Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_structuraltimeseries.wasp
Title produced by softwareStructural Time Series Models
Date of computationTue, 20 Dec 2016 13:27:47 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/20/t1482236942gmyrai0q4vznvci.htm/, Retrieved Fri, 01 Nov 2024 03:37:31 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=301632, Retrieved Fri, 01 Nov 2024 03:37:31 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact110
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Structural Time Series Models] [] [2016-12-20 12:27:47] [361c8dad91b3f1ef2e651cd04783c23b] [Current]
Feedback Forum

Post a new message
Dataseries X:
2755
2765
3000
2890
2940
3290
2815
3035
3070
3040
2685
2540
3090
2995
3440
3335
3205
3285
2790
3225
3360
3275
3505
3185
3470
3510
3840
3605
3655
3555
3140
3380
3255
3460
3245
3120
3265
3220
3140
3050
3300
2950
2630
2795
2840
2945
2790
2605
4590
4230
4245
4300
4475
3910
4100
3500
4390
3550
3865
3715
3310
3945
5050
4350
4060
4345
4360
4915
4650
4805
4775
4220
3975
3820
5515
4895
5535
4230
3695
5590
5000
4875
4360
4405
4500
4070
4800
4080
4850
4105
3805
5060
4060
4600
4635
3900
4120
3960
4400
3700
3970
4550
5140
5000
3650
4300
3650
3355
4000
3450
3295
3390
3415
3440
3680
3900
3965
4295
4210
4100
4690
3860
4250
4495
3800
3845




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time4 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301632&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]4 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=301632&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301632&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R ServerBig Analytics Cloud Computing Center







Structural Time Series Model -- Interpolation
tObservedLevelSlopeSeasonalStand. Residuals
127552755000
227652760.055305146370.4523339090618970.590758807471280.0209441710409316
330002872.676944538857.518737663079913.45086949805340.523777838362452
428902882.280054185247.613962211029895.405718522761290.0103708473539649
529402908.7863961798.292234087523399.354215159725690.0967913245703246
632903077.826402748913.166294721158122.28802671537870.835717932219537
728152965.946593003389.78516200660732-1.59397110569899-0.655183192465424
830352996.0336874651310.293042303452814.56795864778140.106832738360742
930703029.8528222642410.850334635697111.77161745655470.124109120924879
1030403035.9154791254710.74142598400359.87207475217228-0.0252954884274238
1126852884.21197422117.16321934918343-2.54763240272269-0.859127837187555
1225402733.325109915733.77539264111122-1.77523179767184-0.836472732379252
1330902846.05302925034-7.0303770714700490.71762965822290.775087009768186
1429952922.28290465837-4.031648736478-6.160975915189030.369104430374962
1534403155.048242627712.7557140667336130.84995125785641.15710598360729
1633353239.907311586964.507345727310050.8381787907077080.421786321707903
1732053229.439865738394.25265479517295-6.76796685809037-0.0785060187129748
1832853247.591529276174.4548886723951320.80506629274090.0735159195396738
1927903057.432438127941.89773728460449-33.5859317416075-1.03373172701699
2032253124.246725200972.6967227173648922.51428278174830.345563156106393
2133603226.500509749093.8711468838031713.31282322999770.530582072930713
2232753247.388167590634.066216787460737.049649000497780.0907492678756883
2335053359.831478199155.2815104845972214.12882923842740.578219239333096
2431853293.199053178044.55878391088019-21.1000941911748-0.383912304218851
2534703367.130860485481.5224016321893612.52454355776510.42754373497045
2635103444.686752506943.17998977505002-14.60073626136660.366664873085102
2738403610.886650203736.341624195332348.64422278480720.821870829539248
2836053614.701867780946.30461368214972-6.77946755516894-0.0131650274318902
2936553637.869691201096.50141139831524-2.753595811690360.0891270735378891
3035553590.939862264715.968397563757427.6008879405783-0.28416142328493
3131403416.6703723864.34309220480883-61.4581192828317-0.961376086203246
3233803391.535287438854.0934863115520823.7358699549146-0.157468642945348
3332553330.058304249713.559514586465483.48510673213183-0.350548386960123
3434603385.670704244853.972985724910811.93848639317740.278408105920196
3532453322.103007758333.450554412605123.8910013031354-0.361355423903261
3631203248.609962692292.99647827465946-36.1093823268408-0.412025594187607
3732653257.879063341012.83170181182552-0.7914772324139930.0367081555963671
3832203256.517333249472.76936390718226-31.9191702290948-0.0210164041306559
3931403188.470082577661.7103145044266630.7866912280191-0.362302626303826
4030503134.514561945421.0653937773683-20.1719580415602-0.291913096445653
4133003204.003381670571.6969388654197715.67683200888960.362951830483317
4229503083.271345438650.73437063319883711.4464604037687-0.652736534901246
4326302916.25570131337-0.455685089986559-87.3112367201683-0.896507538229563
4427952849.17537370363-0.89957348514621824.969736646905-0.356488711717502
4528402845.12468563927-0.919794162447546-1.37810821531296-0.0168714035941272
4629452880.289121815-0.69380071111676321.78607560154650.19326959897581
4727902840.18298703838-0.929831873785997-3.27389937593978-0.211154029846526
4826052755.78730915282-1.2393976285917-51.1455102642265-0.447714525459403
4945903444.24722587838-13.3266841282528292.723202072623.92762741148829
5042303808.12869366563-9.2507078447816-0.7781496599341861.9320109651438
5142453992.24054594209-6.8789938825288735.14831953273630.998153776004594
5243004140.39082380877-5.35490990899522-19.2098319827280.815846499848134
5344754272.54926613221-4.2736039875016441.7186409950150.730874476935846
5439104113.09221958456-5.30915156562785-20.588309040509-0.828513028122279
5541004134.23422775083-5.1503861667467-65.43282892580850.141519041395965
5635003859.41872372172-6.6689354556719-40.8937524773134-1.44427273111014
5743904069.89459371682-5.4909431968058363.42189642548181.16362765653377
5835503846.92656364722-6.63885645683623-39.7307986302586-1.16578795502363
5938653843.81576170941-6.6215860675317417.00913353933270.0189174663177029
6037153844.47567426786-6.60409786965307-138.1206018428610.0391024001783912
6133103556.01311492801-3.1451210587411997.8063655901564-1.57835191245377
6239453722.16450288488-1.7556915129800430.78538651012580.878910972719122
6350504279.229719253624.05719901163148139.4104027040272.90301619588526
6443504342.126264354594.56726792385768-59.8747792721720.310355359714913
6540604202.735085322843.560370201683324.9679240083183-0.766046058913059
6643454264.160385410383.9029849635959713.04801529889140.309199862559182
6743604317.139694383894.16338732621593-14.79041231641950.262752223029942
6849154591.503346655765.505866532757535.664722653916971.44803569867085
6946504585.766762963725.4521265894045277.4667946252847-0.0602803060045769
7048054691.239568442815.91389082110388-4.02933759269410.536459922409987
7147754719.985158103686.0079208944153428.10657633662690.122492626970568
7242204562.777810011335.74771496735287-149.790356097754-0.877171177402744
7339754325.018518945287.8908062361212-55.9993374942822-1.3483806016355
7438204132.028673871036.59353899589689-82.4141551007821-1.05216518001339
7555154649.9137276803111.1966435334761285.5112548775742.66909056005051
