Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_decompose.wasp
Title produced by softwareClassical Decomposition
Date of computationTue, 20 Dec 2016 16:08:50 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/20/t148224687506o3yc5h7hkkjgd.htm/, Retrieved Fri, 01 Nov 2024 03:35:58 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=301705, Retrieved Fri, 01 Nov 2024 03:35:58 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact100
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Classical Decomposition] [] [2016-12-20 15:08:50] [2a4cd29e98d45e730e96e92769c461dd] [Current]
Feedback Forum

Post a new message
Dataseries X:
3404
3425
3631
4141
3238
5390
1994
4343
4424
2762
3504
4279
3531
3210
4489
2395
2869
3193
3044
4209
5590
6703
4496
6277
5524
4478
2899
2265
2565
6319
1926
2591
5863
4287
4809
4455
3047
2757
2986
3158
1961
1364
2094
2497
2727
2949
3479
1858
2552
1843
2639
1495
2197
2861
1831
2516
2136
2432
1623
1535
2926
1548
1913
2092
1574
1371
2570
2775
1943
3431
1779
2628
3108
1188
1614
1078
1433
3167
1218
1922
3111
3443
2094
750
1297
2586
601
1846
1174
2420
742
1388
1878
1342
1605
1796
1842
1213
798
1948
832
1588
453
1111
1390
2262
1822
2100




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301705&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=301705&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301705&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
13404NANA357.295NA
23425NANA-243.345NA
33631NANA-321.21NA
44141NANA-510.554NA
53238NANA-708.189NA
65390NANA271.67NA
719942866.613716.54-849.929-872.613
843433735.353712.8822.4774607.648
944244467.33739.67727.628-43.2951
1027624416.13702.67713.431-1654.1
1135043856.933614.54242.384-352.925
1242793805.973507.62298.342473.033
1335313817.133459.83357.295-286.128
1432103254.653498-243.345-44.6545
1544893219.793541-321.211269.21
1623953243.243753.79-510.554-848.238
1728693251.143959.33-708.189-382.144
1831934355.594083.92271.67-1162.59
1930443400.284250.21-849.929-356.28
2042094408.564386.0822.4774-199.561
2155905100.34372.67727.628489.705
2267035014.434301713.4311688.57
2344964525.34282.92242.384-29.3003
2462774698.844400.5298.3421578.16
2555244841.464484.17357.295682.538
2644784126.824370.17-243.345351.179
2728993992.914314.12-321.21-1093.91
2822653714.284224.83-510.554-1449.28
2925653429.024137.21-708.189-864.019
30631943464074.33271.671973
3119263045.283895.21-849.929-1119.28
3225913742.773720.2922.4774-1151.77
3358634379.843652.21727.6281483.16
3442874406.473693.04713.431-119.472
3548093947.473705.08242.384861.533
3644553771.83473.46298.342683.2
3730473631.33274357.295-584.295
3827573033.743277.08-243.345-276.738
3929862821.293142.5-321.21164.71
4031582445.532956.08-510.554712.47
4119612136.732844.92-708.189-175.727
4213642952.962681.29271.67-1588.96
4320941702.532552.46-849.929391.47
4424972516.232493.7522.4774-19.2274
4527273168.842441.21727.628-441.837
4629493070.892357.46713.431-121.889
4734792540.382298242.384938.616
4818582668.552370.21298.342-810.55
4925522778.922421.62357.295-226.92
5018432168.112411.46-243.345-325.113
5126392066.412387.62-321.21572.585
5214951830.92341.46-510.554-335.905
5321971534.392242.58-708.189662.606
5428612423.462151.79271.67437.538
5518311303.992153.92-849.929527.012
5625162179.692157.2122.4774336.314
5721362842.32114.67727.628-706.295
5824322822.722109.29713.431-390.722
5916232350.592108.21242.384-727.592
