Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_autocorrelation.wasp
Title produced by software(Partial) Autocorrelation Function
Date of computationTue, 20 Dec 2016 16:52:56 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/20/t14822493696jgw1wndnwo5ztg.htm/, Retrieved Fri, 01 Nov 2024 03:44:20 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=301723, Retrieved Fri, 01 Nov 2024 03:44:20 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact87
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [(Partial) Autocorrelation Function] [] [2016-12-20 15:52:56] [b7216e4bc5ee29192acbe9c506cee18c] [Current]
Feedback Forum

Post a new message
Dataseries X:
3450.3
2328.96
2610.24
3974.04
2025.3
3991.02
2636.88
2980.98
3813.36
2709.42
2772
3482.64
3752.64
2873.16
2667.84
4810.8
2247.54
4156.92
3121.02
3312.54
4081.14
3135.06
3089.64
3744.24
4227.24
3241.26
2976.36
5675.58
2387.64
4329.06
3478.2
3346.56
4428.48
3473.16
3069.78
4091.58
4602.6
3202.2
2973.42
5486.28
2774.76
4621.44
3778.44
3391.38
4680.78
3540.72
3178.02
4682.1
4906.26
3327.78
3390.9
7373.82
2861.46
4976.7
3853.38
3612.78
5544.6
3737.7
3414.9
5128.14
4904.4
3616.74
3939.84
6555.96
3578.1
5948.4
3637.86
4163.4
5864.52
3814.92
3859.2
5619.3
5358.36
3713.82
4092.3
7733.52
4261.5
6494.94
3971.46
4568.16
5953.98
4105.56
4272.78
5347.8
5971.44
3908.46
3888.3
8376.24
4151.16
6636.06
4339.74
4707.72
6176.34
4619.16
4230.42
6114
6042.78
4059.42
3888.3
8422.8
3813.6
6203.34
4715.58
4585.56
6561
4683.9
4385.7
6218.16
6241.86
3764.82
4327.62
8301.06
3731.04
7252.68
4743
4686.06




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301723&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=301723&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301723&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Autocorrelation Function
Time lag kACF(k)T-STATP-value
1-0.570167-5.78660
2-0.077829-0.78990.215708
30.3803673.86039.9e-05
4-0.364565-3.69990.000174
50.0863660.87650.191395
60.1994042.02370.022794
7-0.264865-2.68810.004191
80.1167871.18530.119321
90.1161071.17840.120685
10-0.293432-2.9780.001809
110.3015053.05990.001411
12-0.098633-1.0010.159583
13-0.18541-1.88170.031349
140.2168452.20070.014994
150.060960.61870.268746
16-0.290615-2.94940.00197
170.2699312.73950.003627
18-0.048813-0.49540.310687
19-0.236285-2.3980.009142
200.337423.42440.000443

\begin{tabular}{lllllllll}
\hline
Autocorrelation Function \tabularnewline
Time lag k & ACF(k) & T-STAT & P-value \tabularnewline
1 & -0.570167 & -5.7866 & 0 \tabularnewline
2 & -0.077829 & -0.7899 & 0.215708 \tabularnewline
3 & 0.380367 & 3.8603 & 9.9e-05 \tabularnewline
4 & -0.364565 & -3.6999 & 0.000174 \tabularnewline
5 & 0.086366 & 0.8765 & 0.191395 \tabularnewline
6 & 0.199404 & 2.0237 & 0.022794 \tabularnewline
7 & -0.264865 & -2.6881 & 0.004191 \tabularnewline
8 & 0.116787 & 1.1853 & 0.119321 \tabularnewline
9 & 0.116107 & 1.1784 & 0.120685 \tabularnewline
10 & -0.293432 & -2.978 & 0.001809 \tabularnewline
11 & 0.301505 & 3.0599 & 0.001411 \tabularnewline
12 & -0.098633 & -1.001 & 0.159583 \tabularnewline
13 & -0.18541 & -1.8817 & 0.031349 \tabularnewline
14 & 0.216845 & 2.2007 & 0.014994 \tabularnewline
15 & 0.06096 & 0.6187 & 0.268746 \tabularnewline
16 & -0.290615 & -2.9494 & 0.00197 \tabularnewline
17 & 0.269931 & 2.7395 & 0.003627 \tabularnewline
18 & -0.048813 & -0.4954 & 0.310687 \tabularnewline
19 & -0.236285 & -2.398 & 0.009142 \tabularnewline
20 & 0.33742 & 3.4244 & 0.000443 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301723&T=1