7648954788.4062020892912.1913041817948-39.81342035560710.672574538911006
7755355099.6805634591114.101287414702687.74825435398581.59278173636652
7842304756.3209063482412.169486056546-108.695856551941-1.91115970716921
7936954334.3443579374710.0744100347038-130.81748768712-2.32551052644305
8055904835.6802086578612.2880234987851178.1575422062782.63388150640542
8150004897.3977641772112.501608844573844.59096132171980.26514378115816
8248754898.3151308775812.4538129621682-9.71304006277447-0.062157121907818
8343604659.4228800581411.5670296583083-4.04635520645465-1.34902944250061
8444054599.8566089537311.488991232-110.996902557403-0.382498442978631
8545004586.2123598911811.6492526129792-56.0991918552988-0.138084131566697
8640704445.8933239863710.8526709568005-201.335993500234-0.800780256617032
8748004485.6959773368311.0814014820884281.3897885768650.151722379283219
8840804356.2896562864110.078891003157-114.792926851073-0.743291913296155
8948504500.8331555275510.8756896821217193.1642612266750.716513231213196
9041054371.9008583488310.1731420323805-103.882390908108-0.74777520614226
9138054225.272714606369.47163030123416-236.981063265846-0.840198717841445
9250604498.4151478080810.5691161058829252.9826334567721.41412515860971
9340604313.569717240639.79327242159545-24.7002493554709-1.04855251559805
9446004420.5025390711810.156233987472765.66853099687960.521379696018096
9546354514.8018989959210.414088253005321.51056691390370.451755464018938
9639004314.7834757875810.2457294996591-167.238500348743-1.13193042138879
9741204246.557400707310.6084133159167-33.09298012722-0.428703978032426
9839604214.0917849707510.4199119032715-204.453034574457-0.227929123292227
9944004170.8913037856110.0441776775216290.236554092339-0.281929787645082
10037004034.32956277369.08081753073232-165.809274919188-0.776578255723755
10139703919.283882247938.39134579430847194.563590206235-0.661727182119662
10245504213.608583316389.744063438489693.450101421837391.52978067102294
10351404719.2668738948611.8284808590571-158.1293578282682.65797762894882
10450004745.1696384718711.8832829591201238.3814181652740.075502784572158
10536504324.1881493426310.2870871445431-167.938919518299-2.32324868908221
10643004282.7102412392210.110355579025677.863865153237-0.277907829831607
10736504003.48458972779.3306639040891-14.6028352530757-1.55379448098621
10833553795.30128064139.19283902741449-184.836251397004-1.17025492099277
10940003880.912230541728.9390815670952828.48655887691130.415757487227271
11034503786.742824924328.55257538453145-217.652211188592-0.547242910705515
11132953453.685042662726.41093847500209231.701131268361-1.8010362565647
11233903484.538883447236.55967813263443-122.6427558008910.129612058745619
11334153403.757268841916.10194691718686112.388355245925-0.465802525354759
11434403450.510964643856.28452489285007-57.79972551523250.217540594066967
11536803613.051848390486.90733601117588-115.2582210274930.837663227530892
11639003617.45872547626.89814671560257285.460666065202-0.0134166838862134
11739653828.42121229227.60230248682878-101.8451480399131.0954693478298
11842953980.325528564278.05551007162811145.9785336889240.77485930389121
11942104078.983888294168.2727907877153625.00136352871730.486651168787205
12041004175.132260208338.32131570548094-178.213952255070.47282481149524
12146904369.403757775477.88648195480896100.9229840081481.00855408671598
12238604239.1432195257.43255243865148-219.329340672566-0.734810165748464
12342504148.953443021586.88079235071993212.848312978088-0.515866609021305
12444954336.642403005667.90396052567612-49.6277610626870.95968774229995
12538004083.593892505256.6081075426305818.4741808497584-1.39217524868227
12638454014.938916214826.28538508875714-82.448108635567-0.402829987649169

\begin{tabular}{lllllllll}
\hline
Structural Time Series Model -- Interpolation \tabularnewline
t & Observed & Level & Slope & Seasonal & Stand. Residuals \tabularnewline
1 & 2755 & 2755 & 0 & 0 & 0 \tabularnewline
2 & 2765 & 2760.05530514637 & 0.452333909061897 & 0.59075880747128 & 0.0209441710409316 \tabularnewline
3 & 3000 & 2872.67694453885 & 7.5187376630799 & 13.4508694980534 & 0.523777838362452 \tabularnewline
4 & 2890 & 2882.28005418524 & 7.61396221102989 & 5.40571852276129 & 0.0103708473539649 \tabularnewline
5 & 2940 & 2908.786396179 & 8.29223408752339 & 9.35421515972569 & 0.0967913245703246 \tabularnewline
6 & 3290 & 3077.8264027489 & 13.1662947211581 & 22.2880267153787 & 0.835717932219537 \tabularnewline
7 & 2815 & 2965.94659300338 & 9.78516200660732 & -1.59397110569899 & -0.655183192465424 \tabularnewline
8 & 3035 & 2996.03368746513 & 10.2930423034528 & 14.5679586477814 & 0.106832738360742 \tabularnewline
9 & 3070 & 3029.85282226424 & 10.8503346356971 & 11.7716174565547 & 0.124109120924879 \tabularnewline
10 & 3040 & 3035.91547912547 & 10.7414259840035 & 9.87207475217228 & -0.0252954884274238 \tabularnewline
11 & 2685 & 2884.2119742211 & 7.16321934918343 & -2.54763240272269 & -0.859127837187555 \tabularnewline
12 & 2540 & 2733.32510991573 & 3.77539264111122 & -1.77523179767184 & -0.836472732379252 \tabularnewline
13 & 3090 & 2846.05302925034 & -7.03037707147004 & 90.7176296582229 & 0.775087009768186 \tabularnewline
14 & 2995 & 2922.28290465837 & -4.031648736478 & -6.16097591518903 & 0.369104430374962 \tabularnewline
15 & 3440 & 3155.04824262771 & 2.75571406673361 & 30.8499512578564 & 1.15710598360729 \tabularnewline
16 & 3335 & 3239.90731158696 & 4.50734572731005 & 0.838178790707708 & 0.421786321707903 \tabularnewline
17 & 3205 & 3229.43986573839 & 4.25265479517295 & -6.76796685809037 & -0.0785060187129748 \tabularnewline
18 & 3285 & 3247.59152927617 & 4.45488867239513 & 20.8050662927409 & 0.0735159195396738 \tabularnewline
19 & 2790 & 3057.43243812794 & 1.89773728460449 & -33.5859317416075 & -1.03373172701699 \tabularnewline
20 & 3225 & 3124.24672520097 & 2.69672271736489 & 22.5142827817483 & 0.345563156106393 \tabularnewline
21 & 3360 & 3226.50050974909 & 3.87114688380317 & 13.3128232299977 & 0.530582072930713 \tabularnewline
22 & 3275 & 3247.38816759063 & 4.06621678746073 & 7.04964900049778 & 0.0907492678756883 \tabularnewline
23 & 3505 & 3359.83147819915 & 5.28151048459722 & 14.1288292384274 & 0.578219239333096 \tabularnewline
24 & 3185 & 3293.19905317804 & 4.55878391088019 & -21.1000941911748 & -0.383912304218851 \tabularnewline
25 & 3470 & 3367.13086048548 & 1.52240163218936 & 12.5245435577651 & 0.42754373497045 \tabularnewline
26 & 3510 & 3444.68675250694 & 3.17998977505002 & -14.6007362613666 & 0.366664873085102 \tabularnewline
27 & 3840 & 3610.88665020373 & 6.3416241953323 & 48.6442227848072 & 0.821870829539248 \tabularnewline
28 & 3605 & 3614.70186778094 & 6.30461368214972 & -6.77946755516894 & -0.0131650274318902 \tabularnewline
29 & 3655 & 3637.86969120109 & 6.50141139831524 & -2.75359581169036 & 0.0891270735378891 \tabularnewline
30 & 3555 & 3590.93986226471 & 5.9683975637574 & 27.6008879405783 & -0.28416142328493 \tabularnewline
31 & 3140 & 3416.670372386 & 4.34309220480883 & -61.4581192828317 & -0.961376086203246 \tabularnewline
32 & 3380 & 3391.53528743885 & 4.09348631155208 & 23.7358699549146 & -0.157468642945348 \tabularnewline
33 & 3255 & 3330.05830424971 & 3.55951458646548 & 3.48510673213183 & -0.350548386960123 \tabularnewline