6015352318.512020.17298.342-783.509
6129262346.171988.88357.295579.83
6215481787.112030.46-243.345-239.113
63191317122033.21-321.21201.002
6420921556.242066.79-510.554535.762
6515741406.732114.92-708.189167.273
6613712438.632166.96271.67-1067.63
6725701370.152220.08-849.9291199.85
6827752235.142212.6722.4774539.856
6919432912.842185.21727.628-969.837
7034312843.932130.5713.431587.069
7117792324.762082.38242.384-545.759
7226282449.682151.33298.342178.325
7331082527.132169.83357.295580.872
7411881834.612077.96-243.345-646.613
7516141769.872091.08-321.21-155.873
7610781629.72140.25-510.554-551.696
7714331445.692153.88-708.189-12.6858
7831672360.422088.75271.67806.58
7912181085.111935.04-849.929132.887
8019221940.311917.8322.4774-18.3108
8131112661.51933.88727.628449.497
8234432637.11923.67713.431805.903
8320942187.261944.87242.384-93.2587
847502201.31902.96298.342-1451.3
8512972209.31852357.295-912.295
8625861566.571809.92-243.3451019.43
876011415.081736.29-321.21-814.082
8818461086.821597.38-510.554759.179
891174781.2691489.46-708.189392.731
9024201784.341512.67271.67635.663
91742729.031578.96-849.92912.9705
9213881566.941544.4622.4774-178.936
9318782223.091495.46727.628-345.087
9413422221.351507.92713.431-879.347
9516051740.31497.92242.384-135.3
9617961747.341449298.34248.658
9718421759.591402.29357.29582.4132
9812131135.361378.71-243.34577.6372
997981025.621346.83-321.21-227.623
1001948854.281364.83-510.5541093.72
101832704.0191412.21-708.189127.981
10215881705.591433.92271.67-117.587
103453NANA-849.929NA
1041111NANA22.4774NA
1051390NANA727.628NA
1062262NANA713.431NA
1071822NANA242.384NA
1082100NANA298.342NA

\begin{tabular}{lllllllll}
\hline
Classical Decomposition by Moving Averages \tabularnewline
t & Observations & Fit & Trend & Seasonal & Random \tabularnewline
1 & 3404 & NA & NA & 357.295 & NA \tabularnewline
2 & 3425 & NA & NA & -243.345 & NA \tabularnewline
3 & 3631 & NA & NA & -321.21 & NA \tabularnewline
4 & 4141 & NA & NA & -510.554 & NA \tabularnewline
5 & 3238 & NA & NA & -708.189 & NA \tabularnewline
6 & 5390 & NA & NA & 271.67 & NA \tabularnewline
7 & 1994 & 2866.61 & 3716.54 & -849.929 & -872.613 \tabularnewline
8 & 4343 & 3735.35 & 3712.88 & 22.4774 & 607.648 \tabularnewline
9 & 4424 & 4467.3 & 3739.67 & 727.628 & -43.2951 \tabularnewline
10 & 2762 & 4416.1 & 3702.67 & 713.431 & -1654.1 \tabularnewline
11 & 3504 & 3856.93 & 3614.54 & 242.384 & -352.925 \tabularnewline
12 & 4279 & 3805.97 & 3507.62 & 298.342 & 473.033 \tabularnewline
13 & 3531 & 3817.13 & 3459.83 & 357.295 & -286.128 \tabularnewline
14 & 3210 & 3254.65 & 3498 & -243.345 & -44.6545 \tabularnewline
15 & 4489 & 3219.79 & 3541 & -321.21 & 1269.21 \tabularnewline
16 & 2395 & 3243.24 & 3753.79 & -510.554 & -848.238 \tabularnewline
17 & 2869 & 3251.14 & 3959.33 & -708.189 & -382.144 \tabularnewline
18 & 3193 & 4355.59 & 4083.92 & 271.67 & -1162.59 \tabularnewline
19 & 3044 & 3400.28 & 4250.21 & -849.929 & -356.28 \tabularnewline
20 & 4209 & 4408.56 & 4386.08 & 22.4774 & -199.561 \tabularnewline
21 & 5590 & 5100.3 & 4372.67 & 727.628 & 489.705 \tabularnewline
22 & 6703 & 5014.43 & 4301 & 713.431 & 1688.57 \tabularnewline
23 & 4496 & 4525.3 & 4282.92 & 242.384 & -29.3003 \tabularnewline
24 & 6277 & 4698.84 & 4400.5 & 298.342 & 1578.16 \tabularnewline
25 & 5524 & 4841.46 & 4484.17 & 357.295 & 682.538 \tabularnewline