[TABLE]
[ROW][C]Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]ACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]-0.570167[/C][C]-5.7866[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]-0.077829[/C][C]-0.7899[/C][C]0.215708[/C][/ROW]
[ROW][C]3[/C][C]0.380367[/C][C]3.8603[/C][C]9.9e-05[/C][/ROW]
[ROW][C]4[/C][C]-0.364565[/C][C]-3.6999[/C][C]0.000174[/C][/ROW]
[ROW][C]5[/C][C]0.086366[/C][C]0.8765[/C][C]0.191395[/C][/ROW]
[ROW][C]6[/C][C]0.199404[/C][C]2.0237[/C][C]0.022794[/C][/ROW]
[ROW][C]7[/C][C]-0.264865[/C][C]-2.6881[/C][C]0.004191[/C][/ROW]
[ROW][C]8[/C][C]0.116787[/C][C]1.1853[/C][C]0.119321[/C][/ROW]
[ROW][C]9[/C][C]0.116107[/C][C]1.1784[/C][C]0.120685[/C][/ROW]
[ROW][C]10[/C][C]-0.293432[/C][C]-2.978[/C][C]0.001809[/C][/ROW]
[ROW][C]11[/C][C]0.301505[/C][C]3.0599[/C][C]0.001411[/C][/ROW]
[ROW][C]12[/C][C]-0.098633[/C][C]-1.001[/C][C]0.159583[/C][/ROW]
[ROW][C]13[/C][C]-0.18541[/C][C]-1.8817[/C][C]0.031349[/C][/ROW]
[ROW][C]14[/C][C]0.216845[/C][C]2.2007[/C][C]0.014994[/C][/ROW]
[ROW][C]15[/C][C]0.06096[/C][C]0.6187[/C][C]0.268746[/C][/ROW]
[ROW][C]16[/C][C]-0.290615[/C][C]-2.9494[/C][C]0.00197[/C][/ROW]
[ROW][C]17[/C][C]0.269931[/C][C]2.7395[/C][C]0.003627[/C][/ROW]
[ROW][C]18[/C][C]-0.048813[/C][C]-0.4954[/C][C]0.310687[/C][/ROW]
[ROW][C]19[/C][C]-0.236285[/C][C]-2.398[/C][C]0.009142[/C][/ROW]
[ROW][C]20[/C][C]0.33742[/C][C]3.4244[/C][C]0.000443[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301723&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301723&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Autocorrelation Function
Time lag kACF(k)T-STATP-value
1-0.570167-5.78660
2-0.077829-0.78990.215708
30.3803673.86039.9e-05
4-0.364565-3.69990.000174
50.0863660.87650.191395
60.1994042.02370.022794
7-0.264865-2.68810.004191
80.1167871.18530.119321
90.1161071.17840.120685
10-0.293432-2.9780.001809
110.3015053.05990.001411
12-0.098633-1.0010.159583
13-0.18541-1.88170.031349
140.2168452.20070.014994
150.060960.61870.268746
16-0.290615-2.94940.00197
170.2699312.73950.003627
18-0.048813-0.49540.310687
19-0.236285-2.3980.009142
200.337423.42440.000443







Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
1-0.570167-5.78660
2-0.596997-6.05890
3-0.071112-0.72170.236056
4-0.217785-2.21030.014649
5-0.257607-2.61440.005139
6-0.078981-0.80160.212323
7-0.09442-0.95830.170088
8-0.114281-1.15980.124401
90.0347610.35280.362487
10-0.180593-1.83280.034859
110.0459210.4660.321083
120.0390870.39670.346209
13-0.105648-1.07220.143065
14-0.271243-2.75280.003492
150.1618721.64280.051735
16-0.024651-0.25020.401472
17-0.023884-0.24240.404476
180.0400640.40660.342573
19-0.093558-0.94950.172292
20-0.041445-0.42060.337454

\begin{tabular}{lllllllll}
\hline
Partial Autocorrelation Function \tabularnewline
Time lag k & PACF(k) & T-STAT & P-value \tabularnewline
1 & -0.570167 & -5.7866 & 0 \tabularnewline
2 & -0.596997 & -6.0589 & 0 \tabularnewline
3 & -0.071112 & -0.7217 & 0.236056 \tabularnewline
4 & -0.217785 & -2.2103 & 0.014649 \tabularnewline
5 & -0.257607 & -2.6144 & 0.005139 \tabularnewline
6 & -0.078981 & -0.8016 & 0.212323 \tabularnewline
7 & -0.09442 & -0.9583 & 0.170088 \tabularnewline
8 & -0.114281 & -1.1598 & 0.124401 \tabularnewline
9 & 0.034761 & 0.3528 & 0.362487 \tabularnewline
10 & -0.180593 & -1.8328 & 0.034859 \tabularnewline
11 & 0.045921 & 0.466 & 0.321083 \tabularnewline
12 & 0.039087 & 0.3967 & 0.346209 \tabularnewline
13 & -0.105648 & -1.0722 & 0.143065 \tabularnewline
14 & -0.271243 & -2.7528 & 0.003492 \tabularnewline
15 & 0.161872 & 1.6428 & 0.051735 \tabularnewline
16 & -0.024651 & -0.2502 & 0.401472 \tabularnewline
17 & -0.023884 & -0.2424 & 0.404476 \tabularnewline
18 & 0.040064 & 0.4066 & 0.342573 \tabularnewline
19 & -0.093558 & -0.9495 & 0.172292 \tabularnewline
20 & -0.041445 & -0.4206 & 0.337454 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301723&T=2

[TABLE]
[ROW][C]Partial Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]PACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]-0.570167[/C][C]-5.7866[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]-0.596997[/C][C]-6.0589[/C][C]0[/C][/ROW]
[ROW][C]3[/C][C]-0.071112[/C][C]-0.7217[/C][C]0.236056[/C][/ROW]
[ROW][C]4[/C][C]-0.217785[/C][C]-2.2103[/C][C]0.014649[/C][/ROW]
[ROW][C]5[/C][C]-0.257607[/C][C]-2.6144[/C][C]0.005139[/C][/ROW]
[ROW][C]6[/C][C]-0.078981[/C][C]-0.8016[/C][C]0.212323[/C][/ROW]
[ROW][C]7[/C][C]-0.09442[/C][C]-0.9583[/C][C]0.170088[/C][/ROW]
[ROW][C]8[/C][C]-0.114281[/C][C]-1.1598[/C][C]0.124401[/C][/ROW]
[ROW][C]9[/C][C]0.034761[/C][C]0.3528[/C][C]0.362487[/C][/ROW]
[ROW][C]10[/C][C]-0.180593[/C][C]-1.8328[/C][C]0.034859[/C][/ROW]
[ROW][C]11[/C][C]0.045921[/C][C]0.466[/C][C]0.321083[/C][/ROW]
[ROW][C]12[/C][C]0.039087[/C][C]0.3967[/C][C]0.346209[/C][/ROW]
[ROW][C]13[/C][C]-0.105648[/C][C]-1.0722[/C][C]0.143065[/C][/ROW]
[ROW][C]14[/C][C]-0.271243[/C][C]-2.7528[/C][C]0.003492[/C][/ROW]
[ROW][C]15[/C][C]0.161872[/C][C]1.6428[/C][C]0.051735[/C][/ROW]
[ROW][C]16[/C][C]-0.024651[/C][C]-0.2502[/C][C]0.401472[/C][/ROW]
[ROW][C]17[/C][C]-0.023884[/C][C]-0.2424[/C][C]0.404476[/C][/ROW]
[ROW][C]18[/C][C]0.040064[/C][C]0.4066[/C][C]0.342573[/C][/ROW]
[ROW][C]19[/C][C]-0.093558[/C][C]-0.9495[/C][C]0.172292[/C][/ROW]
[ROW][C]20[/C][C]-0.041445[/C][C]-0.4206[/C][C]0.337454[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301723&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301723&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
1-0.570167-5.78660
2-0.596997-6.05890
3-0.071112-0.72170.236056
4-0.217785-2.21030.014649
5-0.257607-2.61440.005139
6-0.078981-0.80160.212323
7-0.09442-0.95830.170088
8-0.114281-1.15980.124401
90.0347610.35280.362487
10-0.180593-1.83280.034859
110.0459210.4660.321083
120.0390870.39670.346209
13-0.105648-1.07220.143065
14-0.271243-2.75280.003492
150.1618721.64280.051735
16-0.024651-0.25020.401472
17-0.023884-0.24240.404476
180.0400640.40660.342573
19-0.093558-0.94950.172292
20-0.041445-0.42060.337454