34 & 3460 & 3385.67070424485 & 3.9729857249108 & 11.9384863931774 & 0.278408105920196 \tabularnewline
35 & 3245 & 3322.10300775833 & 3.45055441260512 & 3.8910013031354 & -0.361355423903261 \tabularnewline
36 & 3120 & 3248.60996269229 & 2.99647827465946 & -36.1093823268408 & -0.412025594187607 \tabularnewline
37 & 3265 & 3257.87906334101 & 2.83170181182552 & -0.791477232413993 & 0.0367081555963671 \tabularnewline
38 & 3220 & 3256.51733324947 & 2.76936390718226 & -31.9191702290948 & -0.0210164041306559 \tabularnewline
39 & 3140 & 3188.47008257766 & 1.71031450442666 & 30.7866912280191 & -0.362302626303826 \tabularnewline
40 & 3050 & 3134.51456194542 & 1.0653937773683 & -20.1719580415602 & -0.291913096445653 \tabularnewline
41 & 3300 & 3204.00338167057 & 1.69693886541977 & 15.6768320088896 & 0.362951830483317 \tabularnewline
42 & 2950 & 3083.27134543865 & 0.734370633198837 & 11.4464604037687 & -0.652736534901246 \tabularnewline
43 & 2630 & 2916.25570131337 & -0.455685089986559 & -87.3112367201683 & -0.896507538229563 \tabularnewline
44 & 2795 & 2849.17537370363 & -0.899573485146218 & 24.969736646905 & -0.356488711717502 \tabularnewline
45 & 2840 & 2845.12468563927 & -0.919794162447546 & -1.37810821531296 & -0.0168714035941272 \tabularnewline
46 & 2945 & 2880.289121815 & -0.693800711116763 & 21.7860756015465 & 0.19326959897581 \tabularnewline
47 & 2790 & 2840.18298703838 & -0.929831873785997 & -3.27389937593978 & -0.211154029846526 \tabularnewline
48 & 2605 & 2755.78730915282 & -1.2393976285917 & -51.1455102642265 & -0.447714525459403 \tabularnewline
49 & 4590 & 3444.24722587838 & -13.3266841282528 & 292.72320207262 & 3.92762741148829 \tabularnewline
50 & 4230 & 3808.12869366563 & -9.2507078447816 & -0.778149659934186 & 1.9320109651438 \tabularnewline
51 & 4245 & 3992.24054594209 & -6.87899388252887 & 35.1483195327363 & 0.998153776004594 \tabularnewline
52 & 4300 & 4140.39082380877 & -5.35490990899522 & -19.209831982728 & 0.815846499848134 \tabularnewline
53 & 4475 & 4272.54926613221 & -4.27360398750164 & 41.718640995015 & 0.730874476935846 \tabularnewline
54 & 3910 & 4113.09221958456 & -5.30915156562785 & -20.588309040509 & -0.828513028122279 \tabularnewline
55 & 4100 & 4134.23422775083 & -5.1503861667467 & -65.4328289258085 & 0.141519041395965 \tabularnewline
56 & 3500 & 3859.41872372172 & -6.6689354556719 & -40.8937524773134 & -1.44427273111014 \tabularnewline
57 & 4390 & 4069.89459371682 & -5.49094319680583 & 63.4218964254818 & 1.16362765653377 \tabularnewline
58 & 3550 & 3846.92656364722 & -6.63885645683623 & -39.7307986302586 & -1.16578795502363 \tabularnewline
59 & 3865 & 3843.81576170941 & -6.62158606753174 & 17.0091335393327 & 0.0189174663177029 \tabularnewline
60 & 3715 & 3844.47567426786 & -6.60409786965307 & -138.120601842861 & 0.0391024001783912 \tabularnewline
61 & 3310 & 3556.01311492801 & -3.14512105874119 & 97.8063655901564 & -1.57835191245377 \tabularnewline
62 & 3945 & 3722.16450288488 & -1.75569151298004 & 30.7853865101258 & 0.878910972719122 \tabularnewline
63 & 5050 & 4279.22971925362 & 4.05719901163148 & 139.410402704027 & 2.90301619588526 \tabularnewline
64 & 4350 & 4342.12626435459 & 4.56726792385768 & -59.874779272172 & 0.310355359714913 \tabularnewline
65 & 4060 & 4202.73508532284 & 3.5603702016833 & 24.9679240083183 & -0.766046058913059 \tabularnewline
66 & 4345 & 4264.16038541038 & 3.90298496359597 & 13.0480152988914 & 0.309199862559182 \tabularnewline
67 & 4360 & 4317.13969438389 & 4.16338732621593 & -14.7904123164195 & 0.262752223029942 \tabularnewline
68 & 4915 & 4591.50334665576 & 5.50586653275753 & 5.66472265391697 & 1.44803569867085 \tabularnewline
69 & 4650 & 4585.76676296372 & 5.45212658940452 & 77.4667946252847 & -0.0602803060045769 \tabularnewline
70 & 4805 & 4691.23956844281 & 5.91389082110388 & -4.0293375926941 & 0.536459922409987 \tabularnewline
71 & 4775 & 4719.98515810368 & 6.00792089441534 & 28.1065763366269 & 0.122492626970568 \tabularnewline
72 & 4220 & 4562.77781001133 & 5.74771496735287 & -149.790356097754 & -0.877171177402744 \tabularnewline
73 & 3975 & 4325.01851894528 & 7.8908062361212 & -55.9993374942822 & -1.3483806016355 \tabularnewline
74 & 3820 & 4132.02867387103 & 6.59353899589689 & -82.4141551007821 & -1.05216518001339 \tabularnewline
75 & 5515 & 4649.91372768031 & 11.1966435334761 & 285.511254877574 & 2.66909056005051 \tabularnewline
76 & 4895 & 4788.40620208929 & 12.1913041817948 & -39.8134203556071 & 0.672574538911006 \tabularnewline
77 & 5535 & 5099.68056345911 & 14.1012874147026 & 87.7482543539858 & 1.59278173636652 \tabularnewline
78 & 4230 & 4756.32090634824 & 12.169486056546 & -108.695856551941 & -1.91115970716921 \tabularnewline
79 & 3695 & 4334.34435793747 & 10.0744100347038 & -130.81748768712 & -2.32551052644305 \tabularnewline
80 & 5590 & 4835.68020865786 & 12.2880234987851 & 178.157542206278 & 2.63388150640542 \tabularnewline
81 & 5000 & 4897.39776417721 & 12.5016088445738 & 44.5909613217198 & 0.26514378115816 \tabularnewline
82 & 4875 & 4898.31513087758 & 12.4538129621682 & -9.71304006277447 & -0.062157121907818 \tabularnewline
83 & 4360 & 4659.42288005814 & 11.5670296583083 & -4.04635520645465 & -1.34902944250061 \tabularnewline
84 & 4405 & 4599.85660895373 & 11.488991232 & -110.996902557403 & -0.382498442978631 \tabularnewline
85 & 4500 & 4586.21235989118 & 11.6492526129792 & -56.0991918552988 & -0.138084131566697 \tabularnewline
86 & 4070 & 4445.89332398637 & 10.8526709568005 & -201.335993500234 & -0.800780256617032 \tabularnewline
87 & 4800 & 4485.69597733683 & 11.0814014820884 & 281.389788576865 & 0.151722379283219 \tabularnewline
88 & 4080 & 4356.28965628641 & 10.078891003157 & -114.792926851073 & -0.743291913296155 \tabularnewline
89 & 4850 & 4500.83315552755 & 10.8756896821217 & 193.164261226675 & 0.716513231213196 \tabularnewline
90 & 4105 & 4371.90085834883 & 10.1731420323805 & -103.882390908108 & -0.74777520614226 \tabularnewline
91 & 3805 & 4225.27271460636 & 9.47163030123416 & -236.981063265846 & -0.840198717841445 \tabularnewline
92 & 5060 & 4498.41514780808 & 10.5691161058829 & 252.982633456772 & 1.41412515860971 \tabularnewline
93 & 4060 & 4313.56971724063 & 9.79327242159545 & -24.7002493554709 & -1.04855251559805 \tabularnewline
94 & 4600 & 4420.50253907118 & 10.1562339874727 & 65.6685309968796 & 0.521379696018096 \tabularnewline
95 & 4635 & 4514.80189899592 & 10.4140882530053 & 21.5105669139037 & 0.451755464018938 \tabularnewline
96 & 3900 & 4314.78347578758 & 10.2457294996591 & -167.238500348743 & -1.13193042138879 \tabularnewline
97 & 4120 & 4246.5574007073 & 10.6084133159167 & -33.09298012722 & -0.428703978032426 \tabularnewline
98 & 3960 & 4214.09178497075 & 10.4199119032715 & -204.453034574457 & -0.227929123292227 \tabularnewline
99 & 4400 & 4170.89130378561 & 10.0441776775216 & 290.236554092339 & -0.281929787645082 \tabularnewline
100 & 3700 & 4034.3295627736 & 9.08081753073232 & -165.809274919188 & -0.776578255723755 \tabularnewline
101 & 3970 & 3919.28388224793 & 8.39134579430847 & 194.563590206235 & -0.661727182119662 \tabularnewline
102 & 4550 & 4213.60858331638 & 9.74406343848969 & 3.45010142183739 & 1.52978067102294 \tabularnewline