26 & 4478 & 4126.82 & 4370.17 & -243.345 & 351.179 \tabularnewline
27 & 2899 & 3992.91 & 4314.12 & -321.21 & -1093.91 \tabularnewline
28 & 2265 & 3714.28 & 4224.83 & -510.554 & -1449.28 \tabularnewline
29 & 2565 & 3429.02 & 4137.21 & -708.189 & -864.019 \tabularnewline
30 & 6319 & 4346 & 4074.33 & 271.67 & 1973 \tabularnewline
31 & 1926 & 3045.28 & 3895.21 & -849.929 & -1119.28 \tabularnewline
32 & 2591 & 3742.77 & 3720.29 & 22.4774 & -1151.77 \tabularnewline
33 & 5863 & 4379.84 & 3652.21 & 727.628 & 1483.16 \tabularnewline
34 & 4287 & 4406.47 & 3693.04 & 713.431 & -119.472 \tabularnewline
35 & 4809 & 3947.47 & 3705.08 & 242.384 & 861.533 \tabularnewline
36 & 4455 & 3771.8 & 3473.46 & 298.342 & 683.2 \tabularnewline
37 & 3047 & 3631.3 & 3274 & 357.295 & -584.295 \tabularnewline
38 & 2757 & 3033.74 & 3277.08 & -243.345 & -276.738 \tabularnewline
39 & 2986 & 2821.29 & 3142.5 & -321.21 & 164.71 \tabularnewline
40 & 3158 & 2445.53 & 2956.08 & -510.554 & 712.47 \tabularnewline
41 & 1961 & 2136.73 & 2844.92 & -708.189 & -175.727 \tabularnewline
42 & 1364 & 2952.96 & 2681.29 & 271.67 & -1588.96 \tabularnewline
43 & 2094 & 1702.53 & 2552.46 & -849.929 & 391.47 \tabularnewline
44 & 2497 & 2516.23 & 2493.75 & 22.4774 & -19.2274 \tabularnewline
45 & 2727 & 3168.84 & 2441.21 & 727.628 & -441.837 \tabularnewline
46 & 2949 & 3070.89 & 2357.46 & 713.431 & -121.889 \tabularnewline
47 & 3479 & 2540.38 & 2298 & 242.384 & 938.616 \tabularnewline
48 & 1858 & 2668.55 & 2370.21 & 298.342 & -810.55 \tabularnewline
49 & 2552 & 2778.92 & 2421.62 & 357.295 & -226.92 \tabularnewline
50 & 1843 & 2168.11 & 2411.46 & -243.345 & -325.113 \tabularnewline
51 & 2639 & 2066.41 & 2387.62 & -321.21 & 572.585 \tabularnewline
52 & 1495 & 1830.9 & 2341.46 & -510.554 & -335.905 \tabularnewline
53 & 2197 & 1534.39 & 2242.58 & -708.189 & 662.606 \tabularnewline
54 & 2861 & 2423.46 & 2151.79 & 271.67 & 437.538 \tabularnewline
55 & 1831 & 1303.99 & 2153.92 & -849.929 & 527.012 \tabularnewline
56 & 2516 & 2179.69 & 2157.21 & 22.4774 & 336.314 \tabularnewline
57 & 2136 & 2842.3 & 2114.67 & 727.628 & -706.295 \tabularnewline
58 & 2432 & 2822.72 & 2109.29 & 713.431 & -390.722 \tabularnewline
59 & 1623 & 2350.59 & 2108.21 & 242.384 & -727.592 \tabularnewline
60 & 1535 & 2318.51 & 2020.17 & 298.342 & -783.509 \tabularnewline
61 & 2926 & 2346.17 & 1988.88 & 357.295 & 579.83 \tabularnewline
62 & 1548 & 1787.11 & 2030.46 & -243.345 & -239.113 \tabularnewline
63 & 1913 & 1712 & 2033.21 & -321.21 & 201.002 \tabularnewline
64 & 2092 & 1556.24 & 2066.79 & -510.554 & 535.762 \tabularnewline
65 & 1574 & 1406.73 & 2114.92 & -708.189 & 167.273 \tabularnewline
66 & 1371 & 2438.63 & 2166.96 & 271.67 & -1067.63 \tabularnewline
67 & 2570 & 1370.15 & 2220.08 & -849.929 & 1199.85 \tabularnewline
68 & 2775 & 2235.14 & 2212.67 & 22.4774 & 539.856 \tabularnewline
69 & 1943 & 2912.84 & 2185.21 & 727.628 & -969.837 \tabularnewline
70 & 3431 & 2843.93 & 2130.5 & 713.431 & 587.069 \tabularnewline
71 & 1779 & 2324.76 & 2082.38 & 242.384 & -545.759 \tabularnewline
72 & 2628 & 2449.68 & 2151.33 & 298.342 & 178.325 \tabularnewline
73 & 3108 & 2527.13 & 2169.83 & 357.295 & 580.872 \tabularnewline
74 & 1188 & 1834.61 & 2077.96 & -243.345 & -646.613 \tabularnewline
75 & 1614 & 1769.87 & 2091.08 & -321.21 & -155.873 \tabularnewline
76 & 1078 & 1629.7 & 2140.25 & -510.554 & -551.696 \tabularnewline