Parameters (Session):
par1 = Default ; par2 = -0.4 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ;
Parameters (R input):
par1 = Default ; par2 = -0.4 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ; par8 = ;
R code (references can be found in the software module):
par8 <- ''
par7 <- '0.95'
par6 <- 'White Noise'
par5 <- '12'
par4 <- '2'
par3 <- '1'
par2 <- '-0.4'
par1 <- 'Default'
if (par1 == 'Default') {
par1 = 10*log10(length(x))
} else {
par1 <- as.numeric(par1)
}
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
par4 <- as.numeric(par4)
par5 <- as.numeric(par5)
if (par6 == 'White Noise') par6 <- 'white' else par6 <- 'ma'
par7 <- as.numeric(par7)
if (par8 != '') par8 <- as.numeric(par8)
x <- na.omit(x)
ox <- x
if (par8 == '') {
if (par2 == 0) {
x <- log(x)
} else {
x <- (x ^ par2 - 1) / par2
}
} else {
x <- log(x,base=par8)
}
if (par3 > 0) x <- diff(x,lag=1,difference=par3)
if (par4 > 0) x <- diff(x,lag=par5,difference=par4)
bitmap(file='picts.png')
op <- par(mfrow=c(2,1))
plot(ox,type='l',main='Original Time Series',xlab='time',ylab='value')
if (par8=='') {
mytitle <- paste('Working Time Series (lambda=',par2,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(lambda=',par2,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
} else {
mytitle <- paste('Working Time Series (base=',par8,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(base=',par8,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
}
plot(x,type='l', main=mytitle,xlab='time',ylab='value')
par(op)
dev.off()
bitmap(file='pic1.png')
racf <- acf(x, par1, main='Autocorrelation', xlab='time lag', ylab='ACF', ci.type=par6, ci=par7, sub=mysub)
dev.off()
bitmap(file='pic2.png')
rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF',sub=mysub)
dev.off()
(myacf <- c(racf$acf))
(mypacf <- c(rpacf$acf))
lengthx <- length(x)
sqrtn <- sqrt(lengthx)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'ACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 2:(par1+1)) {
a<-table.row.start(a)
a<-table.element(a,i-1,header=TRUE)
a<-table.element(a,round(myacf[i],6))
mytstat <- myacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Partial Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'PACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:par1) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,round(mypacf[i],6))
mytstat <- mypacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')