103 & 5140 & 4719.26687389486 & 11.8284808590571 & -158.129357828268 & 2.65797762894882 \tabularnewline
104 & 5000 & 4745.16963847187 & 11.8832829591201 & 238.381418165274 & 0.075502784572158 \tabularnewline
105 & 3650 & 4324.18814934263 & 10.2870871445431 & -167.938919518299 & -2.32324868908221 \tabularnewline
106 & 4300 & 4282.71024123922 & 10.1103555790256 & 77.863865153237 & -0.277907829831607 \tabularnewline
107 & 3650 & 4003.4845897277 & 9.3306639040891 & -14.6028352530757 & -1.55379448098621 \tabularnewline
108 & 3355 & 3795.3012806413 & 9.19283902741449 & -184.836251397004 & -1.17025492099277 \tabularnewline
109 & 4000 & 3880.91223054172 & 8.93908156709528 & 28.4865588769113 & 0.415757487227271 \tabularnewline
110 & 3450 & 3786.74282492432 & 8.55257538453145 & -217.652211188592 & -0.547242910705515 \tabularnewline
111 & 3295 & 3453.68504266272 & 6.41093847500209 & 231.701131268361 & -1.8010362565647 \tabularnewline
112 & 3390 & 3484.53888344723 & 6.55967813263443 & -122.642755800891 & 0.129612058745619 \tabularnewline
113 & 3415 & 3403.75726884191 & 6.10194691718686 & 112.388355245925 & -0.465802525354759 \tabularnewline
114 & 3440 & 3450.51096464385 & 6.28452489285007 & -57.7997255152325 & 0.217540594066967 \tabularnewline
115 & 3680 & 3613.05184839048 & 6.90733601117588 & -115.258221027493 & 0.837663227530892 \tabularnewline
116 & 3900 & 3617.4587254762 & 6.89814671560257 & 285.460666065202 & -0.0134166838862134 \tabularnewline
117 & 3965 & 3828.4212122922 & 7.60230248682878 & -101.845148039913 & 1.0954693478298 \tabularnewline
118 & 4295 & 3980.32552856427 & 8.05551007162811 & 145.978533688924 & 0.77485930389121 \tabularnewline
119 & 4210 & 4078.98388829416 & 8.27279078771536 & 25.0013635287173 & 0.486651168787205 \tabularnewline
120 & 4100 & 4175.13226020833 & 8.32131570548094 & -178.21395225507 & 0.47282481149524 \tabularnewline
121 & 4690 & 4369.40375777547 & 7.88648195480896 & 100.922984008148 & 1.00855408671598 \tabularnewline
122 & 3860 & 4239.143219525 & 7.43255243865148 & -219.329340672566 & -0.734810165748464 \tabularnewline
123 & 4250 & 4148.95344302158 & 6.88079235071993 & 212.848312978088 & -0.515866609021305 \tabularnewline
124 & 4495 & 4336.64240300566 & 7.90396052567612 & -49.627761062687 & 0.95968774229995 \tabularnewline
125 & 3800 & 4083.59389250525 & 6.60810754263058 & 18.4741808497584 & -1.39217524868227 \tabularnewline
126 & 3845 & 4014.93891621482 & 6.28538508875714 & -82.448108635567 & -0.402829987649169 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301632&T=1

[TABLE]
[ROW][C]Structural Time Series Model -- Interpolation[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Level[/C][C]Slope[/C][C]Seasonal[/C][C]Stand. Residuals[/C][/ROW]
[ROW][C]1[/C][C]2755[/C][C]2755[/C][C]0[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]2765[/C][C]2760.05530514637[/C][C]0.452333909061897[/C][C]0.59075880747128[/C][C]0.0209441710409316[/C][/ROW]
[ROW][C]3[/C][C]3000[/C][C]2872.67694453885[/C][C]7.5187376630799[/C][C]13.4508694980534[/C][C]0.523777838362452[/C][/ROW]
[ROW][C]4[/C][C]2890[/C][C]2882.28005418524[/C][C]7.61396221102989[/C][C]5.40571852276129[/C][C]0.0103708473539649[/C][/ROW]
[ROW][C]5[/C][C]2940[/C][C]2908.786396179[/C][C]8.29223408752339[/C][C]9.35421515972569[/C][C]0.0967913245703246[/C][/ROW]
[ROW][C]6[/C][C]3290[/C][C]3077.8264027489[/C][C]13.1662947211581[/C][C]22.2880267153787[/C][C]0.835717932219537[/C][/ROW]
[ROW][C]7[/C][C]2815[/C][C]2965.94659300338[/C][C]9.78516200660732[/C][C]-1.59397110569899[/C][C]-0.655183192465424[/C][/ROW]
[ROW][C]8[/C][C]3035[/C][C]2996.03368746513[/C][C]10.2930423034528[/C][C]14.5679586477814[/C][C]0.106832738360742[/C][/ROW]
[ROW][C]9[/C][C]3070[/C][C]3029.85282226424[/C][C]10.8503346356971[/C][C]11.7716174565547[/C][C]0.124109120924879[/C][/ROW]
[ROW][C]10[/C][C]3040[/C][C]3035.91547912547[/C][C]10.7414259840035[/C][C]9.87207475217228[/C][C]-0.0252954884274238[/C][/ROW]
[ROW][C]11[/C][C]2685[/C][C]2884.2119742211[/C][C]7.16321934918343[/C][C]-2.54763240272269[/C][C]-0.859127837187555[/C][/ROW]
[ROW][C]12[/C][C]2540[/C][C]2733.32510991573[/C][C]3.77539264111122[/C][C]-1.77523179767184[/C][C]-0.836472732379252[/C][/ROW]
[ROW][C]13[/C][C]3090[/C][C]2846.05302925034[/C][C]-7.03037707147004[/C][C]90.7176296582229[/C][C]0.775087009768186[/C][/ROW]
[ROW][C]14[/C][C]2995[/C][C]2922.28290465837[/C][C]-4.031648736478[/C][C]-6.16097591518903[/C][C]0.369104430374962[/C][/ROW]
[ROW][C]15[/C][C]3440[/C][C]3155.04824262771[/C][C]2.75571406673361[/C][C]30.8499512578564[/C][C]1.15710598360729[/C][/ROW]
[ROW][C]16[/C][C]3335[/C][C]3239.90731158696[/C][C]4.50734572731005[/C][C]0.838178790707708[/C][C]0.421786321707903[/C][/ROW]
[ROW][C]17[/C][C]3205[/C][C]3229.43986573839[/C][C]4.25265479517295[/C][C]-6.76796685809037[/C][C]-0.0785060187129748[/C][/ROW]
[ROW][C]18[/C][C]3285[/C][C]3247.59152927617[/C][C]4.45488867239513[/C][C]20.8050662927409[/C][C]0.0735159195396738[/C][/ROW]
[ROW][C]19[/C][C]2790[/C][C]3057.43243812794[/C][C]1.89773728460449[/C][C]-33.5859317416075[/C][C]-1.03373172701699[/C][/ROW]
[ROW][C]20[/C][C]3225[/C][C]3124.24672520097[/C][C]2.69672271736489[/C][C]22.5142827817483[/C][C]0.345563156106393[/C][/ROW]
[ROW][C]21[/C][C]3360[/C][C]3226.50050974909[/C][C]3.87114688380317[/C][C]13.3128232299977[/C][C]0.530582072930713[/C][/ROW]
[ROW][C]22[/C][C]3275[/C][C]3247.38816759063[/C][C]4.06621678746073[/C][C]7.04964900049778[/C][C]0.0907492678756883[/C][/ROW]
[ROW][C]23[/C][C]3505[/C][C]3359.83147819915[/C][C]5.28151048459722[/C][C]14.1288292384274[/C][C]0.578219239333096[/C][/ROW]
[ROW][C]24[/C][C]3185[/C][C]3293.19905317804[/C][C]4.55878391088019[/C][C]-21.1000941911748[/C][C]-0.383912304218851[/C][/ROW]
[ROW][C]25[/C][C]3470[/C][C]3367.13086048548[/C][C]1.52240163218936[/C][C]12.5245435577651[/C][C]0.42754373497045[/C][/ROW]
[ROW][C]26[/C][C]3510[/C][C]3444.68675250694[/C][C]3.17998977505002[/C][C]-14.6007362613666[/C][C]0.366664873085102[/C][/ROW]
[ROW][C]27[/C][C]3840[/C][C]3610.88665020373[/C][C]6.3416241953323[/C][C]48.6442227848072[/C][C]0.821870829539248[/C][/ROW]
[ROW][C]28[/C][C]3605[/C][C]3614.70186778094[/C][C]6.30461368214972[/C][C]-6.77946755516894[/C][C]-0.0131650274318902[/C][/ROW]
[ROW][C]29[/C][C]3655[/C][C]3637.86969120109[/C][C]6.50141139831524[/C][C]-2.75359581169036[/C][C]0.0891270735378891[/C][/ROW]
[ROW][C]30[/C][C]3555[/C][C]3590.93986226471[/C][C]5.9683975637574[/C][C]27.6008879405783[/C][C]-0.28416142328493[/C][/ROW]
[ROW][C]31[/C][C]3140[/C][C]3416.670372386[/C][C]4.34309220480883[/C][C]-61.4581192828317[/C][C]-0.961376086203246[/C][/ROW]
[ROW][C]32[/C][C]3380[/C][C]3391.53528743885[/C][C]4.09348631155208[/C][C]23.7358699549146[/C][C]-0.157468642945348[/C][/ROW]
[ROW][C]33[/C][C]3255[/C][C]3330.05830424971[/C][C]3.55951458646548[/C][C]3.48510673213183[/C][C]-0.350548386960123[/C][/ROW]
[ROW][C]34[/C][C]3460[/C][C]3385.67070424485[/C][C]3.9729857249108[/C][C]11.9384863931774[/C][C]0.278408105920196[/C][/ROW]
[ROW][C]35[/C][C]3245[/C][C]3322.10300775833[/C][C]3.45055441260512[/C][C]3.8910013031354[/C][C]-0.361355423903261[/C][/ROW]
[ROW][C]36[/C][C]3120[/C][C]3248.60996269229[/C][C]2.99647827465946[/C][C]-36.1093823268408[/C][C]-0.412025594187607[/C][/ROW]