77 & 1433 & 1445.69 & 2153.88 & -708.189 & -12.6858 \tabularnewline
78 & 3167 & 2360.42 & 2088.75 & 271.67 & 806.58 \tabularnewline
79 & 1218 & 1085.11 & 1935.04 & -849.929 & 132.887 \tabularnewline
80 & 1922 & 1940.31 & 1917.83 & 22.4774 & -18.3108 \tabularnewline
81 & 3111 & 2661.5 & 1933.88 & 727.628 & 449.497 \tabularnewline
82 & 3443 & 2637.1 & 1923.67 & 713.431 & 805.903 \tabularnewline
83 & 2094 & 2187.26 & 1944.87 & 242.384 & -93.2587 \tabularnewline
84 & 750 & 2201.3 & 1902.96 & 298.342 & -1451.3 \tabularnewline
85 & 1297 & 2209.3 & 1852 & 357.295 & -912.295 \tabularnewline
86 & 2586 & 1566.57 & 1809.92 & -243.345 & 1019.43 \tabularnewline
87 & 601 & 1415.08 & 1736.29 & -321.21 & -814.082 \tabularnewline
88 & 1846 & 1086.82 & 1597.38 & -510.554 & 759.179 \tabularnewline
89 & 1174 & 781.269 & 1489.46 & -708.189 & 392.731 \tabularnewline
90 & 2420 & 1784.34 & 1512.67 & 271.67 & 635.663 \tabularnewline
91 & 742 & 729.03 & 1578.96 & -849.929 & 12.9705 \tabularnewline
92 & 1388 & 1566.94 & 1544.46 & 22.4774 & -178.936 \tabularnewline
93 & 1878 & 2223.09 & 1495.46 & 727.628 & -345.087 \tabularnewline
94 & 1342 & 2221.35 & 1507.92 & 713.431 & -879.347 \tabularnewline
95 & 1605 & 1740.3 & 1497.92 & 242.384 & -135.3 \tabularnewline
96 & 1796 & 1747.34 & 1449 & 298.342 & 48.658 \tabularnewline
97 & 1842 & 1759.59 & 1402.29 & 357.295 & 82.4132 \tabularnewline
98 & 1213 & 1135.36 & 1378.71 & -243.345 & 77.6372 \tabularnewline
99 & 798 & 1025.62 & 1346.83 & -321.21 & -227.623 \tabularnewline
100 & 1948 & 854.28 & 1364.83 & -510.554 & 1093.72 \tabularnewline
101 & 832 & 704.019 & 1412.21 & -708.189 & 127.981 \tabularnewline
102 & 1588 & 1705.59 & 1433.92 & 271.67 & -117.587 \tabularnewline
103 & 453 & NA & NA & -849.929 & NA \tabularnewline
104 & 1111 & NA & NA & 22.4774 & NA \tabularnewline
105 & 1390 & NA & NA & 727.628 & NA \tabularnewline
106 & 2262 & NA & NA & 713.431 & NA \tabularnewline
107 & 1822 & NA & NA & 242.384 & NA \tabularnewline
108 & 2100 & NA & NA & 298.342 & NA \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301705&T=1

[TABLE]
[ROW][C]Classical Decomposition by Moving Averages[/C][/ROW]
[ROW][C]t[/C][C]Observations[/C][C]Fit[/C][C]Trend[/C][C]Seasonal[/C][C]Random[/C][/ROW]
[ROW][C]1[/C][C]3404[/C][C]NA[/C][C]NA[/C][C]357.295[/C][C]NA[/C][/ROW]
[ROW][C]2[/C][C]3425[/C][C]NA[/C][C]NA[/C][C]-243.345[/C][C]NA[/C][/ROW]
[ROW][C]3[/C][C]3631[/C][C]NA[/C][C]NA[/C][C]-321.21[/C][C]NA[/C][/ROW]
[ROW][C]4[/C][C]4141[/C][C]NA[/C][C]NA[/C][C]-510.554[/C][C]NA[/C][/ROW]
[ROW][C]5[/C][C]3238[/C][C]NA[/C][C]NA[/C][C]-708.189[/C][C]NA[/C][/ROW]
[ROW][C]6[/C][C]5390[/C][C]NA[/C][C]NA[/C][C]271.67[/C][C]NA[/C][/ROW]
[ROW][C]7[/C][C]1994[/C][C]2866.61[/C][C]3716.54[/C][C]-849.929[/C][C]-872.613[/C][/ROW]
[ROW][C]8[/C][C]4343[/C][C]3735.35[/C][C]3712.88[/C][C]22.4774[/C][C]607.648[/C][/ROW]
[ROW][C]9[/C][C]4424[/C][C]4467.3[/C][C]3739.67[/C][C]727.628[/C][C]-43.2951[/C][/ROW]
[ROW][C]10[/C][C]2762[/C][C]4416.1[/C][C]3702.67[/C][C]713.431[/C][C]-1654.1[/C][/ROW]
[ROW][C]11[/C][C]3504[/C][C]3856.93[/C][C]3614.54[/C][C]242.384[/C][C]-352.925[/C][/ROW]
[ROW][C]12[/C][C]4279[/C][C]3805.97[/C][C]3507.62[/C][C]298.342[/C][C]473.033[/C][/ROW]
[ROW][C]13[/C][C]3531[/C][C]3817.13[/C][C]3459.83[/C][C]357.295[/C][C]-286.128[/C][/ROW]
[ROW][C]14[/C][C]3210[/C][C]3254.65[/C][C]3498[/C][C]-243.345[/C][C]-44.6545[/C][/ROW]
