932.7198
3054515426.264907.95518.31124.7392
3152245235.374881.24354.125-11.3665
325790.25416.864894.31522.556373.336
335079.44894.174898.31-4.13765185.229
344705.84942.574876.566.0723-236.772
354139.64293.874854.12-560.254-154.271
363720.84090.174833.05-742.88-369.37
3745944574.664829.09-254.43619.3439
384638.84332.124829.98-497.851306.676
394969.44869.764806.3663.399799.642
404764.44983.934798.42185.507-219.532
415010.85166.864817.27349.589-156.055
425267.85346.254827.94518.311-78.4524
435312.25183.854829.72354.125128.35
445723.25317.94795.34522.556405.303
454579.64715.114719.25-4.13765-135.512
465015.24744.064677.9866.0723271.144
474282.44117.74677.96-560.254164.696
483834.23918.654661.53-742.88-84.4532
494523.44389.344643.77-254.436134.061
503884.24116.144613.99-497.851-231.94
513897.846554591.663.3997-757.2
524845.64770.374584.86185.50775.2346
5349294911.244561.65349.58917.7615
544955.45065.744547.42518.311-110.336
555198.44900.664546.53354.125297.742
565122.25084.364561.81522.55637.836
574643.24603.384607.52-4.1376539.821
584789.84715.794649.7266.072374.011
593950.84103.544663.79-560.254-152.737
603824.43933.844676.73-742.88-109.445
614511.84435.214689.65-254.43676.5855
624262.44187.684685.53-497.85174.7179
634616.64745.024681.6263.3997-128.425
645139.64870.484684.98185.507269.118
654972.85043.094693.5349.589-70.2885
6652225227.474709.16518.311-5.4691
6752425065.634711.51354.125176.367
684979.85230.924708.37522.556-251.122
694691.84720.254724.39-4.13765-28.454
704821.64799.914733.8466.072321.686
714123.64172.424732.68-560.254-48.8207
724027.43997.244740.12-742.8830.1635
734365.24488.574743.01-254.436-123.373
744333.64237.734735.58-497.85195.8679
7549304792.994729.5963.3997137.009
7650534908.914723.4185.507144.093
775031.45054.384704.79349.589-22.9802
7853425211.134692.82518.311130.873
795191.45049.914695.78354.125141.492
804852.25215.054692.49522.556-362.847
814675.64668.064672.2-4.137657.53765
824689.24717.044650.9766.0723-27.839
833809.44084.234644.48-560.254-274.829
844054.23895.924638.8-742.88158.28
854409.64368.344622.77-254.43641.2605
864210.24128.584626.43-497.85181.6179
874566.44706.694643.2963.3997-140.291
8849074830.954645.44185.50776.0513
895021.85009.834660.24349.58911.9698
905215.25192.984674.67518.31122.2226
914933.65030.324676.19354.125-96.7165
925197.85203.974681.42522.556-6.17235
934734.64696.84700.93-4.1376537.8043
944681.84786.14720.0366.0723-104.297
9541724170.44730.65-560.2541.60432
964037.84004.24747.08-742.8833.5968
974462.64493.994748.42-254.436-31.3895
984282.64248.874746.72-497.85133.7346
994962.44807.584744.1863.3997154.817
1004969.24926.624741.11185.50742.5846
1015214.65099.134749.54349.589115.47
1025416.85274.784756.47518.311142.023
1034764.25114.174760.04354.125-349.967
1045326.25279.564757.01522.55646.636
1054545.44752.544756.68-4.13765-207.137
1064797.24822.134756.0666.0723-24.9307
10742594198.344758.59-560.25460.6627
10841174006.334749.21-742.88110.672
1094469.24489.324743.76-254.436-20.1228
1104203.24258.294756.14-497.851-55.0904
1115033.84822.74759.363.3997211.1
11248834946.84761.29185.507-63.7987
1135361.65113.344763.75349.589248.261
1145044.65275.724757.41518.311-231.119
1155005.65091.744737.62354.125-86.1415
11653825237.454714.89522.556144.553
1174565.44677.634681.77-4.13765-112.229
11848254725.764659.6866.072399.2443
1194290.24094.184654.43-560.254196.021
1203933.63906.944649.82-742.8826.6635
1214177.6NANA-254.436NA
1223949.4NANA-497.851NA
1234492.6NANA63.3997NA
1244894.2NANA185.507NA
1255224.4NANA349.589NA
1265071NANA518.311NA



Parameters (Session):
Parameters (R input):
par1 = additive ; par2 = 12 ;
R code (references can be found in the software module):
par2 <- '12'
par1 <- 'additive'
par2 <- as.numeric(par2)
x <- ts(x,freq=par2)
m <- decompose(x,type=par1)
m$figure
bitmap(file='test1.png')
plot(m)
dev.off()
mylagmax <- length(x)/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(as.numeric(m$trend),na.action=na.pass,lag.max = mylagmax,main='Trend')
acf(as.numeric(m$seasonal),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(as.numeric(m$random),na.action=na.pass,lag.max = mylagmax,main='Random')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
spectrum(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
spectrum(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
cpgram(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
cpgram(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Classical Decomposition by Moving Averages',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observations',header=TRUE)
a<-table.element(a,'Fit',header=TRUE)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Random',header=TRUE)
a<-table.row.end(a)
for (i in 1:length(m$trend)) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
if (par1 == 'additive') a<-table.element(a,signif(m$trend[i]+m$seasonal[i],6)) else a<-table.element(a,signif(m$trend[i]*m$seasonal[i],6))
a<-table.element(a,signif(m$trend[i],6))
a<-table.element(a,signif(m$seasonal[i],6))
a<-table.element(a,signif(m$random[i],6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')