[ROW][C]37[/C][C]3265[/C][C]3257.87906334101[/C][C]2.83170181182552[/C][C]-0.791477232413993[/C][C]0.0367081555963671[/C][/ROW]
[ROW][C]38[/C][C]3220[/C][C]3256.51733324947[/C][C]2.76936390718226[/C][C]-31.9191702290948[/C][C]-0.0210164041306559[/C][/ROW]
[ROW][C]39[/C][C]3140[/C][C]3188.47008257766[/C][C]1.71031450442666[/C][C]30.7866912280191[/C][C]-0.362302626303826[/C][/ROW]
[ROW][C]40[/C][C]3050[/C][C]3134.51456194542[/C][C]1.0653937773683[/C][C]-20.1719580415602[/C][C]-0.291913096445653[/C][/ROW]
[ROW][C]41[/C][C]3300[/C][C]3204.00338167057[/C][C]1.69693886541977[/C][C]15.6768320088896[/C][C]0.362951830483317[/C][/ROW]
[ROW][C]42[/C][C]2950[/C][C]3083.27134543865[/C][C]0.734370633198837[/C][C]11.4464604037687[/C][C]-0.652736534901246[/C][/ROW]
[ROW][C]43[/C][C]2630[/C][C]2916.25570131337[/C][C]-0.455685089986559[/C][C]-87.3112367201683[/C][C]-0.896507538229563[/C][/ROW]
[ROW][C]44[/C][C]2795[/C][C]2849.17537370363[/C][C]-0.899573485146218[/C][C]24.969736646905[/C][C]-0.356488711717502[/C][/ROW]
[ROW][C]45[/C][C]2840[/C][C]2845.12468563927[/C][C]-0.919794162447546[/C][C]-1.37810821531296[/C][C]-0.0168714035941272[/C][/ROW]
[ROW][C]46[/C][C]2945[/C][C]2880.289121815[/C][C]-0.693800711116763[/C][C]21.7860756015465[/C][C]0.19326959897581[/C][/ROW]
[ROW][C]47[/C][C]2790[/C][C]2840.18298703838[/C][C]-0.929831873785997[/C][C]-3.27389937593978[/C][C]-0.211154029846526[/C][/ROW]
[ROW][C]48[/C][C]2605[/C][C]2755.78730915282[/C][C]-1.2393976285917[/C][C]-51.1455102642265[/C][C]-0.447714525459403[/C][/ROW]
[ROW][C]49[/C][C]4590[/C][C]3444.24722587838[/C][C]-13.3266841282528[/C][C]292.72320207262[/C][C]3.92762741148829[/C][/ROW]
[ROW][C]50[/C][C]4230[/C][C]3808.12869366563[/C][C]-9.2507078447816[/C][C]-0.778149659934186[/C][C]1.9320109651438[/C][/ROW]
[ROW][C]51[/C][C]4245[/C][C]3992.24054594209[/C][C]-6.87899388252887[/C][C]35.1483195327363[/C][C]0.998153776004594[/C][/ROW]
[ROW][C]52[/C][C]4300[/C][C]4140.39082380877[/C][C]-5.35490990899522[/C][C]-19.209831982728[/C][C]0.815846499848134[/C][/ROW]
[ROW][C]53[/C][C]4475[/C][C]4272.54926613221[/C][C]-4.27360398750164[/C][C]41.718640995015[/C][C]0.730874476935846[/C][/ROW]
[ROW][C]54[/C][C]3910[/C][C]4113.09221958456[/C][C]-5.30915156562785[/C][C]-20.588309040509[/C][C]-0.828513028122279[/C][/ROW]
[ROW][C]55[/C][C]4100[/C][C]4134.23422775083[/C][C]-5.1503861667467[/C][C]-65.4328289258085[/C][C]0.141519041395965[/C][/ROW]
[ROW][C]56[/C][C]3500[/C][C]3859.41872372172[/C][C]-6.6689354556719[/C][C]-40.8937524773134[/C][C]-1.44427273111014[/C][/ROW]
[ROW][C]57[/C][C]4390[/C][C]4069.89459371682[/C][C]-5.49094319680583[/C][C]63.4218964254818[/C][C]1.16362765653377[/C][/ROW]
[ROW][C]58[/C][C]3550[/C][C]3846.92656364722[/C][C]-6.63885645683623[/C][C]-39.7307986302586[/C][C]-1.16578795502363[/C][/ROW]
[ROW][C]59[/C][C]3865[/C][C]3843.81576170941[/C][C]-6.62158606753174[/C][C]17.0091335393327[/C][C]0.0189174663177029[/C][/ROW]
[ROW][C]60[/C][C]3715[/C][C]3844.47567426786[/C][C]-6.60409786965307[/C][C]-138.120601842861[/C][C]0.0391024001783912[/C][/ROW]
[ROW][C]61[/C][C]3310[/C][C]3556.01311492801[/C][C]-3.14512105874119[/C][C]97.8063655901564[/C][C]-1.57835191245377[/C][/ROW]
[ROW][C]62[/C][C]3945[/C][C]3722.16450288488[/C][C]-1.75569151298004[/C][C]30.7853865101258[/C][C]0.878910972719122[/C][/ROW]
[ROW][C]63[/C][C]5050[/C][C]4279.22971925362[/C][C]4.05719901163148[/C][C]139.410402704027[/C][C]2.90301619588526[/C][/ROW]
[ROW][C]64[/C][C]4350[/C][C]4342.12626435459[/C][C]4.56726792385768[/C][C]-59.874779272172[/C][C]0.310355359714913[/C][/ROW]
[ROW][C]65[/C][C]4060[/C][C]4202.73508532284[/C][C]3.5603702016833[/C][C]24.9679240083183[/C][C]-0.766046058913059[/C][/ROW]
[ROW][C]66[/C][C]4345[/C][C]4264.16038541038[/C][C]3.90298496359597[/C][C]13.0480152988914[/C][C]0.309199862559182[/C][/ROW]
[ROW][C]67[/C][C]4360[/C][C]4317.13969438389[/C][C]4.16338732621593[/C][C]-14.7904123164195[/C][C]0.262752223029942[/C][/ROW]
[ROW][C]68[/C][C]4915[/C][C]4591.50334665576[/C][C]5.50586653275753[/C][C]5.66472265391697[/C][C]1.44803569867085[/C][/ROW]
[ROW][C]69[/C][C]4650[/C][C]4585.76676296372[/C][C]5.45212658940452[/C][C]77.4667946252847[/C][C]-0.0602803060045769[/C][/ROW]
[ROW][C]70[/C][C]4805[/C][C]4691.23956844281[/C][C]5.91389082110388[/C][C]-4.0293375926941[/C][C]0.536459922409987[/C][/ROW]
[ROW][C]71[/C][C]4775[/C][C]4719.98515810368[/C][C]6.00792089441534[/C][C]28.1065763366269[/C][C]0.122492626970568[/C][/ROW]
[ROW][C]72[/C][C]4220[/C][C]4562.77781001133[/C][C]5.74771496735287[/C][C]-149.790356097754[/C][C]-0.877171177402744[/C][/ROW]
[ROW][C]73[/C][C]3975[/C][C]4325.01851894528[/C][C]7.8908062361212[/C][C]-55.9993374942822[/C][C]-1.3483806016355[/C][/ROW]
[ROW][C]74[/C][C]3820[/C][C]4132.02867387103[/C][C]6.59353899589689[/C][C]-82.4141551007821[/C][C]-1.05216518001339[/C][/ROW]
[ROW][C]75[/C][C]5515[/C][C]4649.91372768031[/C][C]11.1966435334761[/C][C]285.511254877574[/C][C]2.66909056005051[/C][/ROW]
[ROW][C]76[/C][C]4895[/C][C]4788.40620208929[/C][C]12.1913041817948[/C][C]-39.8134203556071[/C][C]0.672574538911006[/C][/ROW]
[ROW][C]77[/C][C]5535[/C][C]5099.68056345911[/C][C]14.1012874147026[/C][C]87.7482543539858[/C][C]1.59278173636652[/C][/ROW]
[ROW][C]78[/C][C]4230[/C][C]4756.32090634824[/C][C]12.169486056546[/C][C]-108.695856551941[/C][C]-1.91115970716921[/C][/ROW]
[ROW][C]79[/C][C]3695[/C][C]4334.34435793747[/C][C]10.0744100347038[/C][C]-130.81748768712[/C][C]-2.32551052644305[/C][/ROW]
[ROW][C]80[/C][C]5590[/C][C]4835.68020865786[/C][C]12.2880234987851[/C][C]178.157542206278[/C][C]2.63388150640542[/C][/ROW]
[ROW][C]81[/C][C]5000[/C][C]4897.39776417721[/C][C]12.5016088445738[/C][C]44.5909613217198[/C][C]0.26514378115816[/C][/ROW]
[ROW][C]82[/C][C]4875[/C][C]4898.31513087758[/C][C]12.4538129621682[/C][C]-9.71304006277447[/C][C]-0.062157121907818[/C][/ROW]
[ROW][C]83[/C][C]4360[/C][C]4659.42288005814[/C][C]11.5670296583083[/C][C]-4.04635520645465[/C][C]-1.34902944250061[/C][/ROW]
[ROW][C]84[/C][C]4405[/C][C]4599.85660895373[/C][C]11.488991232[/C][C]-110.996902557403[/C][C]-0.382498442978631[/C][/ROW]
[ROW][C]85[/C][C]4500[/C][C]4586.21235989118[/C][C]11.6492526129792[/C][C]-56.0991918552988[/C][C]-0.138084131566697[/C][/ROW]
[ROW][C]86[/C][C]4070[/C][C]4445.89332398637[/C][C]10.8526709568005[/C][C]-201.335993500234[/C][C]-0.800780256617032[/C][/ROW]
[ROW][C]87[/C][C]4800[/C][C]4485.69597733683[/C][C]11.0814014820884[/C][C]281.389788576865[/C][C]0.151722379283219[/C][/ROW]
[ROW][C]88[/C][C]4080[/C][C]4356.28965628641[/C][C]10.078891003157[/C][C]-114.792926851073[/C][C]-0.743291913296155[/C][/ROW]
[ROW][C]89[/C][C]4850[/C][C]4500.83315552755[/C][C]10.8756896821217[/C][C]193.164261226675[/C][C]0.716513231213196[/C][/ROW]
[ROW][C]90[/C][C]4105[/C][C]4371.90085834883[/C][C]10.1731420323805[/C][C]-103.882390908108[/C][C]-0.74777520614226[/C][/ROW]
[ROW][C]91[/C][C]3805[/C][C]4225.27271460636[/C][C]9.47163030123416[/C][C]-236.981063265846[/C][C]-0.840198717841445[/C][/ROW]
[ROW][C]92[/C][C]5060[/C][C]4498.41514780808[/C][C]10.5691161058829[/C][C]252.982633456772[/C][C]1.41412515860971[/C][/ROW]
[ROW][C]93[/C][C]4060[/C][C]4313.56971724063[/C][C]9.79327242159545[/C][C]-24.7002493554709[/C][C]-1.04855251559805[/C][/ROW]
[ROW][C]94[/C][C]4600[/C][C]4420.50253907118[/C][C]10.1562339874727[/C][C]65.6685309968796[/C][C]0.521379696018096[/C][/ROW]