[ROW][C]15[/C][C]4489[/C][C]3219.79[/C][C]3541[/C][C]-321.21[/C][C]1269.21[/C][/ROW]
[ROW][C]16[/C][C]2395[/C][C]3243.24[/C][C]3753.79[/C][C]-510.554[/C][C]-848.238[/C][/ROW]
[ROW][C]17[/C][C]2869[/C][C]3251.14[/C][C]3959.33[/C][C]-708.189[/C][C]-382.144[/C][/ROW]
[ROW][C]18[/C][C]3193[/C][C]4355.59[/C][C]4083.92[/C][C]271.67[/C][C]-1162.59[/C][/ROW]
[ROW][C]19[/C][C]3044[/C][C]3400.28[/C][C]4250.21[/C][C]-849.929[/C][C]-356.28[/C][/ROW]
[ROW][C]20[/C][C]4209[/C][C]4408.56[/C][C]4386.08[/C][C]22.4774[/C][C]-199.561[/C][/ROW]
[ROW][C]21[/C][C]5590[/C][C]5100.3[/C][C]4372.67[/C][C]727.628[/C][C]489.705[/C][/ROW]
[ROW][C]22[/C][C]6703[/C][C]5014.43[/C][C]4301[/C][C]713.431[/C][C]1688.57[/C][/ROW]
[ROW][C]23[/C][C]4496[/C][C]4525.3[/C][C]4282.92[/C][C]242.384[/C][C]-29.3003[/C][/ROW]
[ROW][C]24[/C][C]6277[/C][C]4698.84[/C][C]4400.5[/C][C]298.342[/C][C]1578.16[/C][/ROW]
[ROW][C]25[/C][C]5524[/C][C]4841.46[/C][C]4484.17[/C][C]357.295[/C][C]682.538[/C][/ROW]
[ROW][C]26[/C][C]4478[/C][C]4126.82[/C][C]4370.17[/C][C]-243.345[/C][C]351.179[/C][/ROW]
[ROW][C]27[/C][C]2899[/C][C]3992.91[/C][C]4314.12[/C][C]-321.21[/C][C]-1093.91[/C][/ROW]
[ROW][C]28[/C][C]2265[/C][C]3714.28[/C][C]4224.83[/C][C]-510.554[/C][C]-1449.28[/C][/ROW]
[ROW][C]29[/C][C]2565[/C][C]3429.02[/C][C]4137.21[/C][C]-708.189[/C][C]-864.019[/C][/ROW]
[ROW][C]30[/C][C]6319[/C][C]4346[/C][C]4074.33[/C][C]271.67[/C][C]1973[/C][/ROW]
[ROW][C]31[/C][C]1926[/C][C]3045.28[/C][C]3895.21[/C][C]-849.929[/C][C]-1119.28[/C][/ROW]
[ROW][C]32[/C][C]2591[/C][C]3742.77[/C][C]3720.29[/C][C]22.4774[/C][C]-1151.77[/C][/ROW]
[ROW][C]33[/C][C]5863[/C][C]4379.84[/C][C]3652.21[/C][C]727.628[/C][C]1483.16[/C][/ROW]
[ROW][C]34[/C][C]4287[/C][C]4406.47[/C][C]3693.04[/C][C]713.431[/C][C]-119.472[/C][/ROW]
[ROW][C]35[/C][C]4809[/C][C]3947.47[/C][C]3705.08[/C][C]242.384[/C][C]861.533[/C][/ROW]
[ROW][C]36[/C][C]4455[/C][C]3771.8[/C][C]3473.46[/C][C]298.342[/C][C]683.2[/C][/ROW]
[ROW][C]37[/C][C]3047[/C][C]3631.3[/C][C]3274[/C][C]357.295[/C][C]-584.295[/C][/ROW]
[ROW][C]38[/C][C]2757[/C][C]3033.74[/C][C]3277.08[/C][C]-243.345[/C][C]-276.738[/C][/ROW]
[ROW][C]39[/C][C]2986[/C][C]2821.29[/C][C]3142.5[/C][C]-321.21[/C][C]164.71[/C][/ROW]
[ROW][C]40[/C][C]3158[/C][C]2445.53[/C][C]2956.08[/C][C]-510.554[/C][C]712.47[/C][/ROW]
[ROW][C]41[/C][C]1961[/C][C]2136.73[/C][C]2844.92[/C][C]-708.189[/C][C]-175.727[/C][/ROW]
[ROW][C]42[/C][C]1364[/C][C]2952.96[/C][C]2681.29[/C][C]271.67[/C][C]-1588.96[/C][/ROW]
[ROW][C]43[/C][C]2094[/C][C]1702.53[/C][C]2552.46[/C][C]-849.929[/C][C]391.47[/C][/ROW]
[ROW][C]44[/C][C]2497[/C][C]2516.23[/C][C]2493.75[/C][C]22.4774[/C][C]-19.2274[/C][/ROW]
[ROW][C]45[/C][C]2727[/C][C]3168.84[/C][C]2441.21[/C][C]727.628[/C][C]-441.837[/C][/ROW]
[ROW][C]46[/C][C]2949[/C][C]3070.89[/C][C]2357.46[/C][C]713.431[/C][C]-121.889[/C][/ROW]
[ROW][C]47[/C][C]3479[/C][C]2540.38[/C][C]2298[/C][C]242.384[/C][C]938.616[/C][/ROW]
[ROW][C]48[/C][C]1858[/C][C]2668.55[/C][C]2370.21[/C][C]298.342[/C][C]-810.55[/C][/ROW]
[ROW][C]49[/C][C]2552[/C][C]2778.92[/C][C]2421.62[/C][C]357.295[/C][C]-226.92[/C][/ROW]
[ROW][C]50[/C][C]1843[/C][C]2168.11[/C][C]2411.46[/C][C]-243.345[/C][C]-325.113[/C][/ROW]
[ROW][C]51[/C][C]2639[/C][C]2066.41[/C][C]2387.62[/C][C]-321.21[/C][C]572.585[/C][/ROW]
[ROW][C]52[/C][C]1495[/C][C]1830.9[/C][C]2341.46[/C][C]-510.554[/C][C]-335.905[/C][/ROW]