[ROW][C]95[/C][C]4635[/C][C]4514.80189899592[/C][C]10.4140882530053[/C][C]21.5105669139037[/C][C]0.451755464018938[/C][/ROW]
[ROW][C]96[/C][C]3900[/C][C]4314.78347578758[/C][C]10.2457294996591[/C][C]-167.238500348743[/C][C]-1.13193042138879[/C][/ROW]
[ROW][C]97[/C][C]4120[/C][C]4246.5574007073[/C][C]10.6084133159167[/C][C]-33.09298012722[/C][C]-0.428703978032426[/C][/ROW]
[ROW][C]98[/C][C]3960[/C][C]4214.09178497075[/C][C]10.4199119032715[/C][C]-204.453034574457[/C][C]-0.227929123292227[/C][/ROW]
[ROW][C]99[/C][C]4400[/C][C]4170.89130378561[/C][C]10.0441776775216[/C][C]290.236554092339[/C][C]-0.281929787645082[/C][/ROW]
[ROW][C]100[/C][C]3700[/C][C]4034.3295627736[/C][C]9.08081753073232[/C][C]-165.809274919188[/C][C]-0.776578255723755[/C][/ROW]
[ROW][C]101[/C][C]3970[/C][C]3919.28388224793[/C][C]8.39134579430847[/C][C]194.563590206235[/C][C]-0.661727182119662[/C][/ROW]
[ROW][C]102[/C][C]4550[/C][C]4213.60858331638[/C][C]9.74406343848969[/C][C]3.45010142183739[/C][C]1.52978067102294[/C][/ROW]
[ROW][C]103[/C][C]5140[/C][C]4719.26687389486[/C][C]11.8284808590571[/C][C]-158.129357828268[/C][C]2.65797762894882[/C][/ROW]
[ROW][C]104[/C][C]5000[/C][C]4745.16963847187[/C][C]11.8832829591201[/C][C]238.381418165274[/C][C]0.075502784572158[/C][/ROW]
[ROW][C]105[/C][C]3650[/C][C]4324.18814934263[/C][C]10.2870871445431[/C][C]-167.938919518299[/C][C]-2.32324868908221[/C][/ROW]
[ROW][C]106[/C][C]4300[/C][C]4282.71024123922[/C][C]10.1103555790256[/C][C]77.863865153237[/C][C]-0.277907829831607[/C][/ROW]
[ROW][C]107[/C][C]3650[/C][C]4003.4845897277[/C][C]9.3306639040891[/C][C]-14.6028352530757[/C][C]-1.55379448098621[/C][/ROW]
[ROW][C]108[/C][C]3355[/C][C]3795.3012806413[/C][C]9.19283902741449[/C][C]-184.836251397004[/C][C]-1.17025492099277[/C][/ROW]
[ROW][C]109[/C][C]4000[/C][C]3880.91223054172[/C][C]8.93908156709528[/C][C]28.4865588769113[/C][C]0.415757487227271[/C][/ROW]
[ROW][C]110[/C][C]3450[/C][C]3786.74282492432[/C][C]8.55257538453145[/C][C]-217.652211188592[/C][C]-0.547242910705515[/C][/ROW]
[ROW][C]111[/C][C]3295[/C][C]3453.68504266272[/C][C]6.41093847500209[/C][C]231.701131268361[/C][C]-1.8010362565647[/C][/ROW]
[ROW][C]112[/C][C]3390[/C][C]3484.53888344723[/C][C]6.55967813263443[/C][C]-122.642755800891[/C][C]0.129612058745619[/C][/ROW]
[ROW][C]113[/C][C]3415[/C][C]3403.75726884191[/C][C]6.10194691718686[/C][C]112.388355245925[/C][C]-0.465802525354759[/C][/ROW]
[ROW][C]114[/C][C]3440[/C][C]3450.51096464385[/C][C]6.28452489285007[/C][C]-57.7997255152325[/C][C]0.217540594066967[/C][/ROW]
[ROW][C]115[/C][C]3680[/C][C]3613.05184839048[/C][C]6.90733601117588[/C][C]-115.258221027493[/C][C]0.837663227530892[/C][/ROW]
[ROW][C]116[/C][C]3900[/C][C]3617.4587254762[/C][C]6.89814671560257[/C][C]285.460666065202[/C][C]-0.0134166838862134[/C][/ROW]
[ROW][C]117[/C][C]3965[/C][C]3828.4212122922[/C][C]7.60230248682878[/C][C]-101.845148039913[/C][C]1.0954693478298[/C][/ROW]
[ROW][C]118[/C][C]4295[/C][C]3980.32552856427[/C][C]8.05551007162811[/C][C]145.978533688924[/C][C]0.77485930389121[/C][/ROW]
[ROW][C]119[/C][C]4210[/C][C]4078.98388829416[/C][C]8.27279078771536[/C][C]25.0013635287173[/C][C]0.486651168787205[/C][/ROW]
[ROW][C]120[/C][C]4100[/C][C]4175.13226020833[/C][C]8.32131570548094[/C][C]-178.21395225507[/C][C]0.47282481149524[/C][/ROW]
[ROW][C]121[/C][C]4690[/C][C]4369.40375777547[/C][C]7.88648195480896[/C][C]100.922984008148[/C][C]1.00855408671598[/C][/ROW]
[ROW][C]122[/C][C]3860[/C][C]4239.143219525[/C][C]7.43255243865148[/C][C]-219.329340672566[/C][C]-0.734810165748464[/C][/ROW]
[ROW][C]123[/C][C]4250[/C][C]4148.95344302158[/C][C]6.88079235071993[/C][C]212.848312978088[/C][C]-0.515866609021305[/C][/ROW]
[ROW][C]124[/C][C]4495[/C][C]4336.64240300566[/C][C]7.90396052567612[/C][C]-49.627761062687[/C][C]0.95968774229995[/C][/ROW]
[ROW][C]125[/C][C]3800[/C][C]4083.59389250525[/C][C]6.60810754263058[/C][C]18.4741808497584[/C][C]-1.39217524868227[/C][/ROW]
[ROW][C]126[/C][C]3845[/C][C]4014.93891621482[/C][C]6.28538508875714[/C][C]-82.448108635567[/C][C]-0.402829987649169[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301632&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301632&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Structural Time Series Model -- Interpolation
tObservedLevelSlopeSeasonalStand. Residuals
127552755000
227652760.055305146370.4523339090618970.590758807471280.0209441710409316
330002872.676944538857.518737663079913.45086949805340.523777838362452
428902882.280054185247.613962211029895.405718522761290.0103708473539649
529402908.7863961798.292234087523399.354215159725690.0967913245703246
632903077.826402748913.166294721158122.28802671537870.835717932219537
728152965.946593003389.78516200660732-1.59397110569899-0.655183192465424
830352996.0336874651310.293042303452814.56795864778140.106832738360742
930703029.8528222642410.850334635697111.77161745655470.124109120924879
1030403035.9154791254710.74142598400359.87207475217228-0.0252954884274238
1126852884.21197422117.16321934918343-2.54763240272269-0.859127837187555
1225402733.325109915733.77539264111122-1.77523179767184-0.836472732379252
1330902846.05302925034-7.0303770714700490.71762965822290.775087009768186
1429952922.28290465837-4.031648736478-6.160975915189030.369104430374962
1534403155.048242627712.7557140667336130.84995125785641.15710598360729
1633353239.907311586964.507345727310050.8381787907077080.421786321707903
1732053229.439865738394.25265479517295-6.76796685809037-0.0785060187129748
1832853247.591529276174.4548886723951320.80506629274090.0735159195396738
1927903057.432438127941.89773728460449-33.5859317416075-1.03373172701699
2032253124.246725200972.6967227173648922.51428278174830.345563156106393
2133603226.500509749093.8711468838031713.31282322999770.530582072930713
2232753247.388167590634.066216787460737.049649000497780.0907492678756883
2335053359.831478199155.2815104845972214.12882923842740.578219239333096
2431853293.199053178044.55878391088019-21.1000941911748-0.383912304218851
2534703367.130860485481.5224016321893612.52454355776510.42754373497045
2635103444.686752506943.17998977505002-14.60073626136660.366664873085102
2738403610.886650203736.341624195332348.64422278480720.821870829539248
2836053614.701867780946.30461368214972-6.77946755516894-0.0131650274318902
2936553637.869691201096.50141139831524-2.753595811690360.0891270735378891
3035553590.939862264715.968397563757427.6008879405783-0.28416142328493
3131403416.6703723864.34309220480883-61.4581192828317-0.961376086203246
3233803391.535287438854.0934863115520823.7358699549146-0.157468642945348
3332553330.058304249713.559514586465483.48510673213183-0.350548386960123
3434603385.670704244853.972985724910811.93848639317740.278408105920196
3532453322.103007758333.450554412605123.8910013031354-0.361355423903261
3631203248.609962692292.99647827465946-36.1093823268408-0.412025594187607
3732653257.879063341012.83170181182552-0.7914772324139930.0367081555963671
3832203256.517333249472.76936390718226-31.9191702290948-0.0210164041306559
3931403188.470082577661.7103145044266630.7866912280191-0.362302626303826
4030503134.514561945421.0653937773683-20.1719580415602-0.291913096445653