[ROW][C]53[/C][C]2197[/C][C]1534.39[/C][C]2242.58[/C][C]-708.189[/C][C]662.606[/C][/ROW]
[ROW][C]54[/C][C]2861[/C][C]2423.46[/C][C]2151.79[/C][C]271.67[/C][C]437.538[/C][/ROW]
[ROW][C]55[/C][C]1831[/C][C]1303.99[/C][C]2153.92[/C][C]-849.929[/C][C]527.012[/C][/ROW]
[ROW][C]56[/C][C]2516[/C][C]2179.69[/C][C]2157.21[/C][C]22.4774[/C][C]336.314[/C][/ROW]
[ROW][C]57[/C][C]2136[/C][C]2842.3[/C][C]2114.67[/C][C]727.628[/C][C]-706.295[/C][/ROW]
[ROW][C]58[/C][C]2432[/C][C]2822.72[/C][C]2109.29[/C][C]713.431[/C][C]-390.722[/C][/ROW]
[ROW][C]59[/C][C]1623[/C][C]2350.59[/C][C]2108.21[/C][C]242.384[/C][C]-727.592[/C][/ROW]
[ROW][C]60[/C][C]1535[/C][C]2318.51[/C][C]2020.17[/C][C]298.342[/C][C]-783.509[/C][/ROW]
[ROW][C]61[/C][C]2926[/C][C]2346.17[/C][C]1988.88[/C][C]357.295[/C][C]579.83[/C][/ROW]
[ROW][C]62[/C][C]1548[/C][C]1787.11[/C][C]2030.46[/C][C]-243.345[/C][C]-239.113[/C][/ROW]
[ROW][C]63[/C][C]1913[/C][C]1712[/C][C]2033.21[/C][C]-321.21[/C][C]201.002[/C][/ROW]
[ROW][C]64[/C][C]2092[/C][C]1556.24[/C][C]2066.79[/C][C]-510.554[/C][C]535.762[/C][/ROW]
[ROW][C]65[/C][C]1574[/C][C]1406.73[/C][C]2114.92[/C][C]-708.189[/C][C]167.273[/C][/ROW]
[ROW][C]66[/C][C]1371[/C][C]2438.63[/C][C]2166.96[/C][C]271.67[/C][C]-1067.63[/C][/ROW]
[ROW][C]67[/C][C]2570[/C][C]1370.15[/C][C]2220.08[/C][C]-849.929[/C][C]1199.85[/C][/ROW]
[ROW][C]68[/C][C]2775[/C][C]2235.14[/C][C]2212.67[/C][C]22.4774[/C][C]539.856[/C][/ROW]
[ROW][C]69[/C][C]1943[/C][C]2912.84[/C][C]2185.21[/C][C]727.628[/C][C]-969.837[/C][/ROW]
[ROW][C]70[/C][C]3431[/C][C]2843.93[/C][C]2130.5[/C][C]713.431[/C][C]587.069[/C][/ROW]
[ROW][C]71[/C][C]1779[/C][C]2324.76[/C][C]2082.38[/C][C]242.384[/C][C]-545.759[/C][/ROW]
[ROW][C]72[/C][C]2628[/C][C]2449.68[/C][C]2151.33[/C][C]298.342[/C][C]178.325[/C][/ROW]
[ROW][C]73[/C][C]3108[/C][C]2527.13[/C][C]2169.83[/C][C]357.295[/C][C]580.872[/C][/ROW]
[ROW][C]74[/C][C]1188[/C][C]1834.61[/C][C]2077.96[/C][C]-243.345[/C][C]-646.613[/C][/ROW]
[ROW][C]75[/C][C]1614[/C][C]1769.87[/C][C]2091.08[/C][C]-321.21[/C][C]-155.873[/C][/ROW]
[ROW][C]76[/C][C]1078[/C][C]1629.7[/C][C]2140.25[/C][C]-510.554[/C][C]-551.696[/C][/ROW]
[ROW][C]77[/C][C]1433[/C][C]1445.69[/C][C]2153.88[/C][C]-708.189[/C][C]-12.6858[/C][/ROW]
[ROW][C]78[/C][C]3167[/C][C]2360.42[/C][C]2088.75[/C][C]271.67[/C][C]806.58[/C][/ROW]
[ROW][C]79[/C][C]1218[/C][C]1085.11[/C][C]1935.04[/C][C]-849.929[/C][C]132.887[/C][/ROW]
[ROW][C]80[/C][C]1922[/C][C]1940.31[/C][C]1917.83[/C][C]22.4774[/C][C]-18.3108[/C][/ROW]
[ROW][C]81[/C][C]3111[/C][C]2661.5[/C][C]1933.88[/C][C]727.628[/C][C]449.497[/C][/ROW]
[ROW][C]82[/C][C]3443[/C][C]2637.1[/C][C]1923.67[/C][C]713.431[/C][C]805.903[/C][/ROW]
[ROW][C]83[/C][C]2094[/C][C]2187.26[/C][C]1944.87[/C][C]242.384[/C][C]-93.2587[/C][/ROW]
[ROW][C]84[/C][C]750[/C][C]2201.3[/C][C]1902.96[/C][C]298.342[/C][C]-1451.3[/C][/ROW]
[ROW][C]85[/C][C]1297[/C][C]2209.3[/C][C]1852[/C][C]357.295[/C][C]-912.295[/C][/ROW]
[ROW][C]86[/C][C]2586[/C][C]1566.57[/C][C]1809.92[/C][C]-243.345[/C][C]1019.43[/C][/ROW]
[ROW][C]87[/C][C]601[/C][C]1415.08[/C][C]1736.29[/C][C]-321.21[/C][C]-814.082[/C][/ROW]
[ROW][C]88[/C][C]1846[/C][C]1086.82[/C][C]1597.38[/C][C]-510.554[/C][C]759.179[/C][/ROW]
[ROW][C]89[/C][C]1174[/C][C]781.269[/C][C]1489.46[/C][C]-708.189[/C][C]392.731[/C][/ROW]
[ROW][C]90[/C][C]2420[/C][C]1784.34[/C][C]1512.67[/C][C]271.67[/C][C]635.663[/C][/ROW]
[ROW][C]91[/C][C]742[/C][C]729.03[/C][C]1578.96[/C][C]-849.929[/C][C]12.9705[/C][/ROW]