4133003204.003381670571.6969388654197715.67683200888960.362951830483317
4229503083.271345438650.73437063319883711.4464604037687-0.652736534901246
4326302916.25570131337-0.455685089986559-87.3112367201683-0.896507538229563
4427952849.17537370363-0.89957348514621824.969736646905-0.356488711717502
4528402845.12468563927-0.919794162447546-1.37810821531296-0.0168714035941272
4629452880.289121815-0.69380071111676321.78607560154650.19326959897581
4727902840.18298703838-0.929831873785997-3.27389937593978-0.211154029846526
4826052755.78730915282-1.2393976285917-51.1455102642265-0.447714525459403
4945903444.24722587838-13.3266841282528292.723202072623.92762741148829
5042303808.12869366563-9.2507078447816-0.7781496599341861.9320109651438
5142453992.24054594209-6.8789938825288735.14831953273630.998153776004594
5243004140.39082380877-5.35490990899522-19.2098319827280.815846499848134
5344754272.54926613221-4.2736039875016441.7186409950150.730874476935846
5439104113.09221958456-5.30915156562785-20.588309040509-0.828513028122279
5541004134.23422775083-5.1503861667467-65.43282892580850.141519041395965
5635003859.41872372172-6.6689354556719-40.8937524773134-1.44427273111014
5743904069.89459371682-5.4909431968058363.42189642548181.16362765653377
5835503846.92656364722-6.63885645683623-39.7307986302586-1.16578795502363
5938653843.81576170941-6.6215860675317417.00913353933270.0189174663177029
6037153844.47567426786-6.60409786965307-138.1206018428610.0391024001783912
6133103556.01311492801-3.1451210587411997.8063655901564-1.57835191245377
6239453722.16450288488-1.7556915129800430.78538651012580.878910972719122
6350504279.229719253624.05719901163148139.4104027040272.90301619588526
6443504342.126264354594.56726792385768-59.8747792721720.310355359714913
6540604202.735085322843.560370201683324.9679240083183-0.766046058913059
6643454264.160385410383.9029849635959713.04801529889140.309199862559182
6743604317.139694383894.16338732621593-14.79041231641950.262752223029942
6849154591.503346655765.505866532757535.664722653916971.44803569867085
6946504585.766762963725.4521265894045277.4667946252847-0.0602803060045769
7048054691.239568442815.91389082110388-4.02933759269410.536459922409987
7147754719.985158103686.0079208944153428.10657633662690.122492626970568
7242204562.777810011335.74771496735287-149.790356097754-0.877171177402744
7339754325.018518945287.8908062361212-55.9993374942822-1.3483806016355
7438204132.028673871036.59353899589689-82.4141551007821-1.05216518001339
7555154649.9137276803111.1966435334761285.5112548775742.66909056005051
7648954788.4062020892912.1913041817948-39.81342035560710.672574538911006
7755355099.6805634591114.101287414702687.74825435398581.59278173636652
7842304756.3209063482412.169486056546-108.695856551941-1.91115970716921
7936954334.3443579374710.0744100347038-130.81748768712-2.32551052644305
8055904835.6802086578612.2880234987851178.1575422062782.63388150640542
8150004897.3977641772112.501608844573844.59096132171980.26514378115816
8248754898.3151308775812.4538129621682-9.71304006277447-0.062157121907818
8343604659.4228800581411.5670296583083-4.04635520645465-1.34902944250061
8444054599.8566089537311.488991232-110.996902557403-0.382498442978631
8545004586.2123598911811.6492526129792-56.0991918552988-0.138084131566697
8640704445.8933239863710.8526709568005-201.335993500234-0.800780256617032
8748004485.6959773368311.0814014820884281.3897885768650.151722379283219
8840804356.2896562864110.078891003157-114.792926851073-0.743291913296155
8948504500.8331555275510.8756896821217193.1642612266750.716513231213196
9041054371.9008583488310.1731420323805-103.882390908108-0.74777520614226
9138054225.272714606369.47163030123416-236.981063265846-0.840198717841445
9250604498.4151478080810.5691161058829252.9826334567721.41412515860971
9340604313.569717240639.79327242159545-24.7002493554709-1.04855251559805
9446004420.5025390711810.156233987472765.66853099687960.521379696018096
9546354514.8018989959210.414088253005321.51056691390370.451755464018938
9639004314.7834757875810.2457294996591-167.238500348743-1.13193042138879
9741204246.557400707310.6084133159167-33.09298012722-0.428703978032426
9839604214.0917849707510.4199119032715-204.453034574457-0.227929123292227
9944004170.8913037856110.0441776775216290.236554092339-0.281929787645082
10037004034.32956277369.08081753073232-165.809274919188-0.776578255723755
10139703919.283882247938.39134579430847194.563590206235-0.661727182119662
10245504213.608583316389.744063438489693.450101421837391.52978067102294
10351404719.2668738948611.8284808590571-158.1293578282682.65797762894882
10450004745.1696384718711.8832829591201238.3814181652740.075502784572158
10536504324.1881493426310.2870871445431-167.938919518299-2.32324868908221
10643004282.7102412392210.110355579025677.863865153237-0.277907829831607
10736504003.48458972779.3306639040891-14.6028352530757-1.55379448098621
10833553795.30128064139.19283902741449-184.836251397004-1.17025492099277
10940003880.912230541728.9390815670952828.48655887691130.415757487227271
11034503786.742824924328.55257538453145-217.652211188592-0.547242910705515
11132953453.685042662726.41093847500209231.701131268361-1.8010362565647
11233903484.538883447236.55967813263443-122.6427558008910.129612058745619
11334153403.757268841916.10194691718686112.388355245925-0.465802525354759
11434403450.510964643856.28452489285007-57.79972551523250.217540594066967
11536803613.051848390486.90733601117588-115.2582210274930.837663227530892
11639003617.45872547626.89814671560257285.460666065202-0.0134166838862134
11739653828.42121229227.60230248682878-101.8451480399131.0954693478298
11842953980.325528564278.05551007162811145.9785336889240.77485930389121
11942104078.983888294168.2727907877153625.00136352871730.486651168787205
12041004175.132260208338.32131570548094-178.213952255070.47282481149524
12146904369.403757775477.88648195480896100.9229840081481.00855408671598
12238604239.1432195257.43255243865148-219.329340672566-0.734810165748464
12342504148.953443021586.88079235071993212.848312978088-0.515866609021305
12444954336.642403005667.90396052567612-49.6277610626870.95968774229995
12538004083.593892505256.6081075426305818.4741808497584-1.39217524868227
12638454014.938916214826.28538508875714-82.448108635567-0.402829987649169







Structural Time Series Model -- Extrapolation
tObservedLevelSeasonal
14370.111307314934112.63799834962257.47330896531
24382.366862062164123.53547372768258.83138833448
34058.438362670094134.43294910573-75.9945864356397
44330.152662061774145.33042448379184.822237577981
54089.389323255544156.22789986184-66.8385766063061
63883.653117155044167.1253752399-283.472258084862
74502.330914901514178.02285061796324.308064283552
83824.636533332334188.92032599601-364.283792663685
94187.421751526084199.81780137407-12.3960498479872
104425.108582378634210.71527675212214.393305626504
113963.323955801094221.61275213018-258.288796329085
124053.955982687974232.51022750823-178.554244820263

\begin{tabular}{lllllllll}
\hline
Structural Time Series Model -- Extrapolation \tabularnewline
t & Observed & Level & Seasonal \tabularnewline
1 & 4370.11130731493 & 4112.63799834962 & 257.47330896531 \tabularnewline
2 & 4382.36686206216 & 4123.53547372768 & 258.83138833448 \tabularnewline