[ROW][C]92[/C][C]1388[/C][C]1566.94[/C][C]1544.46[/C][C]22.4774[/C][C]-178.936[/C][/ROW]
[ROW][C]93[/C][C]1878[/C][C]2223.09[/C][C]1495.46[/C][C]727.628[/C][C]-345.087[/C][/ROW]
[ROW][C]94[/C][C]1342[/C][C]2221.35[/C][C]1507.92[/C][C]713.431[/C][C]-879.347[/C][/ROW]
[ROW][C]95[/C][C]1605[/C][C]1740.3[/C][C]1497.92[/C][C]242.384[/C][C]-135.3[/C][/ROW]
[ROW][C]96[/C][C]1796[/C][C]1747.34[/C][C]1449[/C][C]298.342[/C][C]48.658[/C][/ROW]
[ROW][C]97[/C][C]1842[/C][C]1759.59[/C][C]1402.29[/C][C]357.295[/C][C]82.4132[/C][/ROW]
[ROW][C]98[/C][C]1213[/C][C]1135.36[/C][C]1378.71[/C][C]-243.345[/C][C]77.6372[/C][/ROW]
[ROW][C]99[/C][C]798[/C][C]1025.62[/C][C]1346.83[/C][C]-321.21[/C][C]-227.623[/C][/ROW]
[ROW][C]100[/C][C]1948[/C][C]854.28[/C][C]1364.83[/C][C]-510.554[/C][C]1093.72[/C][/ROW]
[ROW][C]101[/C][C]832[/C][C]704.019[/C][C]1412.21[/C][C]-708.189[/C][C]127.981[/C][/ROW]
[ROW][C]102[/C][C]1588[/C][C]1705.59[/C][C]1433.92[/C][C]271.67[/C][C]-117.587[/C][/ROW]
[ROW][C]103[/C][C]453[/C][C]NA[/C][C]NA[/C][C]-849.929[/C][C]NA[/C][/ROW]
[ROW][C]104[/C][C]1111[/C][C]NA[/C][C]NA[/C][C]22.4774[/C][C]NA[/C][/ROW]
[ROW][C]105[/C][C]1390[/C][C]NA[/C][C]NA[/C][C]727.628[/C][C]NA[/C][/ROW]
[ROW][C]106[/C][C]2262[/C][C]NA[/C][C]NA[/C][C]713.431[/C][C]NA[/C][/ROW]
[ROW][C]107[/C][C]1822[/C][C]NA[/C][C]NA[/C][C]242.384[/C][C]NA[/C][/ROW]
[ROW][C]108[/C][C]2100[/C][C]NA[/C][C]NA[/C][C]298.342[/C][C]NA[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301705&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301705&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
13404NANA357.295NA
23425NANA-243.345NA
33631NANA-321.21NA
44141NANA-510.554NA
53238NANA-708.189NA
65390NANA271.67NA
719942866.613716.54-849.929-872.613
843433735.353712.8822.4774607.648
944244467.33739.67727.628-43.2951
1027624416.13702.67713.431-1654.1
1135043856.933614.54242.384-352.925
1242793805.973507.62298.342473.033
1335313817.133459.83357.295-286.128
1432103254.653498-243.345-44.6545
1544893219.793541-321.211269.21
1623953243.243753.79-510.554-848.238
1728693251.143959.33-708.189-382.144
1831934355.594083.92271.67-1162.59
1930443400.284250.21-849.929-356.28
2042094408.564386.0822.4774-199.561
2155905100.34372.67727.628489.705
2267035014.434301713.4311688.57
2344964525.34282.92242.384-29.3003
2462774698.844400.5298.3421578.16
2555244841.464484.17357.295682.538
2644784126.824370.17-243.345351.179
2728993992.914314.12-321.21-1093.91
2822653714.284224.83-510.554-1449.28
2925653429.024137.21-708.189-864.019
30631943464074.33271.671973
3119263045.283895.21-849.929-1119.28
3225913742.773720.2922.4774-1151.77
3358634379.843652.21727.6281483.16
3442874406.473693.04713.431-119.472
3548093947.473705.08242.384861.533
3644553771.83473.46298.342683.2
3730473631.33274357.295-584.295
3827573033.743277.08-243.345-276.738
3929862821.293142.5-321.21164.71
4031582445.532956.08-510.554712.47
4119612136.732844.92-708.189-175.727
4213642952.962681.29271.67-1588.96
4320941702.532552.46-849.929391.47
4424972516.232493.7522.4774-19.2274
4527273168.842441.21727.628-441.837
4629493070.892357.46713.431-121.889
4734792540.382298242.384938.616
4818582668.552370.21298.342-810.55
4925522778.922421.62357.295-226.92
5018432168.112411.46-243.345-325.113
5126392066.412387.62-321.21572.585
5214951830.92341.46-510.554-335.905
5321971534.392242.58-708.189662.606
5428612423.462151.79271.67437.538