3 & 4058.43836267009 & 4134.43294910573 & -75.9945864356397 \tabularnewline
4 & 4330.15266206177 & 4145.33042448379 & 184.822237577981 \tabularnewline
5 & 4089.38932325554 & 4156.22789986184 & -66.8385766063061 \tabularnewline
6 & 3883.65311715504 & 4167.1253752399 & -283.472258084862 \tabularnewline
7 & 4502.33091490151 & 4178.02285061796 & 324.308064283552 \tabularnewline
8 & 3824.63653333233 & 4188.92032599601 & -364.283792663685 \tabularnewline
9 & 4187.42175152608 & 4199.81780137407 & -12.3960498479872 \tabularnewline
10 & 4425.10858237863 & 4210.71527675212 & 214.393305626504 \tabularnewline
11 & 3963.32395580109 & 4221.61275213018 & -258.288796329085 \tabularnewline
12 & 4053.95598268797 & 4232.51022750823 & -178.554244820263 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301632&T=2

[TABLE]
[ROW][C]Structural Time Series Model -- Extrapolation[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Level[/C][C]Seasonal[/C][/ROW]
[ROW][C]1[/C][C]4370.11130731493[/C][C]4112.63799834962[/C][C]257.47330896531[/C][/ROW]
[ROW][C]2[/C][C]4382.36686206216[/C][C]4123.53547372768[/C][C]258.83138833448[/C][/ROW]
[ROW][C]3[/C][C]4058.43836267009[/C][C]4134.43294910573[/C][C]-75.9945864356397[/C][/ROW]
[ROW][C]4[/C][C]4330.15266206177[/C][C]4145.33042448379[/C][C]184.822237577981[/C][/ROW]
[ROW][C]5[/C][C]4089.38932325554[/C][C]4156.22789986184[/C][C]-66.8385766063061[/C][/ROW]
[ROW][C]6[/C][C]3883.65311715504[/C][C]4167.1253752399[/C][C]-283.472258084862[/C][/ROW]
[ROW][C]7[/C][C]4502.33091490151[/C][C]4178.02285061796[/C][C]324.308064283552[/C][/ROW]
[ROW][C]8[/C][C]3824.63653333233[/C][C]4188.92032599601[/C][C]-364.283792663685[/C][/ROW]
[ROW][C]9[/C][C]4187.42175152608[/C][C]4199.81780137407[/C][C]-12.3960498479872[/C][/ROW]
[ROW][C]10[/C][C]4425.10858237863[/C][C]4210.71527675212[/C][C]214.393305626504[/C][/ROW]
[ROW][C]11[/C][C]3963.32395580109[/C][C]4221.61275213018[/C][C]-258.288796329085[/C][/ROW]
[ROW][C]12[/C][C]4053.95598268797[/C][C]4232.51022750823[/C][C]-178.554244820263[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301632&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301632&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Structural Time Series Model -- Extrapolation
tObservedLevelSeasonal
14370.111307314934112.63799834962257.47330896531
24382.366862062164123.53547372768258.83138833448
34058.438362670094134.43294910573-75.9945864356397
44330.152662061774145.33042448379184.822237577981
54089.389323255544156.22789986184-66.8385766063061
63883.653117155044167.1253752399-283.472258084862
74502.330914901514178.02285061796324.308064283552
83824.636533332334188.92032599601-364.283792663685
94187.421751526084199.81780137407-12.3960498479872
104425.108582378634210.71527675212214.393305626504
113963.323955801094221.61275213018-258.288796329085
124053.955982687974232.51022750823-178.554244820263



Parameters (Session):
par1 = Default ; par2 = 1 ; par3 = 0 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ;
Parameters (R input):
par1 = 12 ; par2 = 12 ; par3 = BFGS ;
R code (references can be found in the software module):
require('stsm')
require('stsm.class')
require('KFKSDS')
par1 <- as.numeric(par1)
par2 <- as.numeric(par2)
nx <- length(x)
x <- ts(x,frequency=par1)
m <- StructTS(x,type='BSM')
print(m$coef)
print(m$fitted)
print(m$resid)
mylevel <- as.numeric(m$fitted[,'level'])
myslope <- as.numeric(m$fitted[,'slope'])
myseas <- as.numeric(m$fitted[,'sea'])
myresid <- as.numeric(m$resid)
myfit <- mylevel+myseas
mm <- stsm.model(model = 'BSM', y = x, transPars = 'StructTS')
fit2 <- stsmFit(mm, stsm.method = 'maxlik.td.optim', method = par3, KF.args = list(P0cov = TRUE))
(fit2.comps <- tsSmooth(fit2, P0cov = FALSE)$states)
m2 <- set.pars(mm, pmax(fit2$par, .Machine$double.eps))
(ss <- char2numeric(m2))
(pred <- predict(ss, x, n.ahead = par2))
mylagmax <- nx/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(mylevel,na.action=na.pass,lag.max = mylagmax,main='Level')
acf(myseas,na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(myresid,na.action=na.pass,lag.max = mylagmax,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(mylevel,main='Level')
spectrum(myseas,main='Seasonal')
spectrum(myresid,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(mylevel,main='Level')
cpgram(myseas,main='Seasonal')
cpgram(myresid,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test1.png')
plot(as.numeric(m$resid),main='Standardized Residuals',ylab='Residuals',xlab='time',type='b')
grid()
dev.off()
bitmap(file='test5.png')
op <- par(mfrow = c(2,2))
hist(m$resid,main='Residual Histogram')
plot(density(m$resid),main='Residual Kernel Density')
qqnorm(m$resid,main='Residual Normal QQ Plot')
qqline(m$resid)
plot(m$resid^2, myfit^2,main='Sq.Resid vs. Sq.Fit',xlab='Squared residuals',ylab='Squared Fit')
par(op)
dev.off()
bitmap(file='test6.png')
par(mfrow = c(3,1), mar = c(3,3,3,3))
plot(cbind(x, pred$pred), type = 'n', plot.type = 'single', ylab = '')
lines(x)
polygon(c(time(pred$pred), rev(time(pred$pred))), c(pred$pred + 2 * pred$se, rev(pred$pred)), col = 'gray85', border = NA)
polygon(c(time(pred$pred), rev(time(pred$pred))), c(pred$pred - 2 * pred$se, rev(pred$pred)), col = ' gray85', border = NA)
lines(pred$pred, col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the observed series', side = 3, adj = 0)
plot(cbind(x, pred$a[,1]), type = 'n', plot.type = 'single', ylab = '')
lines(x)
polygon(c(time(pred$a[,1]), rev(time(pred$a[,1]))), c(pred$a[,1] + 2 * sqrt(pred$P[,1]), rev(pred$a[,1])), col = 'gray85', border = NA)
polygon(c(time(pred$a[,1]), rev(time(pred$a[,1]))), c(pred$a[,1] - 2 * sqrt(pred$P[,1]), rev(pred$a[,1])), col = ' gray85', border = NA)
lines(pred$a[,1], col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the level component', side = 3, adj = 0)
plot(cbind(fit2.comps[,3], pred$a[,3]), type = 'n', plot.type = 'single', ylab = '')
lines(fit2.comps[,3])
polygon(c(time(pred$a[,3]), rev(time(pred$a[,3]))), c(pred$a[,3] + 2 * sqrt(pred$P[,3]), rev(pred$a[,3])), col = 'gray85', border = NA)
polygon(c(time(pred$a[,3]), rev(time(pred$a[,3]))), c(pred$a[,3] - 2 * sqrt(pred$P[,3]), rev(pred$a[,3])), col = ' gray85', border = NA)
lines(pred$a[,3], col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the seasonal component', side = 3, adj = 0)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Structural Time Series Model -- Interpolation',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Level',header=TRUE)
a<-table.element(a,'Slope',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Stand. Residuals',header=TRUE)
a<-table.row.end(a)
for (i in 1:nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,mylevel[i])
a<-table.element(a,myslope[i])
a<-table.element(a,myseas[i])
a<-table.element(a,myresid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Structural Time Series Model -- Extrapolation',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Level',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.row.end(a)
for (i in 1:par2) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,pred$pred[i])
a<-table.element(a,pred$a[i,1])
a<-table.element(a,pred$a[i,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')