5518311303.992153.92-849.929527.012
5625162179.692157.2122.4774336.314
5721362842.32114.67727.628-706.295
5824322822.722109.29713.431-390.722
5916232350.592108.21242.384-727.592
6015352318.512020.17298.342-783.509
6129262346.171988.88357.295579.83
6215481787.112030.46-243.345-239.113
63191317122033.21-321.21201.002
6420921556.242066.79-510.554535.762
6515741406.732114.92-708.189167.273
6613712438.632166.96271.67-1067.63
6725701370.152220.08-849.9291199.85
6827752235.142212.6722.4774539.856
6919432912.842185.21727.628-969.837
7034312843.932130.5713.431587.069
7117792324.762082.38242.384-545.759
7226282449.682151.33298.342178.325
7331082527.132169.83357.295580.872
7411881834.612077.96-243.345-646.613
7516141769.872091.08-321.21-155.873
7610781629.72140.25-510.554-551.696
7714331445.692153.88-708.189-12.6858
7831672360.422088.75271.67806.58
7912181085.111935.04-849.929132.887
8019221940.311917.8322.4774-18.3108
8131112661.51933.88727.628449.497
8234432637.11923.67713.431805.903
8320942187.261944.87242.384-93.2587
847502201.31902.96298.342-1451.3
8512972209.31852357.295-912.295
8625861566.571809.92-243.3451019.43
876011415.081736.29-321.21-814.082
8818461086.821597.38-510.554759.179
891174781.2691489.46-708.189392.731
9024201784.341512.67271.67635.663
91742729.031578.96-849.92912.9705
9213881566.941544.4622.4774-178.936
9318782223.091495.46727.628-345.087
9413422221.351507.92713.431-879.347
9516051740.31497.92242.384-135.3
9617961747.341449298.34248.658
9718421759.591402.29357.29582.4132
9812131135.361378.71-243.34577.6372
997981025.621346.83-321.21-227.623
1001948854.281364.83-510.5541093.72
101832704.0191412.21-708.189127.981
10215881705.591433.92271.67-117.587
103453NANA-849.929NA
1041111NANA22.4774NA
1051390NANA727.628NA
1062262NANA713.431NA
1071822NANA242.384NA
1082100NANA298.342NA



Parameters (Session):
par1 = additive ; par2 = 12 ;
Parameters (R input):
par1 = additive ; par2 = 12 ;
R code (references can be found in the software module):
par2 <- as.numeric(par2)
x <- ts(x,freq=par2)
m <- decompose(x,type=par1)
m$figure
bitmap(file='test1.png')
plot(m)
dev.off()
mylagmax <- length(x)/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(as.numeric(m$trend),na.action=na.pass,lag.max = mylagmax,main='Trend')
acf(as.numeric(m$seasonal),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(as.numeric(m$random),na.action=na.pass,lag.max = mylagmax,main='Random')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
spectrum(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
spectrum(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
cpgram(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
cpgram(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Classical Decomposition by Moving Averages',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observations',header=TRUE)
a<-table.element(a,'Fit',header=TRUE)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Random',header=TRUE)
a<-table.row.end(a)
for (i in 1:length(m$trend)) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
if (par1 == 'additive') a<-table.element(a,signif(m$trend[i]+m$seasonal[i],6)) else a<-table.element(a,signif(m$trend[i]*m$seasonal[i],6))
a<-table.element(a,signif(m$trend[i],6))
a<-table.element(a,signif(m$seasonal[i],6))
a<-table.element(a,signif(m$random[i],6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')